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Effect of collisions between carriers on the dissipative 
conductivity 
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The existence of dissipative conductivity due to the mutual scattering of carriers is considered. It is shown 
that in a d.c. field such a conductivity exists only in a carrier system for which the total charge is zero. 
No magnetoresistance of this type exists. In a high frequency field the conductivity due to the mutual 
scattering of carriers exists in a system of carriers having different e / m .  

PACS numbers: 72.10.Di 

INTRODUCTION 

T h e r e  exists two types  of s c a t t e r i n g  of carriers in a 
solid:  s c a t t e r i n g  b y  t h e  l a t t i ce ,  i.e., b y  phonons,  i m -  
p u r i t i e s  and de fec t s ,  and  s c a t t e r i n g  of t h e  c a r r i e r s  by 
one  another .  T h e s e  two types  of s c a t t e r i n g  are  bas i ca l -  
l y  different-in s c a t t e r i n g  b y  the  lattice, t h e  momentum 
obtained b y  t h e  s y s t e m  of carriers f r o m  t h e  e x t e r n a l  
e l e c t r i c  f ie ld  is t r a n s f e r r e d  to the  lattice, while i n  
s c a t t e r i n g  of carriers b y  one  ano the r ,  t h i s  momentum 
r e m a i n s  in s ide  t h e  c a r r i e r  s y s t e m .  H e r e  w e  m u s t  im-  
media te ly  m a k e  two s t ipula t ions .  We s h a l l  a s s u m e  tha t  
t h e  phonons are i n  equ i l ib r ium and  f o r m  a the rmos ta t ;  
t he re fo re ,  t h e  t r a n s f e r  of momentum to t h e  lattice is 
equivalent  to momentum diss ipat ion.  F u r t h e r ,  w e  s h a l l  
not cons ide r  t h e  s c a t t e r i n g  of carriers by  o n e  a n o t h e r  
with pa r t i c ipa t ion  of t h e  lattice, i.e., umklapp process- 
es and processes of t h e  t r a n s f e r  of a carrier f r o m  one  
val ley  to ano the r  (in s u c h  p r o c e s s e s ,  t h e  momentum is 
also t r a n s f e r r e d  to t h e  la t t ice) .  Moreover ,  it is as- 
sumed  tha t  t he  s y s t e m  is spa t i a l ly  homogeneous ,  i.e., 
s u c h  s i tua t ions  as, f o r  example ,  t he  anomalous  s k i n  
ef fect  and thin plates are excluded,  

Since  t h e  two s c a t t e r i n g  t y p e s  ment ioned above have  
d i f f e ren t  c h a r a c t e r s ,  they are not  "additive." T h i s  
m e a n s  t h a t  if t he  s c a t t e r i n g  b y  t h e  lattice is c h a r a c t e r -  
i zed  b y  a re l axa t ion  t i m e  r, and  t h e  s c a t t e r i n g  of the  
carriers b y  one  ano the r  by  a n o t h e r  time 7=, then  t h e r e  
d o e s  not exist a n  effect ive  r e l axa t ion  t i m e  r* which 
would be d e t e r m i n e d  b y  t h e  r e l a t i o n  

I / T * = I , T ~ + ~ / T ~ , ,  (1) 

T h i s  is s e e n  even  f r~1;1  the  simplest example  f o r  con- 
duct iv i ty  i n  a static e l e c t r i c  field.  If t h e r e  is no elec- 
t ron -e l ec t ron  sca t t e r ing ,  t hen  t h e  conductivity is 

H e r e  n is t h e  concen t ra t ion  of t h e  e l ec t rons ,  rn is t h e i r  
ef fec t ive  mass, and  (. . .) deno tes  a v e r a g i n g  o v e r  the  
e n e r g y  r .  If t h e  i n t e r e l e c t r o n  s c a t t e r i n g  p redomina te s ,  
i.e., 7, << rL then,  as is wel l  knownlcl' 
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and nowhere is there 

a s  might be  inferred from (1). 

