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A theory is developed of the optical breakdown of transparent polymers that arises from the additional 
absorption of light by the products of the chemical decay of the polymer, with allowance for the strong 
nonlinear temperature dependence of the chemical-reaction mte. The development of an instability at a 
small absorbing inclusion localized in the polymer matrix is investigated. This instability is of a non- 
threshold type. The induction time and the law of growth of the dfective size of the inclusion are found. 
The steady-state motion of the absorption wave propagating counter to the laser radiation in the case of 
developed breakdown is considered. The dependences of the velocity of this wave and of the temperature 
behind the wave front on the parametera of the problem are found. The theory developed is applied to a 
quantitative explanation of the "fatigue" effects associated with repeated action of laser radiation on a 
sample. 

PACS numbers: 78.50. - w, 79.2O.Ds, 82.35. + t 

INTRODUCTION in which the corresponding product is pure carbon. 

The phenomenon of optical breakdown of transparent 
dielectrics (i.e., the appearance of macroscopic imper- 
fections in them under the action of sufficiently intense 
laser radiation) has been investigated repeatedly, both 
theoretically and experimentally (see, e.g., the book by 
~eady''] and the literature cited in it). One explanation 
of the phenomenon has been the assumption of an ava- 
lanche-type instability, associated with the growth of 
the weak "priming" absorption of light during the action 
of the laser pulse and, a s  a consequence of this, with 
the loss by the medium of i t s  original transparency. 
Increase in the absorption of radiation has usually been 
associated with an increase in the concentration of free 
carr iers  in the dielectric, occurring either a s  a result 
of the internal photoeffect and the development of an 
electron ava lan~he~ ' "~  o r  a s  a result of the thermal ac- 
tion of a random absorbing inclusion on the rnedi~rn.'~' 

However, besides these mechanisms of avalanche- 
type instabilities, additional absorption of light by the 
products of the chemical decomposition of the matrix 
material can a r i se  under the action of laser radiation 
on transparent polymers. The possibility that such an 
instability can a r i se  was noted in the work of Butenin 
and ~ o ~ a n . ' ~ '  

In Ref. 6 the role of random absorbing inclusions in 
the optical breakdown of polymethylmethacrylate was 
studied. However, the chemical kinetics of the decom- 
position of the polymer was not considered in this work, 
and, a s  will be shown below, taking this into account 
alters qualitatively the character of the phenomenon. 

In this paper a theory of the optical breakdown of 
transparent polymers i s  developed with allowance for 
the kinetics of their chemical decomposition. We shall 
call the phenomenon itself induction thermolysis, and 
the products of the chemical decomposition of the poly- 
mer, which absorb the laser radiation, we shall call 
carbon black, having it in mind to apply the theory to 
the case of an organic glass (polymethylmethacrylate), 

DEVELOPMENT OF THE INSTABILITY AT AN 
ABSORBING INCLUSION 

1. We shall consider small absorbing inclusions lo- 
calized in a transparent polymer situated, from time 
t = 0, in a laser-radiation field of intensity so = const. 
For simplicity we shall suppose that the distance from 
the point of localization of each inclusion to the nearest 
boundary of the sample is large compared with the sizes 
of the inclusions, and this allows us  to neglect the ef- 
fect of heat exchange at the boundary of the sample on 
the formaiion of the temperature field near an inclusion. 
In addition, we shall assume that the average number 
density n of inclusions is sufficiently small  for the tem- 
perature field near each of them to be determined by 
the inclusion itself (this is valid if &V2IS << 1, where 
X is the mean size of an inclusion and V is the focal 
volumec71). In this case we can confine ourselves to 
considering the phenomena that occur near any one of 
the inclusions. On being heated an inclusion warms up 
the region of the matrix adjacent to it, as a result of 
which chemical decomposition of the polymer (thermolp 
sis) occurs. The carbon black released around the in- 
clusion gives r i se  to further light absorption, this be- 
ing equivalent to an effective increase in the s ize  of the 
inclusion. This leads to increase of its temperature, 
which, in i t s  turn, leads to increase in the rate of for- 
mation of carbon black, and s o  on. 

