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1. INTRODUCTION 

In this paper we study the distribution functions of 
the local magnetization and susceptibility of a disorder- 
ed Ising magnet in the Bethe-Peierls approximation 
for two models of disorder; many of the results ob- 
tained a re  also valid for a Heisenberg magnet. 

In disordered magnets quantities such a s  the local 
magnetization nz , and susceptibility xi are ,  after 
thermodynamic averaging, random functions in the 
configurational sense, and their values depend on the 
site coordinate Ri. In this case quantities such as 

In this work we shall study the distribution function 
fo(x) in the paramagnetic phase and f(q) in the ferro- 
magnetic phase. It will be shown below that f,(m) can 
be expressed in terms off (9). To  calculate these func- 
tions it is necessary to have some kind of equation. To 
obtain this we shall make use of a method developed in 
the Anderson theory of lo~a l i za t ion .~~ '  The equation 
obtained, like that in Ref. 3, is exact on a Bethe lattice, 
and i t  may be hoped that it will give a qualitatively 
correct description of the phenomenon in the three- 
dimensional case too. The present article is devoted 
to  the derivation and analysis of this equation. 

2. DESCRIPTION OF THE MODELS. DERIVATION OF 
THE EQUATIONS FOR p; AND g 

and, analogously, (x,~,), arise. Here S, i s  the spin of 
the i-th site, , I ? ,  is the magnetization and x i  is the sus- 
ceptibility, equal to x i =  a l n , / ~ H ,  where H i s  the mag- 
netic field. By (. . .), we mean thermodynamic averag- 
ing, and by (. . .),,,, configurational averaging. Hence- 
forth, when this cannot cause confusion, we shall omit 
the symbol "conf" (e.g., when we a r e  talking about con- 
figurational averages of such quantities as the magneti- 
zation and susceptibility). 

Inasmuch a s  m i  and x i  are  random functions, the 
problem of the study of their statistical properties 
arises. It is well known from the theory of random 
 function^^'^ that all  their properties can be obtained 
if their probability measure o r  characteristic functional 
i s  known. However, even in the simplest problems it i s  

We shall consider two models of disordered ferro- 
magnets. In the f i rs t  model, which we call the lattice 
model, the magnetic atoms a r e  situated a t  the si tes of 
a regular lattice; only nearest neighbors interact, and 
the exchange integrals J between them a r e  distributed 
in accordance with a probability law P(J), the values of 
the exchange integrals for different bonds being uncor- 
related. In the second model, which we call the con- 
tinuum model, magnetic atoms of concentration n a re  
distributed randomly in space and interact with each 
other through a nonrandom exchange integral J(r). By 
choosing specific p(J) in the f i rs t  case and J(r )  in the 
second it i s  possible to obtain different situations fre- 
quently encountered in experiment. The following 
Hamiltonians correspond to the two models: 

impossible to calculate these. On the other hand, in 
H . = - ; J @  la) - h C  a,, 

most practical problems it i s  sufficient to know only 1 

the distribution functions .fl(nz ,), f0(xi) and f(q,) of the 
local magnetizations, susceptibilities and molecular H,- -Z  J ( I R , - R ~ I ) O , U , - ~ ~ ~ , ,  
fields, respectively ( q ,  is the molecular field; i t s  %.RI I 

definition i s  given in Sec. 2). - 
We shall discuss in what experiments thest. quantities 

can be studied. Firs t  of all, there a re  the Mossbauer 
spectra. Since the nuclear spins precess much more 
slowly than the electron spins, they feel the magnetiza- 
tion of their own atom and not the instantaneous value 
of its spin. In the paramagnetic region, m ,= x,H. From 
the Mgssbauer s ~ e c t r a .  therefore. it is possible to 

where h = wH, p is the magnetic moment, g is the 
gyromagnetic ratio, and the o, are Ising operators. In 
HI the summation is performed over the sites of a reg- 
ular lattice, J,, being nonzero for  nearest neighbors 
only, and in H, the summation is performed over all the 
random positions of the magnetic atoms in the given 
configuration. 

