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The derivation is considered of a kinetic equation that describes the asymmetry of the electranlike and 
holelike excitations in a superconductor having a large concentration of nonmagnetic impurities. Besides 
the electron-phonon interaction, the alternating field is considered as a source of additional relaxation of 
the electron-hole unbalance. The dependence of the shift of the chemical potential and of the energy p p  
on the temperature and on the injection voltage is obtained at temperatures that are low compared with 
the critical value. 

PACS numbers: 74.50. + r 

1. INTRODUCTION 

A tunnel current through a junction of a superconduc- 
tor and another metal has been demonstrated experi- 
mentally and theoreticallyc1-*] to be able to produce an 
equilibrium state in the junction. The particles injected 
into the superconductors relax in energy on the phonons, 
and the result i s  a difference between the populations 
of the electron and hole branches, leading in turn to a 
shift of the chemical potential. Whereas in a normal 
metal the mixing of the branches is due to spatial diffu- 
sion, a distinct mechanism of homogeneous mixing i s  
possible in a s u p e r c o n d ~ c t o r . ~ ~ ~  Spatially homogeneous 

quantity f ;  = v ( p  -po) i s  a poor quantum number, so  that 
the kinetic equation of Aronov and Gurevich,['] for 
example, cannot be directly employed here. On the 
other hand, to calculate the collision integral and the 
t e r m  with the field pumping it is more convenient to use 
directly the kinetic-equat ion approximation rather than 
a more general approach.[7-g1 For  this reason we 
start out with Green's functions that a r e  integrated with 
respect  to 5 and depend on the energy variable E. In 
these terms,  we introduce a particle distribution func- 
tion n,, in contrast to the quasiparticle function used 
in [el. 

situations can therefore a r i se  in flat junctions of suffi- 
cient length. Because of the electron-phonon inter- 2. DERIVATION OF THE KINETIC EQUATION 

action, the excess particles produce a current whose 
We derive below a kinetic equation for  a superconduc- 

divergence in the film differs from zero, and by the 
to r  with impurities in the presence of field pumping in 

same token the pattern is homogeneous in the coordinate 
the asymmetrical case n,* 1 - n-,, i.e., when a shift of 

only over very large distances. 
the chemical potential ?pears. In the case symmetri- 

We shall deal hereafter with the experimental situa- 
tion shown in Fig. 1.c21 The particles injected into the 
superconductor alter both the size of the gap and the 
chemical potential. For  this reason, to prevent tunnel 
current from flowing between the superconductor and 
the probe N,, it is necessary to apply to the latter 
some compensating voltage U. We obtain here the de- 
pendence of the compensating voltage and of the energy 
gap on the injecting voltage V and on the temperature 
if the latter is small  compared with the critical temper- 
ature. A similar problem was investigated by Volkov 
and ~a ' i t sev . [~]  

ca l  in the electrpns and holes, an analogous equation 
was derived by E l i a ~ h b e r g . ~ ' ~ ~  Here, however, we use 
Keldysh's technique,["] in which the equations are more 
compact. 

We write down, by way of example, one of the func- 
tions G prior to integration with respect to 5:  

I FIG. 1. 

In the limit of large impurity concentration, the 
I 
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(8'-4')'" sign e ,  1 1 >A EsR=r-; ={ 
i(Az-ez) '/*, lel<A - 

The symbol on the upper left numbers of the functions 
in the sense of Gor'kov, and the one on the right in the 
sense of Keldysh. 

After integration with respect to E,, the Keldysh 
equations for the functions g of the superconductors 
assume, in matrix notation, the form 

(o-vk) -g. .-. = ~ V { - ~ A - A - ~ ) .  .-. 

The last terms in the equations of the system (I) ,  
which a r e  connected with elastic scattering by impur- 
ities, determine the angular parts of the Green's 
functions and vanish after averaging over the angles. 
We write down, by way of example, two of them: 

1 -IRL -{<-g)a*-g--ga*<-g)+-fa'<+f)-c-f)o,+f}. .-., 
2nr (2) 

The second terms in the right-hand sides of (1) des- 
cribe the interaction of the electrons with the phonons, 
both inelastic scattering by the phonons and processes 
that lead to Cooper pairing. 

To simplify the derivation, we leave out of the 
Green's functions for the time being the self-energy 
par ts  due to electron tunneling. The angle brackets 
(a . ) in (2) and (3) mean averaging over the angles. We 
use here the abbreviated notation 

do1 
{AB) ..-. = J A. .-.,B.-.,.-a-. 