We shall assume the absorption of radiation by the 
carbon black to be  of the non-resonance type and de- 
scribe i t  in the framework of geometrical optics, so  
that the absorption coefficient a! =aoC, where a,= const 
and C is the carbon-black concentration (0 6 C 6 1). For 
simplicity we shall neglect the dependence on the car- 
bon-black concentration, and also the temperature de- 
pendence, of the other parameters determining the 
properties of the polymer matrix. 

To describe the chemical kinetics we shall use the 
model equation 
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Everywhere below we shall be interested in the case 
C << 1. Then from Eq. (1) we have 

We approximate the initial shape of the inclusion by a 
sphere of radius R,. Let to be the characteristic time 
of development of the instability {the induction time). 
The case of interest is that of large to (xt,>> Rz, where 
X is the coefficient of thermal conductivity of the poly- 
mer), since this case differs fundamentally from that of 
an ionization instability, for which the induction time is 
of the order of R ~ X . ' ~ '  For xt,>> R$ a quasi-stationary 
temperature profile manages to become established 
about the inclusion, and change of this profile occurs 
only a s  a result of the effective growth, due to carbon- 
black formation, in the size of the inclusion. 

To estimate the quantity to from scaling-theory argu- 
ments we take the equation describing the temperature 
distribution about an inclusion1': 

where x is the thermal conductivity of the polymer and 
S is the local value of the intensity of the laser  radia- 
tion. In this case the characteristic length over which 
the temperature varies is R,, and the characteristic 
temperature is the initial temperature To of the inclu- 
sion before the carbon black begins to form: 

where o(R) is the cross-section for absorption of radia- 
tion by the inclusion. The latter equality in (4) is writ- 
ten for a perfectly black sphere, as the inclusion will 
be assumed to be  in the following. 

Introducing 8 = T/T, and z t r /~ , ,  we transform (3) to 
the form 

where 

We note, since we shall need this in the following, 
that Eq. (1) has physical meaning only so  long as T <<E; 
therefore, y is always large compared with unity. 

Taking into account that 1 AC3 1- s - 1 for e - 1, and 
8 (1, t)" 1 +tho ,  we obtain from (5) that 

2. We shall consider the wave of carbon-black for- 
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mation propagating from the inclusion. We note that in 
the initial stage such a wave will possess spherical 
symmetry even in the case when R, is large compared 
with the wavelength of the radiation. This is due to the 
slowness of the process of carbon-black formation com- 
pared with the thermal conduction, which symmetrizes 
the problem. 

The equation of absorption of the light flux will be 

Treating the wave of carbon-black formation propagat- 
ing from the nucleus as a discontinuity surface, i.e., 
issuming that all the light flux is absorbed a t  the front 
of such a wave, we obtain the following equation for the 
radius R of the wave front: 

We substitute the expression (2) into Eq. (7) and use for 
T (r, t) the approximation 

T(R)R/r  for r>R(t) ,  
( ( R )  fa r<R(t) ,  

where T(R) is defined by (4) with R, replaced by R(t). 

Taking into account that C(r, 0) = 0, we conclude that 
Eq. (7) has a solution only for t a to, where to is the 
time the absorption wave front breaks away from the 
surface of the inclusion. For t to  we have R(t) =Ro. 
Hence we immediately obtain for to the expression (6). 
For t 3 to we have 

where y =R/R, and z, A, and y a r e  defined above. 

In the expression (9) we change the order of integra- 
tion and break the integral into two parts: from 0 to to 
and from to to t. The first of these is taken in quadra- 
t u r e ~ .  In the second we change from the variable t' to 
y, after which dt/dy is taken outside the integral a s  a 
function that is slowly varying compared with the ex- 
ponential remaining under the integral. The integral 
obtained as a result of these transformations is calcu- 
lated in the standard way. As a result, the equation 
determining the motion of the front of the wave of car- 
bon-black formation acquires the form 

where x =$/to. 