recover the distribution function of the magnetization We now derive the equation connecting the magnetiza- 
in the ferromagnetic region and that of the susceptibility tions m ,  a t  different lattice si tes for the lattice problem. 
in the paramagnetic region. Such experiments already The corresponding equation for the continuum problem 

is obtained analogously. We consider an arbitrary site 
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i. Let Z,, denote the probability that the i-th spin 
points up o r  down. We denote by j the z nearest neigh- 
bors of the i-th site, and for these too we introduce 
quantities Z,,. We retain in (2) only those terms which 
connect the site i with the sites j. We then obtain 

If we require that Z coincide with Z,,,, we obtain a 
lo, 

self-consistent equation. The procedure described is 
analogous to the Bethe-Peierls approximation. The 
factorization of the density matrix of the nearest neigh- 
bors  of the i-th si te is analogous to the decoupling of 
the averages in the usual molecular-field approximation. 
Evidently, the approximation used has the same region 
of applicability a s  the ordinary molecular-field approxi- 
mation, but, unlike the latter, permits us to describe 
strongly disordered systems right up to the percolation 
threshold. For  those cases for which there is a dia- 
gram technique that permits corrections to be calcula- 
ted, e.g., for the percolation problem o r  for a magnetic 
glass, it can be shown that when a long-range para- 
meter is present there is a region (coinciding with the 
region of applicability of the Landau theory for these 
problems) in which this approximation is justified. 
Therefore, it is natural to assume that, in the other 
cases also, the criterion for applicability of this 
approximation is the presence of a long-range para- 
meter. 

We return now to the formula (3). We introduce the 
following notation: 

1 z,+ Zi ,  - 2.- qc=-ln- ma- - th qc. 
2 zi- ' Zc, + 21- (4) 

Obviously, in (4) m i  is the dimensionless local magnet- 
ization and q ,  is the dimensionless molecular field a t  
the site i. 

From (3) and (4) we obtain equations connecting q, 
with q, and m i  with m i  

The equations for q, and m i  a re  completely equiva- 
lent, but the equation for q, is more convenient and this 
is the one we shall use. These equations have a simple 
physical meaning. Let the i-th spin interact with z 
other sp-ms, the magnetization of which is given and 
equal to m ,. Then, as a result of the interaction with 
these spins, the i-th spin is also magnetized, its 
magnetization mi being determined by the second for- 
mula (5). These formulas a r e  exact on a Bethe lat- 
t i ~ e , ~ ~ '  and it may be hoped thatthey a r e  a good approxi- 
mation in the real three-dimensional case, where, for 
an ordered system, they coincide with the results of the 
Bethe-Peierls approximation for z >> 1 (cf. formula 
(16.55) in the book by ~uang~") .  

In the paramagnetic region, m , = 0 and it is necessary 
to consider the equation for  the local susceptibility. 
From (5) we obtain 

Equations (5) and (6) a r e  the basic equations for the 
subsequent analysis. We recall that a,, a r e  random 
quantities. We shall consider various particular cases 
of Eqs. (5). If @ ,, << 1, from (5) we obtain the stochastic 
analog of the molecular-field equation: 

Near the phase-transition point, q,<< 1 and we obtain 
from (5) the stochastic discrete analog of the Landau- 
Ginzburg equation: 

For  the continuum problem, in place of (5) and (6) we 
have 

I 

p i - - - + -  i+aij th q j  
T 2 i - a ,  th q, ' X.=P +C ai,Xi, 

j-I j-< 

where N is the total number of magnetic atoms in the 
crystal. 