2n 

The Green's functions and the self-energy par ts  in (1)- 
(3) should be taken to mean Keldysh matrices of the 
following form: 

whose elements a r e  connected by the Keldysh identi- 
tiesrll] both in the case of the Green's functions and 

for the self-energy parts. 

In the approximation corresponding to the kinetic 
equation, when 

+ = - I - -  3 +f,j=-f,, 

the Green's functions diagonal in the energy, which 
satisfy equations (I), take the form 

-g+=-sri[u.(l+-!.)+as], -g,=-g++inu., 

-g---ni[u.(p.-1)+a.], -&=-g--inu.; 
(4) 

f+--niv.(p.+l), f,-f++inv., 

f-=-niv.(a.-i), f ,=f-- inv.. (5) 

Here and below we use the notation 

For the self-energy parts connected with the elec- 
tron-phonon interaction we have, according to 
~ e l d y s h , ~ " ]  

de' do ,  , ,. xu -g jK J 7 c , s g , g . r , , ~ r k .  

The phonon propagator i s  of the form 

Integrating in (6) over the angles by using the relation 

we get, for example, and expression for C+: 

-2,  = - J den (en-s)'[u.. ($..+1) 
2 (SPO) 

+a..] [ (N.,-.+i) 8 (el-e) +N.-,,B (e-e') I. (8) 

It is similarly easy to verify that 

By virtue of gauge invariance, we assume that A is a 
real  quantity. 

It is convenient next to write down the equations that 
follow from the system (1) for the Green's functions 
diagonal in the energy, g, =g++g_ and f, = f++ f-, so  a s  to 
retain the direct connection with the Eliashberg case 
which i s  symmetric in the electrons and the holes:c101 
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where IT and KT are due to the tunqeling. 

In the absence of a phase of the order parameter and 
at equilibrium we have (*f, - %) = 0. A deviation of this 
quantity fram zero is due to the suppression of the 
even-in-enere;y increment to the distribution function. 
The procedure of obtaining the kinetic equation consists 
of determining the difference between the functions from 
(11) and substituting it in (10). The right-hand side of 
(10) i s  then the effective integral for the collisions with 
the phonons. In addition, this substitution cancels out 
the London part in  the term v-kg,, which corresponds 
to divergence of the total current. What i s  left then is 
only the diffugion part.c121 

To continue the solution of the system (lo), (11) it  i s  
necessary to find the angular parts, which depend on the 
field A,, of the nondiagonal Green's functions. This 
can be done by solving the system (1) prior to averaging 
over the angles, when the intergals of the collisions 
with the impurities a re  given by (2) and (3). This cum- 
bersome procedure can be avoided, however, by using, 
in analogy with the technique developed by Gor'kov and 
~ l i a ~ h b e r ~ , ~ ' ~ ~ ' ~ ~  the fact that in the approximation 
linear to the field the nondiagonal Green's functions 
take the form: 

where 

At this stage of the calculations it i s  necessary to 
make some concrete assumptions concerning the 
electron mean free path. We shall be henceforth inter- 
ested, just as in C'O1 in the "high contamination" case. 
In this limiting case we integrate with respect to 5 the 
nondiagonal Green's functions (12) and (13) and get 

e ( e - o )  +Aa e-C 
-(I-2n-.) [ 

et:-* 

e ( e - o )  +A' 

Substituting (14) and (15) in (10) and ( l l ) ,  we can 
write the equations for the Green's function g,=g:+ g;. 
We note, according to (4), that 

an. . a us-= I -  
at at 

[g.-g-.+u. (g,+g-.) 1, (16) 

and present the kinetic equations directly for the func- 
tion n,, making the corresponding symmetrization 

an. 
u.-- DVan.-A(U- (us-.-R-n,,-.+n-.) 

at 

+U+(n,+.-n.-n-.-.+n-.)+a.-.+a.+.-a.(~-+~+))+~.*+a. 

(17) 
Here 

We see therefore that the current i s  an additional 
source of relaxation of the potentials in the supercon- 
ductor. In the cas-e of direct current this effect was 
discussed by ~ a . l a i k o . [ ~ ~  If the alternating field is . 
strong enough, it can serve as the main cause of the . 
relaxation and determine, a s  a result of the frequency 
dispersion, the form of the distribution function. 