Equation (10) can b e  integrated numerically. The re- 
sults of these calculations for different values of y a r e  
given in Fig. 1. 

To investigate the general laws of the development of 
the instability i t  is worthwhile to given an approximate 
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FIG. 1. Growth of the effective size y " R / R o  of an inclusion 
with time x ~t /t for dif'ferent values of the parameter y. The 
values of y are denoted by the figures above the correspondlag 
graphs. 

analytic solution of Eq. (10).  This is straightforward to 
obtain if  we take into account that the factor to the 
right of y4 differs from unity only in the small region 
y - 1 S y'l. Expanding the arguments of the exponentials 
in powers of y -1 in this region and replacing the whole 
fraction by unity for y - 1> y", we obtain 

for 1 c x  -( 1.761, and 

y = ~ ( l n I 1 l ~ ( z , - z )  r2eTl-21n I n i 1 l ~ ( z  ,- z)y2eT]+ ...)-' (12) 

for ~ 3 1 , 7 6 1 ,  where 1,-2,496-2,20(i/r+O(l/y) (13) 

and satisfies the condition (x , )  = The asymptotic 
form (12) i s  valid up to x -x," y4emY, i.e., practically 
up to the region in which y ( x )  becomes infinite. 

It follows from the expression (13) that the effective 
size of the inclusion goes to infinity in an explosive 
manner in a time differing from to by a numerical fac- 
tor of order unity, i.e., t, is the only characteristic 
time in the problem. 

We note also that the carbon-black concentration in 
the front of the wave of carbon-black formation de- 
creases monotonically with increase of the effective 
size of the inclusion and is a maximum a t  the time the 
front breaks away from the surface of the bare  inclu- 
sion, i.e., a t  t =to. 

STEADY-STATE MOTION OF THE WAVE OF CARBON- 
BLACK FORMATION 

As the rate of growth of the effective s ize  of the in- 
clusion increases the problem loses its spherical sym- 
metry, since the heat conduction does not have time to 
equalize the angular components of the temperature 
gradient. As a result of this the wave front of carbon- 
black formation acquires a different velocity a t  different 
points, the part with the maximum velocity being that 
propagating counter to the laser radiation. The final 
result of these processes i s  that the wave of carbon- 
black formation is transformed into a plane wave prop- 
agating counter to the laser radiation. It is of interest 
to investigate the dependence of the velocity of the 
steady-state motion of this wave, and of the tempera- 
ture behind i ts  front, on the parameters of the problem. 

The equations describing the steady-state motion of 
the wave in the coordinate frame moving with the wave 

front have the form 

where u is the velocity of the wavefront, and p is the 
density and c, the specific heat of the polymer. Taking 
into account that d t=dt /u ,  we rewrite (2) in the form 

The system (14)-(16) must be supplemented by the 
boundary conditions 

By means of the conditions (17)  all  the integration con- 
stants and the velocity of the wave front a r e  determined. 

Henceforth we proceed in the standard way.['' With 
the boundary conditions taken into account, the f i rs t  in- 
tegral of Eq. (14)  has the form 

Letting 4 - m, from (18) we obtain the conservation law 

It follows from (16)  that the main change of S occurs 
in the region in which the temperature is hardly varying 
and i s  close to i ts  maximum value T =T,. Therefore, 
(18)  can be written approximately in the form 

Integrating the right- and left-hand sides of (15)  with 
respect to 5 with allowance for (17) and using (20)  to 
change from integration over 5 to integration over T in 
the left-hand side, we obtain 

We substitute (16) into (21), change the order of inte- 
gration, and take d(/dT outside the integral, taking into 
account that, in the zeroth approximation, the region 
of liberation of energy can be assumed to be the discon- 
tinuity surface, on which the relation xdT/d( =So i s  ful- 
filled. Finally; we obtain 