3. CALCULATION OF THE CURIE TEMPERATURE 
AND ANALYSIS OF THE FLUCTUATIONS OF THE 
SUSCEPTIBILITY 

We consider now the dependence of the Curie temper- 
ature T, and of the fluctuations of the susceptibility on 
the parameters of the system for  different cases. To  
determine 7, we use the linearized Eq. (5) for q,, fo r  
h=O: 

We average (lo), assuming that q, is statistically in- 
dependent of the a,, and, therefore, (@ ,p ,) = (a ,,)(q ,). 
This assumption is completely analogous to the approxi- 
mation made in the derivation of (3), and we shall use 
i t  again in deriving the equation for f(q). These two 
approximations a re  basic in the present work. Having 
made this assumption, we obtain from (10) the following 
equation for  T,: 

(11) 
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For the continuum problem, in place of (10) and (11) 
we have from (9) 

The second formula in (12) is obtained if we take into 
account that in the continuum problem averaging of a(r) 
means the integration v"Jdra(r), where v is the voi- 
ume of the whole system. In certain cases, e.g., for 
magnetic glasses, the integrals in (11) and (12) a re  
equal to zero, because p(J) is even in J in the first case 
o r  because of the alternating sign of J(r) in the second 
case. Then, obviously, it is necessary to write equa- 
tions for q:, and we obtain for both problems 

For simple cases all these formulas lead to simple 
expressions. For the case of pure percolation (for 
details about percolation see the reviewce1), for which 
p(J)  in the lattice problem and J(Y) is the continuum 
problem have the form 

where p is the concentration of bonds, we have, from 
(11) and (12). 

We see that the equation for T, i s  the same for both 
problems, apart from the replacement of pz by v. Be- 
low we shall show that for z >> 1 the equations for f ( q )  
also coincide. 

For the spin-glass model proposed by Edwards and' 
Andersonc7' the first of Eqs. (13) coincides with the 
corresponding equation for T, obtained by Sherrington 
and K irkpatrickC8' for the Ising problem: 

For comparison with the formulas from Ref. 8 it  is 
necessary to note that it is assumed in Ref. 8 that 
z >> 1; in this case T, >> J,, and tanh(W,x/T) can be 
expanded in a series and (16) goes over into the corres- 
ponding expression from Ref. 8. In this case, T ,  -J,z 'I2. 

We shall consider now two more-interesting examples, 
namely, ferromagnetism and a magnetic glass for the 
continuum problem with v << 1, i.e., for low density. 

We shall consider the former case first. We assume 
that we have a ferromagnet with J(Y) = Voe'rlR, and that 
v is defined a s  before by formula (15). Such a ferro- 
magnet i s  realized, e.g., in the alloy PdFe (for more 
detail, see Ref. 9). In this case the Curie temperature 
can be estimated only by various indirect m e t h o ~ i s , ~ ~ ~ ' ~ ~  
from which it follows that T, i s  determined by the 
interaction over the mean spacing, i.e., in our case, 
T, - Voexp(-v-'I3). We shall show that this follows 
directly from our formulas. 

From (12) we have 

For v<< 1 the principal contribution to (17) is given by 
the region t 2 T/~v ,  << 1, whence we obtain 

The region t s T/~v,  gives 

2VO v h a -  - v S h a i ,  
T 

i.e., the contribution from this region i s  parametrically 
small. 

We consider now a magnetic glass, in which the 
magnetic atoms interact via the Rudermann-Kittel 
potential. At large distances this potential has the form 

cos (2por) J(r)-Jo- 
(PJ)' ' 

where p, i s  the Fermi momentum. If n << pi, the inter- 
action J(Y) over the mean spacings r, -n'113 >>#," varies 
in its sign. This leads to the formation of a magnetic 
glass. Because of the alternating sign of J(Y) it is 
necessary to make use of formula (13), from which we 
have 

To estimate the integral we can omit cosp,~ in (20); 
then, 

Inasmuch a s  ~ ,n /p i  - ~ ~ / ( p ~ r ~ ) ~  for r, - n"", Tc is i3gain 
determined by the interaction over the mean spacing. 

We note that (21) differs sharply from the results of 
Sherrington and  irkp pat rick.^'' In Ref. 8 it is assumed 
that z >> 1 (or, which i s  the same, v >> 1) and in this 
case, a s  we saw in (16), T, -zl"- v'I2 -n1I2. In our 
case n/p: and T, - v -n/p: play the role of v. 