The phonon collision integral is obtained from Eqs. 
(lo), ( l l ) ,  and (16) with allowance for (4)-(7): 

The obtained collision integral is of the same type a s  
the well known integral obtained in the quasistatic 
description, when the variable i s  the quantity [. The 
first two terms of (18) conserve the total number of 
electron excitations, just a s  in the normal metal. The 
last two terms describe the nonconservation of the 
particle number. It is they which lead to relaxation of 
the population difference between the electron and hole 
t r a n ~ h e s . [ ~ . ~ ]  It i s  seen that (17) coincides with the 
Eliashberg equation[lol if the chemical-potential shift 
is disregarded. 

As already noted, it is necessary to add to the right- 
hand side of the kinetic equation (17) a non-equilibrium 
source, which leads in fact to a change of the chemical 
potential. We take this source to be, just a s  the 
tunneling of electrons from the normal metal into the 
superconductor. In the derivation of the expression for 
the tunnel source, we note that the corresponding term 
in the right-hand side of (17) i s  equivalent formally to 
impurity collision integrals of the type (2) and (3), 
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except that the functions averaged over the direction 
a r e  replaced by functions pertaining to the other metal. 
We assume the superconductor to be at  zero voltage, 
and the normal metal at  a voltage V. In the normal 
metal, by virtue of the time dependence of the phases 
of the Green's functions 

their Fourier components take the form 

Introducing a quantity w proportional to the tunneling 
probability, we obtain from with account taken of the 
symmetrization rule (16), the tunnel source of quasi- 
particles in the kinetic equation (17): 

u. (2) '=2w[u= (n,-v-~v-,+i-2n.) + (n.-v-n-v-.-i) 8 (E'-A') ] . 
(19) 

The difference between (19) and the corresponding 
expressions of C4153 is that the distribution functions 
that enter in this expression a re  not assumed to be in 
equilibrium. The source (19) in the kinetic equation 
describes tunnel injection of normal excitations, where- 
a s  the total tunnel current receives contributions also 
from the direct transition of the particles into the 
superfluid current, according to Tinkham.[41 

To obtain the tunnel current it is necessary to calcu- 
late the right-hand side of the continuity equation, which 
is obtained by integrating Eq. (10). In the right-hand 
side of this equation a nonzero contribution to the inte- 
gration is made only by the tunnel source: 

The first term on the left is the divergence of the 
London current, and the second is the divergence of 
the normal current. Since we a re  considering a sta- 
tionary problem, there is not time derivative of the 
charge density. The quantity on the right-hand side of 
(20) is the total tunnel current given in a more general 
form than in [41, since account is taken here, in prin- 
ciple, also of the shift of the chemical potential in the 
normal metal. We recall that the function n,_, pertains 
to the normal metal and the function n, to the super- 
conductor. 

Thus, the kinetic equation (17) with the phonon colli- 
sion integral (18) and the tunnel source (19), in con- 
junction with the continuity equation (20), make it 
possible in principle to solve kinetic problems in situa- 
tions with a shift of the chemical potential. The elec- 
troneutrality is satisfied here automatically because of 
the shift of the energy origin by the produced scalar 
potential, which in the static case makes only a negli- 
gible contribution of the order of q / ~ ,  to all  quantities 
other than the charge density. 
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3. TUNNEL JUNCTION AT LOW TEMPERATURES 
(T<<A) 

Our task is to calculate the compensating voltage U 
on the probe and the change of the gap in a supercon- 
ducting sample by the disequilibrium produced by the 
tunnel current. Various cases a r e  possible then, de- 
pending on the injecting voltage. 

a) O< V -  A << A. The nonequilibrium particles a re  
then accumulated directly near the thresholds, and the 
nonequilibrium distribution function differs from zero 
in the region A < I c I < V. It is advantageous to separate 
in the kinetic equation the parts even and odd in C: 

A s  seen from the expression for the collision inte- 
gral ( la) ,  the terms that a r e  quadratic in the incre- 
ment and the distribution function enter at  absolute 
zero with an energy transfer 2A to the phonons, where- 
a s  the linear terms enter with a transfer on the order 
of V -  A. For  this reason, if n, = n - n, is not too small 
a quantity, then the principal role in the collision inte- 
gral will be played by the nonlinear terms. The condi- 
tion for the applicability of this approximation will be 
written out below. Introducing 

we obtain from (21) 

where ~ = g ~ ~ / w %  is the reciprocal energy-relaxation 
time. Hence 

a (z) = (2p)-% (wz/27) '"8 (z) 0 (p-z) , 

P(Z) = ( 2 p ) - % ( ~ / 7 ) ' l , e ( ~ ) e ( p - ~ ) .  