Equations (19)  and (22)  fully solve the formulated 
problem. In explicit form the dependences of interest 
to us a r e  
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where g is the solution of the transcendental equation 

equal to 

We remark that in treating the development of break- 
down at  an absorbing inclusion we have not taken into 
account the possibility of the appearance of an ionization 
instability.t41 Since, for fixed So, such an instability 
has a threshold with respect to the quantity Ro (for KO 
<fi(sJ the instability does not arise), we have tacitly 
assumed here that the initial size of the inclusion is 
less than ~ ( s J .  Even if the effective size of the inclu- 
sion did exceed fi(s0) during i t s  growth a s  a result of 
carbon-black formation, this could not substantially 
change either t, or, a fortiori, to (t,=xJo is the total 
time of development of the process), since the ioniza- 
tion halo gives little extra absorption of light up to the 
moment of onset of the instability. 

However, in studying the motion of the absorption 
wave we should take into account that, alongside the 
wave of carbon-black formation, an absorption wave 
due to ionization is also possible. The propagation of 
such a wave through a condensed dielectric was investi- 
gated in Refs. 9 and 10. The radiation-absorption coef- 
ficient in this case is equal to /3,,e-11 ', where I is half 
the ionization potential. The dependence of u and T, on 
the parameters of the problem in the case of an ioniza- 
tion wave has the same form as (23), but with a differ- 
ent value of g. The corresponding formulas a r e  given 
in Refs. 9 and 10. 

Assuming that u and T, a r e  determined by one of 
these mechanisms and taking the other into account by 
perturbation theory, we compare the width 1, of the en- 
ergy-liberation zone for the wave of carbon-black for- 
mation (I," (aoC ,)", where C , is the concentration of 
carbon black immediately behind the wavefront) with 
the corresponding width Z,"j3~1exp(I/T,) for the ioniza- 
tion wave. The criterion for selection of one o r  the 
other mechanism of propagation of the absorption wave 
will be the condition I, <<I, (or 1,>>1,). It turns out that 
for I > ~ / 3  only a wave of carbon-black formation is 
possible. If, however, I < E/3, two characteristic val- 
ues, S, and S,, of the laser-radiation intensity ar ise  in 
the problem. The absorption is due to an ionization 
wave for So <<S, and due to a wave of carbon-black for- 
mation for S,>> S,. 

to. rec 

FIG. 2. Dependence of the 
induction time on the laser- 
radiation intensity for an in- 
clusion of size 5 x cm, 
localized in an organic 
glass (polymethylmetha- 

73-= crylate). 

In the general case the expressions for S, and S, have 
an extremely cumbersome form; therefore, we give 
only the formula for S, forP' I <<E, We have 

DISCUSSION OF THE RESULTS. NUMERICAL 
ESTIMATES 

1. We give here some numerical estimates for poly- 
methylmethacrylate, for which K = 2.1 X 10" ~ / c m .  deg, 
X = 1.2 x 10" cm2/sec, p =  1.2 g/cm3. For v,, a, and E 
we take the values vo= 10'' sec", (Y,= lo5 cm-I (the ab- 
sorption coefficient of pure carbon in the visible and 
near-infrared region), and E = 3.84 eV (the C-C bond 
energy). 

Figure 2 shows the dependence, calculated from for- 
mula (6), of the induction time for an absorbing inclu- 
sion with initial size Ro= 5 x cm (R:/x =2.1 x 
sec). We note that, although induction thermolysis does 
not have a threshold for the onset of instability, for val- 
ues of So that a r e  too small the induction time becomes 
so long that for practicable durations of the action of 
the laser radiation the instability does not arise.  In 
view of the exponential dependence of to on E and the 
absence of data on the exact value of the latter, the es- 
timates given for the induction time must be taken more 
as an illustration of the theory developed than a s  an at- 
tempt to predict the experimental values. For the wave 
of carbon-black formation, for So= 3 x lo4 w/cm2 we 
have T,= 3.25 x lo3 K and u = 5.3 cm/sec (we emphasize 
the extremely small values of the velocity of propaga- 
tion of the wave of carbon-black formation, which is 
characteristic for the problem under consideration). 