We consider now the fluctuations of the susceptibility. 
From (6) and (9), decoupling these equations just as  in 
the calculation of T,, we have 
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(x)-p[l-z(th$)] -: <xz)=<x)2[~-z(( th;) ')I -' , If p(J) = 0 for J<O, from (25) and (26) it can be seen 
that f(q)=O for q <O and f0(x)=O for x <O. Therefore, 

(22) in this case it i s  possible to define the Laplace trans- 
<x)=p[ l -nJdr t l~-  u(r)]- l ,  T (Xa)=<x)2 [I-n i d r  (th--)'] U ( r )  -l form: 

T - . 
The first two formulas pertain to the lattice problem F(s) = j dq f (q) e - ~ ~ ,  F~ (8) = j dx j~ (x) e-'%. 
with z >> 1, and the second two to the continuum problem. (27) 

0 0 

For the case when p(J) and J(Y) are  determined by From (25)-(27) we obtain the following equations: 
formula (l4), we obtain 

Since, near T,, We now write out (28) for the important particular 
case when p(J) i s  determined by the distribution (14): 

uo 
Fds)=e-'"Y[F(az)], a ,= thT,  

1 

it can be seen from (23) that near the phase-transition 
curve the fluctuations of the susceptibility a r e  enhanced 
as  the percolation threshold pz = v =  1 is  approached. (29) 

F ( S ) = Y { ~  

We consider now a low-concentration ferromagnet 0 

(for which T, is determined in (18). From (22), in Y (2) -(I-p+pz)'; 

analogy with the derivation of (17), we have 
for z -- with pz = const, 

<xa)  ln't ,2V0t -' 
' = { l - ~ j ~ t h  y&) -v- '~.  (24) 'Y (2) +YO(Z) = e ~ p  [IJZ(Z-~) 1. 
(x) 0 

The latter equality in (24) is obtained if we assume that 
we a re  very dose  to T,, i.e., that (17) i s  fulfilled in 
our case. 

It can be seen from (23) and (24) that in strongly dis- 
ordered systems the dispersion of the susceptibility 
i s  much greater than the average susceptibility. It can 
be shown that we have the same situation for the mag- 
netization. It i s  clear that in this case the average 
value no longer characterizes anything and it i s  neses- 
sary to study the distribution function. 

4. EQUATIONS FOR THE DISTRIBUTION FUNCTIONS 
OF THE SUSCEPTIBILITY AND MOLECULAR FIELDS 

We turn now to the derivation of the equations for the 
distribution functions f0(x) and f (q) of the susceptibility 
and molecular fields, respectively. For this we use 

In deriving (29) we have taken into account that F(0) = 1. 
In the expression after (29) we have separated the 
limiting case z >> 1, pz = const. 

We shall derive the corresponding formulas for the 
continuum problem. From (9), in place of (25) we have 

where v is the volume of the whole crystal. We also 
have an analogous formula for f (9,). From (30) it is 
easy to obtain an equation for f0(x). We shall write 
out this equation and the corresponding equation for 
f (at): 

Eqs. (6) and (9). We first  consider (6). From (6) we - 
s l + t h ( U ( r ) / T ) t h q  

have ~ ( 8 ) -  exp {nJ dr [dq f(q) [exp (- Tin I -th(2l(r)/T)thq )-ill- 

(25) If J(y) i s  determined by the second of the formulas 
i-I )-I (14), then from (31) we obtain (29) with @(x) replaced 

Here we have again used the assumption, already made by @,(XI and pz replaced by v. Hence it can be seen that 
in the preceding section, that X, i s  statistically inde- the continuum percolation problem i s  equivalent to the 
pendent of the o! ,,. lattice problem for z >> 1. 

Analogously, for f(q,) we have, for h = 0, The formulas (28), (29) and (31) are  the basic for- 
mulas of our theory. Inasmuch a s  m = tanhp, if we 
know f(q) it i s  easy to calculate f,(m). We also write 

l + ~ k ,  th q j  

i ( e ) -  JJJ ~ ( l , ) f ( ~ , ) d l ~ d q ~ 6 { ~ , - ~ ~ l ~ ~ ) .  (26) our formula (29) for T =  T,, where q<< 1, for which we 
i-3 1-1 have 
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Al l  the formulas of this section are written for the 
case that p(J) = 0 for J < 0. If we do not have this condi- 
tion, the analogous formulas must be written for the 
Fourier transform 

and analogously for Fo(k); in this case it is  necessary 
to make the replacement s -ik in all the formulas. 

