
Since S, ( t )  is a positive-definite function for all t, the 
conclusion can be drawn from Eq. (6) that, under elec- 
tron-bottleneck conditions, the linewidth of the magne- 
tic resonance of the paramagnetic impurities decreases 
on going from the normal to the superconducting phase. 
Such a behavior of the magnetic-resonance linewidth is 
exactly contrary to the behavior of the linewidth in the 
case (a). If in case (a) broadening of the line occurs on 
going to the superconducting phase, then in case (b) the 
existence in the system of electron-bottleneck condi- 
tions leads to the narrowing of it. 

The experimentally obse~ved narrowing of the elec- 
tron paramagnetic resonance line for the magnetic mo- 
ments of E r  and La on going from the normal to the 
superconducting phase is partially explained apparently 
by the dynamical character of the interaction between 
the magnetic impurities and the conduction electrons. 
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I. A. Garifullin for a useful discussion of the work. 
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Certain transport phenomena arising in a semiconductor with a temperature superlattice as a result of the 
heating of the electron gas by radiation are studied. Three effects are predicted which are due to free 
convection in the electron gas in the preacnce of a weak electric field perpendicular to the luminous flux: 
the variation of the effective electrical conductivity in the direction of the field, the appearance of a 
potential difference between the illuminated and shady sides of the sample, and the appearance of a 
current in the direction perpendicular to the luminous flux and the field. 

PACS numbers. 72.20. -i 

§l. INTRODUCTION 

It has been shown earlierc1'21 that the heating of the 
electron gas during the illumination of a sample can 
lead to the electronic analog of the well-known BBnard 
effect in hydrodynamics: under certain conditions there 
should arise steady convection of the carriers at a rate, 
u, that is a periodic function of the coordinates x and y 
(the direction of the luminous flux is chosen as the z 
axis). In this case the electron-temperature and (with a 
smaller amplitude) the electron-density distributions al- 
so become periodic. The constant of the resulting su- 
perlattice depends on the intensity of the heating light. 
In other words, there should arise in the sample a dis- 

tinctive diffraction grating with a controllable spacing 
(diffraction can be experienced by other electro-magnet- 
ic waves, as  well a s  by the heating light itself when it 
has the appropriate wavelength and the nonlinear effects 
are  taken into consideration). It would be interesting, 
however, to ascertain what other consequences admit- 
ting of experimental verification the appearance of con- 
vection in the electron liquid leads to. Some of these 
consequences a re  studied in the present paper. 

As we shall consider a material with uni- 
polar conductivity, all the formulas being written out 
for positively charged particles (which, however, does 
not prevent us from calling them electrons). This ap- 
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proach is also justified in the presence of both negative 
and positive carriers if their mobilities are  markedly 
different. Since the conditions for the appearance of a 
superlattice are eased appreciably i f  a constant voltage 
potential, V, is applied to the sample (see Fig. I),  we 
shall consider precisely this case on the basis of the re. 
sults of Ref. 2. To avoid misunderstandings, let us em- 
phasize that the voltage potential V is included in the 
sense of a field effect, and does not by itself generate a 
continuous current through the sample. It, like the 
gravitational field in the hydrodynamic Bt?nard effect, 
just increases the pressure of the electron gas near the 
"lower" (illuminated) surface, thereby facilitating the 
appearance of an eddy convection current of strength 
em. However, in contrast to the gravitational field, 
the voltage potential V is concentrated almost complete- 
ly in narrow space-charge layers localized near the 
sample surfaces (at z =0 and z = I ) .  

82. PHENOMENOLOGICAL EXPRESSION FOR THE 
CURRENT DENSITY 

We shall be interested in certain transport phenomena 
occurring in a sample with a temperature superlattice. 
To wit, let us consider the current density that arises 
in a sample when, besides the voltage potential V, an- 
other potential difference is established between elec- 
trodes located at x =&,/2 by connecting them to an ex- 
ternal load. Under the indicated conditions, the elec- 
trons in the sample are acted on by, besides the field 
localized near the z = 0 and z = I  planes, a field of inten- 
sity 

Here E: and 6E, denote respectively the intensity of the 
"primary" homogeneous field produced directly by the 
battery and that of the "secondary" field due to the pos- 
sible redistribution of the free charges in the sample. 
The direction and magnitude of the vector 6E, are de- 
termined by the setup of the experiment (in particular, 
it can be equal to zero; see below). On the other hand, 
the vector @ is, by agreement, directed along the x 
axis, i.e., along a direction perpendicular to the lumin- 

FIG. 1. The coordinate system and the orientation of the elec- 
tric fields. E: denotes the "primary" (see text) intensity of the 
weak field generating the current (electrodes are located at 
x =  rtL,/2); cp is the potential of the electric field in the sample 
for El= 0. There is no through current along the z axis. The 
sample is a rectangular parallelepiped with dimensions L1,  L2,  
and Lg=2. The sample may be either closed or open along the 
y axis. 
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ous flux. For simplicity, we shall assume the field E, 
is weak, limiting ourselves to the linear approximation 
with respect to it. 