The compensating voltage U, which is determined 
from the condition that there be no current through the 
probe contact, is determined according to (20) from 
the condition 

In our case we obtain 

U-A 1 

A 
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This enables us to write down the conditions under 
which the terms linear in n, that a r e  discarded in the 
collision integrals a re  small, vie., p13" << udy. Com- 
bining this with the requirement n, << 1, we obtain the 
condition for the validity of (25): 

At somewhat higher voltages 

the linear terms a re  the principal ones in the collision 
integral. It is then impossible to obtain an exact solu- 
tion, but in order of magnitude we have I ,  + I , ,  - yap3 
and I ,  - I - ,  - y13P3, whence, using the kinetic equations 
(21), we get 

Combining (25) and (28) we see that the nonequilibriurn 
properties of the junction in this voltage region depend 
on the voltage nonmonotonically. The maximum is 
reached when 

Ao-A ''la V-A V,-A (i) "". (29) 
A 

b) A<< V. In this case the situation recalls the pro- 
blem of finding the nonequilibrium distribution function 
produced by radiation of high freq~ency.~''' When high- 
energy excitations relax on phonons, they a r e  gathered 
in an energy region above a gap on the order of the 
temperature. The fast process in this case is the 
establishment of the form of the distribution functian, 
and the "bottleneck" is the relaxation of the total 
number of quasiparticles (quasi-electrons plus quasi- 
holes), in contrast to the symmetrical case, when this 
pertains to one of the excitation branches. Processes 
in which the total number of quasiparticles is conserved, 
a re  linear at  low temperature in a small correction to 
the distribution function, and a r e  shown in Fig. 2. 
Process 2 corresponds to nonconservation of the num- 
ber  of particles, but conserves the number of quasi- 
particles. 

We find the form of the distribution function from the 
condition that the principal linear part of the collision 
integral vanish. Then the energy-odd part of the 
distribution function P(r), just a s  in [*I, is of the Boltz- 
mann type 

and the normalization condition for it is obtained by 
integrating the second equation in (21). We present di- 
rectly the result for the change of the gap: 

FIG. 2 .  

The energy-even increment 0,  = a( (c - A)/T) is deter- 
mined from the equation 

To find the normalization of this function it is necessary 
to integrate the f i rs t  equation of (21) with a certain 
weighting function f(r), which, unlike in the preceding 
case, is not equal identically to unity. The form of the 
weighting function f is determined by setting equal to 
zero the integrated €-even principal part of the collision 
integral, after which the remaining term give the nor- 
malized function a. 

We seek the function f a t  T << r - A, and then 

From the vanishing of Q(r) we have . 
Q ( e )  -m(e)f(e) - If (e--e')'dct==0. (33) 

A 

Whence 

for the exponent q we obtain the algebraic equation 

the solution of which 

It is seen from (34) that the presence of the weighting 
function manifests itself only at  low energies; we 
assume theref ore 
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U - A  - 
A 

U-A - 
A 

0 A v, 
FIG. 3. 

0 5 

FIG. 4. 

This yields for the even increment to n, the normaliza- 
tion condition 

- C P ( Y )  - dy' A w V A I-q 
j m a t ~ ) d ~ j ? ; ; i ; - [ 2 e x ~ ( - +  + b ( ~ ' )  --- 
o o ) I 7 A (F) 

We can then write down directly the expressions for the 
voltage on the probing contact: 

U-A 1 T ' 
-3- (- 

A 2 A  

The second inequality takes the condition nl << 1 into 
account. 

Thus, the dependence of the experimentally observed 
quantities U and A on the applied voltage V is deter- 
mined by formulas (25), (28), (31), and (36) for dif- 
ferent intervals of the variation of V. The dependence 
is shown schematically on Fig. 3, and Vl is deter- 
mined from (29). We note that calculations at small V 
were made under the condition that the number of temp- 
erature excitations is much smaller than the number of 
the nonequilibrium excitations; this is equivalent to the 
inequality 

exp (-'Y,A/T) <w/y. 

Interest attaches also to the temperature dependence 
at large values of the injecting voltage A << V, this de- 
pendence is given by formula (36) and is shown in Fig. 
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4. The maximum is reached when 

The characteristic temperature dependence (31) and 
(36) is connected with the fact that at low temperatures 
the relaxation of the total number of quasiparticles 
(quasi-electrons plus quasi-holes) has an exponential 
character. The most convenient object for the observa- 
tion of these low-temperature anomalies seems to be 
lead. 
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