5. SOLUTION OF THE EQUATIONS IN THE 
HIGH-DENSITY CASE 

We shall consider the solution of the second equation 
(31) in the case v >> 1; we shall not assume that J ( r )  
>0, and in this case we shall use formulas (33). If 
v >> 1 it is  easy to show that the concrete form of J ( r )  
is  unimportant. On the other hand, it can be seen from 
(13) that in the main region of integration over r we 
have J ( r )  << T near T,. Therefore, we can put 

and expand the logarithm in J(~)/T. We then have the 
following equation for F(k): 

For v>> 1 the integral in (34) is evaluated by the 
method of steepest descents. Expanding the expression 
in square brackets in (34) in k and calculating f (q), we 
obtain (J(r) J(Y/R) ) 

1 
(') ' (2nvQ) '"a, 

exp[ - ( q ~ ~ ~ ) ' ] 7  

The last two formulas are equations for the parameters 
Q and m,. If we substitute the explicit expression for 
f (q) into these equations we obtain 

dz exp (- $) t h 1 ~ a ~ m ~ + ~ a 1 ~ v Q ~ ~ ~ ~ l ~  

(36) 

The equations (36) coincide with the corresponding 
equations in the paper by Sherrington and  irkp pat rick.^^' 

Formulas analogous to (35) and (36) can also be obtained 
for the case of the lattice problem, from Eqs. (28). 

6. SOLUTlON OF THE EQUATIONS NEAR THE 
PERCOLATION THRESHOLD 

We now consider Eqs. (29) in detail. These equations 
correspond to a disordered ferromagnet in which some 
of the exchange integrals are equal to zero and the 
other exchange integrals form a fraction p. As can be 
seen from (15), p =p, = z-' i s  the critical concentration. 
For p <pc there can be no ferromagnetism at all. This 
critical value is  related to the percolation problem.[61 
As we saw in Sec. 3, a s  the percolation threshold is  
approached the fluctuations of the susceptibility, and, 
consequently, of the magnetization, increase. In this 
section we shall consider f(q) and f0(x) near the perco- 
lation threshold in detail. 

We consider first the case T = 0. Since ao(T = 0) = 1, 
from (29) we have 

We consider the second equation first. It can be 
seen from the explicit expression for *(x) in (29) that 
the equation *(x) = x with pz < 1 has only the one solution 
x=  1, while for pz > 1 a second solution appears, which 
we shall denote by xo (of course, xo < 1). For Ips - 1 I 
<< 1, to calculate xo we can expand *(x) is a series about 
x = 1; we then obtain 

It can be shown that for s* 0 the stable solution of the 
equation F = *(F) is  F(s) = xo. On the other hand, by 
virtue of the normalization condition, F(s = 0) = 1. Hence 
it is  not difficult to obtain f(q), and also f,(m): 

The expression for f,(m) has a very simple physical 
meaning. At zero temperature all the magnetic atoms 
belonging to the infinite cluster have the maximum 
possible magnetization, while the magnetic atoms 
belonging to finite clusters give no contribution to the 
magnetization. Consequently, 1 - x, defines the "power" 
of the infinite cluster in our approximation. 