The expression for the current density could, under 
the conditions in question, have been found by solving 
the kinetic equation. It is, however, simpler to write 
down at once a phenomenological formula that follows 
from obvious dimensional and vectorial considerations. 
Restricting ourselves to cubic crystals, we have (the 
lower Greek indices a r e  vector indices): 

Here n is the carrier concentration (which differs little 
from its value, %, in the homogeneous sample), a is 
the ohmic conductivity, v, is the thermal or Fermi (de- 
pending on the degree of degeneracy) velocity of the 
carriers, aa,, is a dimensionless tensor that is sym- 
metric with respect to the interchange of the third and 
fourth indices. In the formula (2) we have dropped the 
terms of higher order in the velocity u (near the 
threshold for superlattice formation u<< v,). 

The quantities a and a,&,, may depend on the electron 
temperature T, which varies in space. Nevertheless, 
the writing down of (1) in the approximation of localized 
quantities is justified; for under the conditions in ques- 
tion the mean free path in momentum space is signifi- 
cantly smaller than the other characteristic lengths 
figuring in the problem (in particular, the cooling-off 
length). It should only be borne in mind that o and a,,,,,, 
are connected by the equation of continuity. In particu- 
lar,  under steady-state conditions, 

Below it will be sufficient to restrict ourselves to the 
values of a and a,&,, obtained when the heating of the 
electrons is neglected. In this case o and a,,, are con- 
stants and, under conditions of quasineutrality, the re- 
lation (3) is fulfilled automatically. 

The explicit computation of the components of the 
tensor a,,,,, is quite tedious. For our purposes, how- 
ever, it is sufficient to know only its symmetry proper- 
ties, which are well known.c31 In particular, in a cubic 
crystal, only the components 

and their equivalents are different from zero in the sys- 
tem of principal axes. Notice, however, that the coor- 
dinate axes in Fig. 1 (picked out by the conditions of the 
experiment) need not coincide with the principal axes af 
the crystal. 

Explicit expressions for the components of the vector 
u were obtained in our previous paper.c21 Let us intro- 
duce the following notation: p for the mobility of the 
carriers; To the lattice temperature; k={k,, kJ the two- 
dimensional wave vector; r ={%, y) the two-dimensional 
radius vector; u, ={us, US the two-dimensional velocity 
of the electron flux; cp,(z) the potential of the electric 



field in the one-dimensional static problem; y the light- 
absorption coefficient (assumed to be T independent); 
Xi1 the cooling-off length; r,, the screening radius; I,,, 
the light intensity at z =+0; I,, the critical value of the 
light intensity at which convection begins. The relative 
superheat of the electron liquid is 

(T-TO)To-I--f,(z) cos (kr). 

According to Ref. 2, 

uz=-p{fl(0)cp.'(O)e-k'-fl(z)cp.'(z)) cos (kr), (5) 

",=- (kihj Irfl(0)cp,'(O) e-"sin (Irr). (6) 

The function fl(z) was found earliercz1 up to a multi- 
plicative constant (as which we can simply take fl(0)). 
It is impossible to determine this constant within the 
framework of the linear theory.cz1 But since we are 
dealing with weak conditions for the appearance of con- 
vection, it is to be expected that fl(0) will be propor- 
tional to the square root of the supercriticality: 

where C is a dimensionless constant. 

For k+  0 the formulas (5) and (6) are  valid in the case 
of volume absorption of light in a thick sample in which 
the screening radius is sufficiently small: 

Such a situation is in fact realized in the intraband ab- 
sorption of electromagnetic waves in a sample with a 
not too low concentration of the free carriers. As can 
be seen from (5), the boundary condition u,=O is satis- 
fied exactly at z = O  and up to quantities of the order of 
e-" and exp(-1 /yo) at z = 1. The quantity exp(-l/ro) is 
always negligibly small; e'&' is also small, excluding 
the region near the convection threshold: in a regime of 
a "high voltage potential" (cp:( 0) >> T,2 y '/ex, 1 F~ I , where 
F, is the Fermi level, measured from the zone edge, 
under equilibrium conditions)c21 

Near the threshold (i.e., for kl  s I), the first term in 
the curly brackets on the right-hand sides of (5) and (6) 
should be replaced by the expression 

The dimensions of the sample along the x and y axes 
are also assumed to be sufficiently large-in the sense 
of the inequalities (8), in which I should be replaced by 
L, or 15,. The exact form of the boundary conditions at 
x =dl /2 and y = d ,/2 do not then play a role, it being 
only important that they allow the flow of current in the 
appropriate directions. We shall use the usual periodi- 
city conditions for T as  a function of x and y. 