If we exclude the case of a strong dependence of rL 
on c, then the quantities ( T ~ )  and (l/rL)-' have the same 
order and, regardless of the pace of the interelectron 
scattering, the order of magnitude of the conductivity 
is determined only by the scattering from the lat- 

In this connection, the following question 
arises: does there exist generally such a dissipative 
conductivity whose order of magnitude i s  determined by 
the mutual scattering of the carr iers?  This question is 
important, for example, in connection with the inter- 
pretation of experiments on the magnetoresistance of 
bismuth which, in the opinion of several authors,t43 is 
determined by the electron-hole scattering. 

When the conductivity is determined by the mutual 
scattering of the carriers,  i t  is naturally possible to 
calculate i t  by neglecting the scattering of the carr iers  
by the lattice. Under these conditions, no momentum is 
transferred to the lattice and a stationary state of the 
system of carr iers  is possible only in the case in which 
the momentum is not transferred from the field to this 
system (at least when averaged over the time). 

In a static electric field, the momentum from the 
field will not be transferred to the carr ier  system only 
if it is compensated, i.e., the total charge i s  equal to 
zero (as for example in bismuth). In an alternating 
electric field or in the presence of a magnetic field, we 
might think that the total force acting on the system 
averages out (over the period of vibration of the field 
and/or the period of cyclotron rotation). We therefore 
initially study the case of conductivity in a stationary 
field, and then the magnetoconductivity and the conduc- 
tivity in a high-frequency field. Cyclotron resonance is 
the natural generalization of the last two cases. 

2. FORMULA FOR THE CONDUCTIVITY 

We shall not be interested in the effect of scattering 
between carr iers  on the method of averaging of the lat- 
tice relaxation, since this effect does not determine the 
order of magnitude of the conductivity but affects only 
a numerical factor of the order of unity in the rate of 
lattice relaxation. Therefore, in place of the kinetic 
equation, we can use the equations of motion. We shall 
assume that there a r e  two groups of carr iers  with 
charges el and e,, isotropic masses ml and m,, lattice 
relaxation times r1 and r,, and a coefficient of mutual 
friction 17. Then the equation of motion for the particles 
of group 1 will be 

there will be a similar equation for particles of group 2. 

Setting E = 0, H = 0, and 7;' = rZ1 = 0, we can, by sub- 

tracting the equations of motion from one another, find 
that the relative velocity $, - v, relaxes to zero like 
e-t lT,  where 

Here and below, the bar above indicates averaging over 
the groups of carriers:  

It is natural to take the time r a s  the relaxation time 
, for  scattering between carriers.  

We direct H along z and introduce complex variables 
according to the rule 

p=p.+jpn a=au+jaiP (8) 

The geometric imaginary unit j should not be  confused 
with the variable i. We then find the conductivity from 
the equations of motion: 

a=GID, (9) 

where 
D= ( v , - i o )  ( v? - io )  + j o ,  ( v , - i o ) + j o 2 ( v , - i o )  -o,oz-ioy+y.ii+jWy, 

(10) 
G=g'r+i?,z(vz- io)  +I?,Z(v,-io) + j ( o , Q , ? f  o ,Qz2) .  (11) 

In (10) and (11) we have introduced the cyclotron and 
plasma frequencies of the individual groups 1 and 2: 

and also the averaged quantities 

We note the following: if we assume the particles of 
the different groups to be identical, i.e., set  e l = e , = e ,  
m1=n2,=m and v,=v,=v, then the factor v+y- iw+yD 
can be eliminated from G and D and there remains 

net 1 
0 = ------- ell 

n=n,+n2, ii~ =- 
m v-io+jt8 ' rnc 

Actually, we have only the one group of carr iers  in this 
case, and the fact that y does not enter into the result 
(14) means that collisions between the identical carr iers  
do not affect the conductivity. 