2. The entire am1ysis carried out above pertains to 
the case of a laser oper,ating in either the continuous o r  
mono-pulse regime. We note, however, that carbon- 
black formation is an irreversible process. Therefore, 
if the action of the radiation is interrupted a t  a certain 
time t <t,, and then restored after any arbitrarily long 
time interval, the development of the instability will 
proceed just a s  if the laser  pulse had not been inter- 
rupted a t  all  (transient processes associated with cool- 
ing and heating of the inclusion can be neglected, since 
the corresponding characteristic time is short com- 
par ed with to). 

It follows from what has been said that the theory 
developed can be applied without substantial changes to 
explain the "fatigue" effects that a r i se  on repeated ac- 
tion of laser radiation on a sample. In particular, if 
the laser operates in the frequency regime with pulse 
duration r>>R;/x, for estimating the "resource" of a 
sample, i.e., the number N of pulses that a sample can 
withstand without being destroyed, we have the expres- 
sion 

In view of the exponential dependence of to on So (cf. (4), 
(5)), the resource of the sample should increase sharp- 
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ly when the laser-radiation intensity is decreased by a 
comparatively small amount, in agreement with the ex- 
perimental data of Ref. 5. 

The authors a r e  grateful to A. V. Butenin and B. Ya. 
Kogan for kindly providing them with the results of an 
experimental investigation of the optical breakdown of 
polymers. 

"~s t imates  show that the energy contribution made by chemi- 
cal reactions to the energy balance is negligibly small. 

2 ' ~ e  note that, generally speaking, the relationship between I 
and E can vary in wide limits, since the polymer chain can 
have side branches possessing either a small ionization po- 
tential (but with no tendency to carbon-black formation) o r  
the opposite properties. 
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A model with a tensor order parameter is considered, it describes, in particular, transitions from an 
isotropic liquid to a nematic liquid crystal. It is shown that despite the presence of cubic invariants in the 
Hamiltonian, the system may undergo a second-order phase transition. 

PACS numbers: 64.70.E~ 

A well-known result of Landau's theory of phase 
transitions asser ts  that in the presence of cubic invar- 
iants in the Hamiltonian of the system, second-order 
phase transitions a r e  possible only at  isolated points 
of the phase diagram (corresponding to the vanishing 
of the cubic terms). In the present paper we shall show 
that allowance for fluctuations leads to the result that 
even when threefold invariants a r e  present in the 
Hamiltonian, second-order phase transition a re  never- 
theless possible. 

We consider a system in which a phase transition is 
described by a tensor order parameter Q,,. We suppose 
that Q,, i s  a symmetric tensor with zero trace. It i s  
this situation that occurs, for example, in transitions 
from an isotropic liquid to a nematic liquid crystal. 
The Hamiltonian in this case has the formc1] 

H-rQ'+AQa+uQ'+PQ'. (1) 

Here QZ, Q3, and Q4 = +(Q')~ a re  invariants of the sec- 
ond, third, and fourth orders, and kzQZ is a symbolic 
description of a gradient term. 

Near a phase-transition point, determined by the 
condition T = 0, the singularities of all thermodynamic 

quantities a r e  expressed in terms of Green's function 
and the complete renormalized threefold and fourfold 
vertices X and ii.[zl The expansion of the complete 
vertices X and ii a s  ser ies  in the bare constants 

has the form 

The solid lines in these expressions denote the renor- 
malized Green's function G ( k ) =  (kZ+ r12)" (r, is the 
correlation radius). Here and below, we shall set  equal 
to zero the critical index 7, which describes the devia- 
tion of the correlation function from the Ornstein- 
Zernke form. 

To calculate the threefold and fourfold vertices, we 
shall use a method proposed by S. L. G i n ~ b e r g . ~ ~ ]  This 

103 Sov. Phys. JETP 47(1), Jan. 1978 0038-5646/78/4701-OlW802.40 @ 1978 American Institute of Physics 1 03 