93. THREE EFFECTS 

As can be seen from the formula (2), free convection 
of the carriers can lead to three effects that admit of 
direct observation in experiment. First,  the effective 
conductivity in the direction of the transverse (to the 
luminous flux) E: field turns out to be different from a: 
it contains an extra term that is quadratic in the u com- 
ponents. Secondly, the field E:, which is parallel to the 
x axis, can lead to the appearance of a current not only 
along the x axis, but also along the y axis. Thirdly, the 
transverse field can lead to the appearance of an addi- 
tional-to V-longitudinal potential difference between 
the z = 0 and z = 1 surfaces. 

The calculations in all the three cases reduce to the 
investigation of the formula (2). It is only necessary to 
take two circumstances into consideration. 

First,  the current density j determined in experiment 
-from the readings of an instrument in the load circuit 
-is given not directly by the expression ( Z ) ,  but by 
equalities of the type 

etc . It follows, in particular, from this that the terms 
em, on the right hand side of (2) do not make a contri- 
bution to the experimentally observable current density, 
which was to be expected: they describe the carriers' 
eddy motion, during which the carriers remain in the 
sample. 

Secondly, the components k% and k, enter separately 
into the formulas (5) and (6) for the convection velocity 
u. Moreover, the condition for the existence of convec- 
tioncZ1 determines only the quantity k = (k:+ k;)lr ', the 
relation between k, and k, remaining arbitrary. Upon 
the application of the weak field $ this degeneracy is 
not removed. Consequently, the experimentally observ- 
able result is obtained by "averaging over the phases." 
The latter operation is defined by the equality 

where the dots stand for the expression being averaged, 
while cp =arctg(k,/kJ; the average (in the sense of (11)) 
values of the products u,u, a re  computed in the Appen- 
dix. 

Let us, first of all, determine the additional field in- 
tensity 6El. It is to be expected that (at least with the 
above-adopted degree of accuracy with respect to the 
parameter uZ/v:) 6El will be parallel to the z axis. Fur- 
ther, on account of the assumed uniformity of the $ 
field, the quantity 6E, should not depend on x and y. 
Thus, the condition 0,)=0 assumes the form 

Here we have taken into consideration the fact that E: is 
parallel to the x axis; S denotes the area of the cross 
section perpendicular to g. Summation over p and v 
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here should be limited to the values x and y. Indeed, on 
account of the boundary conditions imposed on u, at 
a -0 and z =I, the terms with u, do not make a contribu- 
tion to the electron flux through the respective surfaces. 

The integral figuring in the formula (12) can be easily 
computed. Averaging it over the phases according to 
the formula ( l l ) ,  we obtain with the accepted degree of 
accuracy 

As can easily be verified, the additional space-charge 
density due to this field is small compared to en,,, being 
smaller by a factor given by the parameter 

where W, =To or  W, =t~%$~/2rn, according as  the elec- 
tron gas is non-degenerate or degenerate. Thus, the 
quasineutrality condition is not violated. 

Integrating (13) over the sample thicbess, we find 
the longitudinal potential difference 

As can be seen fromthe formulas (7) and (9), the 
right-hand side of (14) depends appreciably on the light 
intensity only in the near-threshold region where kl s 1. 
In particular, for kl<< 1, 

Since 2% >> 1, it is to be expected that, upon the appear- 
ance of free convection, the quantity AV as a function 
of I ,  will vary rapidly and reach saturation. Under the 
latter conditions, the value of AV is given by the formu- 
la (14) with the factor (1 - euhr)k4f 80)  replaced by 
CnX?. In this case we need not go outside the frame- 
work of the linear theory,c21 since the limits of its appli- 
cability are determined by parameters different from 
1%- 

The quantity AV depends on, besides other factors, 
the orientation of the luminous flux relative to the prin- 
cipal axes of the crystal. Thus, according to (4), in 
cubic crystals the effect under consideration will gener- 
ally be absent if the axes chosen by us coincide with the 
principal axes. This is also the case in other materials 
of not too low symmetry. The effect could, however, 
be observed in the case of a different orientation of the 
axes. Let, for example, the y axis be a principal axis, 
while the a and x axes a re  turned (in the y = 0 plane) 
through an angle x from the principal axes of the cubic 
crystal. Then, as can easily be verified, a,,# 0 if 
~r =x, it being given by 

ax,-'/,(at-a,+2aJ) sin 4%. (4 ') 

As was to be expected, in the isotropic case, when 
a, - a, + 2a3 = 0, the right-hand side of (4') vanishes 
In computing the effective conductivity along the x axis, 

we should neglect the field BE ,: its allowance would 
give a correction of higher order in smallness. Thus, 
according to (2), (lo), and ( l l ) ,  

Using the formulas (A.l) and (A .5), we obtain in the 
principal-axis system of the cubic crystal1 ' 

(16) 

Here Y = ( Y ~ + L , P / ~ ) ' ~ ~ .  