3. STATIC CONDUCTIVITY 

Setting H = 0, w = 0, and v, = v, = 0 in (10) and ( l l ) ,  we 
obtain 

If the system is uncompensated, i.e., i t s  total charge 
nB# 0, then fi2+ 0 and o = =Q. This means that in such a 
system there cannot be a static conductivity which would 
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be determined only by mutual scattering of the p_arti- 
cles. For a compensated system, where Z =  0, = O  
and an indeterminacy is ob'nined for the conductivity: 
o=O/O. To remove this, i t  is necessary to take into 
account the finite scattering by the lattices. We do this 
for the compensated system with 

which simulates bismuth. For such a system we find 
from (9)-(11) 

where, in correspondence with (6), 

It is seen from (17) that if r <<T,, r,, i.e., if the mu- 
tual scattering of carr iers  predominates, then the con- 
ductivity is completely determined by this scattering: 

However, i t  is useful to emphasize that, although o 
does not depend on T, and 7, in the considered limit, 
the state of the system does depend on these quantities. 
The ratio of the momenta p, and pa does depend on T, 

and r,, because the total momentum transfer to the lat- 
tice should be equal to zero: 

The momenta p, and pa a r e  directed oppositely, but the 
total momentum P=n,(p,+p,) is generally not equal to 
zero in spite of the fact that the forces acting on the 
carr iers  of the different groups a r e  equal in magnitude 
and opposite in direction (see the drawing). 

4. MAGNETORESISTANCE 

Setting w = 0 and v, = v,= 0 in (10) and (l l) ,  we get 
from (9) 

This means that if there is only mutual scattering, and 
there is no scattering by the lattices, then the dissipa- 
tive conductivity is lacking in a magnetic field. The re- 
sult (21) is evident when scattering within the system of 
carr iers  is excluded; i t  is important that it does not 
depend on this scattering. One can give the following 
illustrative interpretation to this assertion. If the 
charged particle acquires the momentum Ap in the mag- 
netic field, then the center of i t s  orbit is shifted by 
AR= (c/eH2)&p X H. If several particles collide, then 
the total charge transfer is 

since the total change of momentum of all the colliding 
particles is ZAP = 0. Therefore, the inclusion of mutual 

scattering does not change the current and the conduc- 
tivity in any essential way. In other words, there can 
be no magnetoresistance whose value would be deter- 
mined by the mutual scattering of the carriers.  

The situation seems especially paradoxical for a 
compensated system, fo r  example (16). In this case, 
we can write down the general formula for the conduc- 
tivity tensor in a magnetic field: 

(23) 
From Eq. (231, as H- -, we get 

Thus, while for H = O  the conductivity a t  r <<T,, r2 was 
entirely determined by the electron-hole scattering (see 
(19)), for H- a, i t  is determined by scattering from the 
lattice, regardless of the relations between 7 and T, or  

The magnetoacoustic resistance in complex form is 
calculated simply as p =  l/o. It is then seen from (23) 
and (17) that the difference p(H) - p(O), generally does 
not depend on the electron-hole scattering although p(0) 
does depend on it. For this reason, the temperature 
dependence p(H) - p(0) T2, observed in an experiment 
on b i s m ~ t h , ~ "  cannot serve a s  an argument in support 
of electron-hole scattering. 

5. HIGH-FREQUENCY CONDUCTIVITY 

Setting H = 0 and v, = v, = 0 in (10) and (l l) ,  we find 
the dissipative component of the conductivity from (9): 

Thus, if not all the ca r r i e r s  have the same ratio e/m, 
then there exists a dissipative conductivity whose value 
is determined by the scattering between carriers. It is 
not difficult to understand this result physically. 

When there is no scattering between carriers,  their 
velocities oscillate in the field with amplitudes 
v =  (-e~/iw)(e/m). If al l  the e/m a r e  identical, then 
there is no relative motion of the ca r r i e r s  and the in- 
clusion of scattering between them changes nothing. If 
there a r e  ca r r i e r s  with different e/m, then the inclu- 
sion of such scattering leads to the appearance of a 
frictional force in phase witht he velocity; the action of 
this force produces the dissipation. 

Simplifying (25) in the case of the conditions (16), we 
can see  that the correct static limit (19) follows from 
(25) a t  w =O. Therefore, we can expect that, a t  all  fre- 
quencies down to w =0, Eq. (25) is valid in the case of a 
compensated system a t  I << y. We can establish this by 
writing the formula for a with account taken of v, and 
v, for the system (16): 
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FIG. 1. Two different states of a compensated system (el = - e2, 
nl=n2; 1-electrons, 2-holes) with one and the same current 
(the circles are regions of occupied states) a-71 = 7 2  >> T,, 
P=O; ~ - - T ~ > T ~ > > T ~ .  P Z O .  