We shall show from other considerations that the 
equation for xo determines the power of the infhite 
cluster in an approximation which we shall call the 
molecular-field approximation in the percolation 
problem. Let p(p) be the power of the infinite cluster, 
and R = 1 - P. We shall consider any particular site, 
surrounded by z nearest neighbors. Then the prob- 
ability R that our site belongs to a finite cluster is  
equal to Gc, where G is  the probability that, on moving 
along a given selected bond, we do not go away to 
infinity. In its turn, G = 1 -p+pR, since our bond may, 
with probability 1 -p, be broken, and if it i s  not broken 
(probability p) the neighboring site should belong to a 
finite cluster. Hence we immediately obtain for R 
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This argument is very similar to the corresponding 
arguments of the usual molecular-field approximation 
in the theory of ferromagnetism; this is why we call it 
the molecular-field approximation in the percolation 
problem. From (38) and (40) i t  can be seen that the 
percolation threshold pc= z", and near p, we have 
p(p)"p-PC, i.e., the index B = l .  From (22) it can be 
seen that at  T = 0 the susceptibility x - (p, -p)-' and, 
thus, the index y =  1. A s  is well known (see, e.g., Ref. 
l l ) ,  these indices correspond to the analog of the 
Landau theory for the percolation problem, and, thus, 
Eq. (40) does indeed correspond to the molecular-field 
approximation. From the results of a previous papert''] 
it can be seen that when a long-range parameter is 
present there is a region of applicability of the Landau 
theory for the percolation problem. It is precisely 
for this region that our theory is  valid. 

We consider now the first of Eqs. (37). We rewrite 
it in the form 

Equation (41) is a functional equation for Fo(x) and can be 
solved exactly. Expanding Fo(x) in a series in x, we 
obtain 

where the contour integral in (42) goes round the coord- 
inate origin. Making the change of variable x 
= Fo[*(Fo)] " in (42) and, for simplicity, using the 
function *,(x) from (29) in place of *(x), we obtain 
after straightforward calculations 

(pzrn)"-1 
qn-e-P=m - 

rn! ' 

The distribution for q, is called the Borel-Tanner 
distribution. From (43) it can be seen that the suscep- 
tibility takes only integer values (in units of p). This 
should be the case at  T =  0, inasmuch a s  each finite 
cluster acts at  T = 0 a s  a single spin, and q, gives the 
distribution over the cluster sizes. We shall calculate 
(x) and (xz). For this we make use of the asymptotic 
form of q, for m >> 1; we than obtain 

i I - -  < x ' > - - ~ .  
i-pz ' ( 1 - p ~ )  

Comparing (23) and (44) we see that (23) goes over into 
(44) at  T = 0. From (44) it can also be seen that the 
dispersion of f0(x) is large compared with (x). 

We consider now the case of finite temperatures. 
Near the curve T,(p) we can use Eq. (32). We represent 
the argument of the exponential in (32) in the form 

In (45) all the terms a re  small except the first; there- 

fore, we expand the exponential in (32) in these small 
terms: 

We shall solve (46) in the following way. Let %,(s) be 
the solution of the equation 

Q (s) =Y [Q  (S/PZ) 1, (47) 

for which @'(0)= -1. This implies that for the corres- 
ponding distribution function f (q) we have (q) = 1. Thus, 
in @,(s) the scale is not fixed. We can fix this scale if 
we require that the integral in (46) vanish for s = 0. 
Thus, we represent F(s) in the form of a sum d(s) 
+ F,(s), where %(s) is the solution of Eq. (47) with the 
supplementary condition 

where @(s) is the Laplace transform of @(q). 

We shall not write out the equation for F,(s), since it 
is rather unwieldy. It turns out that F,(s)<< %(s) in the 
parameters pz - 1 and pza, - 1. We now solve (47). 
Since we have Ipz - 1 I << 1, (47) can be represented 
in the form 

The solution of (49) satisfying the boundary conditions 
@(0) = 1 and d'(0) = - 1 has the form 

Since it is clear that xo < < 1 we can use the expan- 
sion (38) for \k(x). We then obtain 

(1-20)' 
(s) -2, + - 

s+l-20 ' 

'po(q) =zo6 (q) + (l-zo)'e-('-*'q. 

In deriving (51) we used the condition Ipe - 1 I << 1. 

From (48) and (51) we have, finally, 

From the formulas (52) it can be seen that the spins 
(fraction x,) belonging to finite clusters make no con- 
tribution to the magnetization. From (52) we can also 
see how the index B changes from 8 = 1 for pure perco- 
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lation to /3 =+ for the disordered ferromagnet. The 
dispersion of @(q) i s  large compared with q,. Thus, 
f (q) = #q) gives the solution of the problem of the dis- 
tribution function of the molecular fields near the perco- 
lation threshold. 