A similar formula for the uncompensated system shows 
that we can neglect the scattering from the lattice only 
at w >> (i7y)lJa. At lower frequencies, the conductivity 
depends essentially on the scattering from the lattice. 

We note that Eq. (25) can be applied to electrons in a 
nonparabolic band, by regarding the band a s  a system 
of carr iers  with different e/m. We can therefore expect 
that in this case, in a high-frequency field, there exists 
non-zero dissipative conductivity determined by elec- 
tron-electron scattering. That this is actually so  is 
easily established by solving the kinetic equation with 
the model derived electron-electron collision term used 
in Ref. 1. We then have the factor 

in (25) in place of the expression in the square brackets. 
This factor is equal to zero only for a parabolic band 
(the angle brackets denote averaging over the equilibri- 
um distribution). 

High-frequency absorption of a similar type takes 
place also when the mass difference is connected with 
anisotropy of the energy spectrum of the carriers,  as, 
for example, for electrons in germanium and silicon. 
To establish this fact, i t  suffices to consider the equa- 
tions of motion of type (5) with effective mass tensors 
for the two identical ellipsoidal valleys, one turned 
relative to the other. Here, for w >>y, we obtain 

where 6 is the conductivity tensor, and rh, and la, a r e  
the effective-mass tensors; 17 is assumed to be a scalar. 
It is seen from this formula that the absorption takes 
place also in the case in which the field is oriented 
symmetrically relative to both valleys and the ohmic 
masses a r e  the same (for example, E 11 [loo] in german- 
ium). This absorption is connected with the  fact that, 
in contrast to the isotropic case, there exists relative 
motion of the ca r r i e r s  from the different valleys in a 
direction perpendicular to the field. 

6. CYCLOTRON RESONANCE 

When w # 0 and H # 0, the formulas a r e  too compli- 
cated to write down even at v, = v, =O. We therefore 

give the result only for the resonance value of the dis- 
sipative conductivity under the conditions v, = v, = 0, 
w,, o, >> y. We have 

Thus, if there a r e  two groups of carriers,  then their 
mutual scattering assures a finite value of the reso- 
nance absorption a t  the resonance frequency of each 
group. It is natural that the value of the absorption is 
proportional to the concentration of carr iers  of the res- 
onance group, and is inversely proportional to the con- 
centration of carr iers  of the nonresonance group, which 
assume the role of scatterers. 

For the compensated system (16) we have 

1 e2 i 
He ul.,,, = -- - -a(o=O, H-O) ,  

2 r l  2 
(30) 

i.e., as is usual for a single group of carriers,  the res-  
onance conductivity is equal to one half the static con- 
ductivity. For a noncompensated system there is no 
such relation. 

7. CONCLUSION 

It follows from the results of Secs. 3-6 that the dis- 
sipative conductivity, due to scattering between parti- 
cles, exists under the following conditions: ' 

(1) static conductivity in a system of carr iers  whose 
total charge is equal to zero (compensated system); 

(2) high-frequency conductivity (in a magnetic field or  
without a magnetic field) in a system of carr iers  with 
different e/m; if the system is compensated, then such 
conductivity exists a t  all  frequencies down to w = 0, if 
there is no compensation, i t  exists only a t  frequencies 
W >> (7h7ee)-1J2. 

Magnetoresistance due to scattering between carr iers  
does not exist. Thus, the analogy between high-fre- 
quency conductivity and conductivity in a magnetic field 
disappears here. 

The existence of dissipative conductivity without scat- 
tering by the lattice does not contradict the law of en- 
ergy conservation, as it might seem a t  f i rs t  glance. 
The situation here is entirely analogous to the case of 
static conductivity due to elastic scattering by impuri- 
ties. In the latter case, the seeming paradox is re-  
solved in the following fashion: although the ohmic con- 
ductivity depends only on the momentum relaxation 
time 7, and does not depend on the energy relaxation 
time ?,, the range of fields E in which the Ohm's law 
is valid does depend on 7,; this interval is proportional 
to ?;fJ2.C51 In mutual scattering of the carriers,  the 
ohmic conductivity cannot depend on the mechanism of 
energy dissipation, i.e., on the scattering by the lattice, 
but the region of applicability of this ohmic conductivity 
is determined by the scattering by the lattice. 

Sometimes one encounters in the literature the asser- 
tion that the cause of the finite static conductivity, due 
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to electron-electron saattering, can be the difference 
in the masses of carriers of a single sign.CB171 The 
logic is  probably a s  follows: If the masses of all the 
particles a re  the same, then conservation of momentum 
in the collision leads to current conservation: 

If the masses a re  different, then the current i s  not con- 
served but urelaxes": 

Ap Ap 
AJ-e (2 + 2) + 0. 

nt, m, 

However, such a Nrelaxation of the current," if impor- 
tant at all, matters only in the alternating field. In a 

static field, in a system of carriers of the same sign, 
a stationary state cannot exist (see also Ref. 1). 
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Kinetics of nucleation and stratification of dilute He3-He4 
solutions under pressure at low temperatures 
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It is possible to obtain under pressure, in the absence of a free liquid-vapor surface, a metastable solution 
of liquid He3 in Liquid He4 in the stratification region in the phase diagram. The rate of formation of 
nucleating centers in the volume of such a solution and its dependence on temperature and concentration 
are computed. Classical and quantum conditions for nucleation are analyzed. The cases of the normal and 
the superfluid states of the Fermi component in the solution are considered in the region of the quantum 
regime. It is shown that the stratifcation of the supersaturated solution under the indicated conditions 
should begin not on the phmeqdibrium line, but on the rapid-nucleation line, T,. The T, line is 
constntcted. 

PACS numbers: 67.60. -g 

It is well known that the solubility of HeS in liquid He4 
a t  T <  0.87 K i s  finite.['] Liquid solutions of the helium 
isotopes with He3 contents in the range x, (T, P) < x 
< xu(T, P),  where x =x,(T, P )  and x =x,(T,P) a re  the 
branches of the phase diagram, separate into two equi- 
librium phases with molar concentrations x, (T, P )  and 
x,(T,P). At T < 0.15 K the upper phase is virtually pure 
He3 (xu = I), while the bottom phase is a solution with a 
He3 content within the limits 0.0637 < x ,  < 0.094, depend- 
ing on the p r e s s ~ r e . ~ ~ '  

As has been shown by ~ n d r e e v , ~ ~ ~ '  a film of impurity 
He3 atoms exists a t  the liquid solutionvapor interface. 
As the conditions approach the conditions for phase 
equilibrium a He3-rich phase develops continuously out 
bf the surface The inverse effect is observed 
at the liquid-solid boundary: owing to the van der Waals 
forces, the vessel walls and dust particles get covered 
with ~e~ films,c6171 and these surfaces cannot serve a s  
effective nucleation centers. Thus, in the absence of a 
liquid-vapor boundary (such a situation arises in exper- 
iments under pressure when the vessel is filled with the 
solution at a temperature higher than the stratification 
temperature and then cooled), the stratification of the 
supersaturated solution should occur through the forma- 

tion and growth of nuclei of the stable phase in the vol- 
ume of the metastable medium. 

The appearance of stable nuclei is connected with the 
surmounting of an energy barrier by the system. At 
temperatures close to absolute zero, a supercritical 
nucleus can arise only a s  a result of quantum penetra- 
tion through the barrier.b1 A nucleating center i s  a 
macroscopic formation, and can be described in the 
quasiclassical approximation. In the same way a s  was 
done in Ref. 8, we should write down the classical Ham- 
iltonian and then quantize it. 

If the degree of metastability of the medium is not 
high, then the optimal forms of the density and concen- 
tration distributions correspond to a spherical nucleus 
of the new phase, the thickness of the transition layer 
being small compared to the dimensions of the nucleus, 
i.e., d/R << 1. This circumstance allows us to describe 
the transition region in terms of surface tension. On 
account of the slowness of the motion of the interphase 
boundary (R/U << 1, u is the speed of sound), energy dis- 
sipation can be neglected, i.e., it can be assumed that, 
in the course of the growth of a nucleus, new excitations 
do not arise and all the parameters of the system adia- 
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