We consider now the equation for the distribution 
function of the susceptibilities in the paramagnetic 
region, i.e., the first of Eqs. (29). Near the phase- 
transition curve and percolation threshold, I a, - 1 \ << 1 
and Ipz - 1 ( << 1. Below we shall be interested in the 
region of small s. Taking all this into account we obtain 
the following equation for F,(s): 

1 
Q--1-Fa, a  = - - I ,  b-pz-l,  psca' .  

a# 

Equation (53) i s  the complete Riccati equation. The 
solution of this equation, satisfying the necessary 
asymptotic conditions, has the form 

Inasmuch as  we derived Eq. (53) under the assumption 
that ps << a', we can only use the asymptotic form of (54) 
for ps << a'. Then, finally, we have 

4a' (a- b )  
F,=l-2a + 

sp+la(e-b)  ' 

1 a-b = - (I-pzao)  1 -p~a , .  
00 

In (55) we have written out only the asymptotic form 
of f o ( ~ j  for ,y - [a(a - b)] -'. The term 1 - 2a restoring 
the normalization of Fo(s) and f,(q) corresponds to the 
region x << a(a - b), which i s  not of interest to us. We 
shall assume that we a re  closer to the phase-transition 
curve than to the percolation threshold; then, 1 a - b 1 
<< a - b << 1 and sp - a(a -. b) << a', i.e., our assumption 
that sp << u2 i s  correct. Taking into account that a - b 
<< a - b, we obtain from (55) 

The formula (56) solves the problem of the suscepti- 
bility fluctuations. The expressions for (x) and (x2) 
coincide with (23) if we assume there that I1 -pzaaol 
<< Ipz - 1 I ,  a s  we assumed in the derivation of (56). 

7. SOLUTION OF THE EQUATIONS FOR THE 
LOW-DENSITY CONTINUUM PROBLEM 

We consider now the continuum problem with 

J ( r )  = v,e-r /R (57) 

with the condition v =  4irnR3/3 << 1. A s  we have already 

said, such a ferromagnet is realized in alloys of the 
PdFe type. After a change of variables, Eq. (31) for 
f (q) takes the form 

F ( s )  = exp 3v In t - dq f ( q )  { j2:j 
s  i + th q th(2V,t/T) 

X exp --In [ ( 2 L - t b q L ( 2 V a t / T )  

Exactly a s  in the derivation of (18) from (17), we can 
show that the principal contribution to the integral in . -. 

(58) i s  given by the region t 2 T / ~ v ,  <c 1, while the 
region t -S T/2V0 gives a small contribution -$ I3  << 1. 
Therefore, we first take into account the contribution 
to (58) from the region t 2  T/~v,. In this region, 
tanh(2v0t/T) - 1, and we obtain 

Equation (59) coincides with the second equation (37) for 
the continuum problem (we recall that for this problem 
it is necessary to replace \k(x) by *,(x) and pz by v). In 
this case the parameter v in (37) i s  replaced by 
vln3(2 v,/T). The corresponding equation for f ,(x) coin- 
cides with the first of Eqs. (37). This means that in the 
lowest approximation in v the phase transition with 
respect to the temperature reduces to an effective 
percolation problem and, in particular, the critical 
indices a re  "percolation indices." This statement has a 
simple physical meaning. Inasmuch a s  v<< 1 and 
T << 2V0, all the spins situated at distances less than 
the mean distance are, by virtue of the exponential 
dependence of J(r),  very tightly bound to the infinite 
cluster, while spins situated at distances greater than 
the mean distance a re  not magnetized; the infinite 
cluster appears at T = T,. Such a picture has been 
discussed earlier, starting from physical considera- 
t i o n ~ , ~ ' ~ ~  but no formulas confirming it had been obtain- 
ed. We note that from (59) the expression (18) for T, 
follows. It is obvious that all  the formulas following 
from (37) a re  also valid for (59). 

We now calculate the next approximation for F(s). . 
For this we take the first  of Eqs. (39) a s  the solution 
of (59) and substitute it into (58); then, changing from 
the variable t to r ,  we obtain 

F ( s )  = exp PIP dr [e -a 'J~r ) f r - l ]  { I  1. (60) 

where P is the power of the infinite cluster. This for- 
mula is the Holtzmark formula, with concentration nP. 
The contribution to the integral from the region where 
2J(r) 2 T, i.e., r s Rln(2VO/~), i s  equal to - v ~ l n ~ ( 2 ~ , /  
T), and taking this contribution into account gives Eq. 
(59) exactly, inasmuch a s  it can be seen from (37) and 
(40) that F(s) = 1 - P. The contribution from the region 
r 2  R l n ( 2 ~ , / ~ )  i s  small in the parameter v1I3 and gives 
the magnetization, by the infinite cluster, of the spins 
that are  unmagnetized in the zeroth approximation. 

If in (60) we change back to the variable t, integrate 
by parts and take into account that for s >> T/~v, we can 
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replace the upper limit in the integral over t by infinity, 
we obtain 

where C is Euler's constant and * ( z )  = dlnr(z)/dz. The 
formula (61) gives an explicit expression for the dis- 
tribution function. From (61) it can be seen that if 
I Ins I << I ~ ( ~ v , / T )  u " / ~ ,  then, in the lowest approxi- 
mation in $I3, we again obtain (59). We can also cal- 
culate f , ( ~ )  in exactly the same way. In the zeroth 
approximation we obtain an expression of the type (43). 
We shall not calculate the corrections. 

In conclusion the author expresses his gratitude to 
I. Ya. Korenblit and S. V. Maleev for discussions on the 
work. 
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Influence of spatial dispersion and of a surface layer on 
the phase of light reflected from a CdS crystal 
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Measurements were made of the change in the phase of light as a result of reflection from a CdS crystal 
in the region of the A absorption band at T = 4.2 and 77%. The experimental results did not agree 
with a theory ignoring spatial dispersion but were in satisfactory agreement with a theory allowing for the 
dispersion subject to boundary conditions giving rise to an exciton-free layer on the surface of the crystal. 
However, when the reflection spectrum was calculated using the layer thickness and the exciton damping 
parameter which agreed best with the experimental data on the change in the phase of light at 4.2X. 
the results differed from the spectrum determined experimentally at 4.2%. It was concluded that the 
boundary conditions should be refined within the framework of the spatial dispersion theory so that the 
reflection spectrum and the spectrum of the change in the phase would be described by the same set of 
m-. 
PACS numbers: 42.10.Fa, 78.20.Dj, 73.20.C~ 

pekarc1] demonstrated theoretically the importance of 
the spatial dispersion effects in interpreting the low- 
temperature exciton spectra of crystals. The most con- 
vincing argument in support of the need to allow for the 
spatial dispersion effect in CdS crystals at 4.2% is the 
ability to describe the optical properties measured in 
transmitted and reflected light by a single complex re- 
fractive index n* =n+ix, where n is the real refractive 
index and x is the absorption coefficient.'2131 It should 
be noted that the spatial dispersion theory makes it pos- 
sible to find the effective quantities ndf(k) and xe"(k) 
representing the reflection (amplitude and phase) of 
light from a crystal and, at the same time, find the 
parameters describing the transmission experiments.c31 

the reflected light A&) is a characteristic which sup- 
plements the reflection coefficient R(k). According to 
the spatial dispersion theory, the peak-to-peak ampli- 
tude of Arp(k) should be considerably greater than that 
predicted by classical crystal optics when use is made 
of the values nt(k) and xt(k), deduced from light trans- 
mitted by a crystal. However, there have been practi- 
cally no experimental studies of the reflection of light 
in the exciton absorption region of crystals, including 
measurements of A&). 

Hopfield and  horna as^^' described the results of their 
measurements of R(k)  by introducing boundary condi- 
tions leading to the idea of an exciton-free "dead" layer 
on the surface of a crystal. It follows from crystal op- 

The spectral dependence of the change in the phase of tics that the presence of a dead layer may also affect 
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