For kLl >> 1, k.L,>> 1 we can drop the terms containing 
the Bessel functions. Further, in evaluating the inte- 
gral over z, we can neglect the second term on the 
right-hand side of (5): it makes a contribution of order 
not more than \r0. Thus, with allowance for (5), (7), 
and (9), we obtain (for kl>> 1) 

On the other hand, near the threshold, where the num- 
bers M, kLl, and kL, are  not large, we had no right to 
discard the Bessel functions in the formula (16). It is 
evident, however, that for kLl << 1, kL, << 1 the first and 
second terms of the integrand vanish, while the third 
term becomes a, f 2,. Thus, near the threshold 

Finally, let us turn to the computation of tbe current 
density in the direction of the y axis. Here we should 
also neglect the field 6E1. The formula (2), with allow- 
ance for (10) and ( l l ) ,  then yields 

As can be seen from the formulas (A.5), nonzero con- 
tributions to the integral over x are made here by only 
the terms with p = v .  Taking this into consideration, 
and using the formulas (5), (6), and (59, we obtain near 
the threshold 

On the other hand, for kl >> 1, kLl >> 1, and kL, >> 1, 
the formula (18) leads to the saturation of ( j , )  as a func- 
tion of I,: 

Here we have taken into consideration the fact that 

since the sum of the a,,, is an invariant of an ortho- 
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gonal transformation. APPENDIX 

Like the additional voltage potential, the relative 
changes in the conductivity and current density along the 
y axis vary very rapidly with increasing supercritical- 
ity near the threshold, reaching saturation almost dis- 
continuously. Further, in crystals of not too low sym- 
metry the current density (j,), like AV, appears only if 
the coordinate system chosen by us differs from the 
principal-axis system. Thus, in a cubic crystal we 
have 

-'12(l+cosZ Q)sinZ 2gr] +sin 29 cos 2$ cos 8). 

Here 8 ,  cp, and J, are  the Euler angles determining the 
positions of the chosen coordinate axes relative to the 
principal axes of the crystal. Let us  recall that 0 is the 
angle between the z and z' axes, while J,=tan"(a,/a,,), 
cp =-tan"(a,/a,,,). Here we have in mind the principal 
branches of the inverse trigonometric functions, a,,, , 
etc., denote the cosines of the angles between the x and 
z' axes, etc.; the primed coordinates a re  connected 
with the principal axes of the crystal. 

The quantitative estimations of the effects under con- 
sideration a re  difficult; for the complete computation of 
the components of the tensor aaB,, and the constant C 
inevitably involves a number of far-reaching assump- 
tions. Since, however, they a re  dimensionless, it may 
be inferred that the nonzero values of the a*, will not 
differ too much from unity. The ratio /.~~cp:~(O)/v~ can 
turn out to be quite large, but the velocity u is, by 
agreement, lower than v,. Thus, we cannot justifiably 
consider the values of cpip fl/vo exceeding unity. 

Let us note in conclusion that the first  two of the 
above-considered effects (and, probably, the third) can 
also be observed in the absence of an electron-temper- 
ature superlattice; the electrons only need to be 
heated.,) The mechanism of their production investi- 
gated in the present paper can be identified on the basis 
of the following distinguishing features: 

1) a unique dependence of the magnitudes of the ef- 
fects on the light intensity: rapid growth to saturation 
near the threshold (this pertains to all the three effects); 

2) the nonnecessity of the presence of a magnetic 
fieldL4' or  of crystallographic anisotropycS1 (this per- 
tains to the second and third effects). 

According to (5) and (6) 

. k  
u.=f. cos (kr), U, =. - fLsin(W, (A.1) 

where the functions f, and f, a r e  determined by these re- 
lations. Let us introduce cylindrical corrdinates in the 
(x, y) plane by setting 

z=r cos 0, y-r sin 0, k.-kcos gr, k,=k sin gr. (A .2) 

Then 

kr-a cos (gr-0), a=kr, 

u.=f. cos [a cos (9-0) I, ~h+iu,-e*fL sin [acos (gr-8) 1. (A .3) 

Let us introduce the notation 

1 %" 
A,. = - j d~<u,.u.>=(tapu.).. 

0 

Substituting into this the expressions for u, and u,, we 
easily find 

A,,='/,f.'(1+Jo(2a)), Ar=-'/zfzfLJt (24 cos 0, 

A,,='lzf.,f,Jl (2a) sin 0, A,='lrfLzJz(2a) sin 0, 

~,='/"f,'[l-~~(2a) +1,(2a) cos 281, 

A,,-'/lfiz[l-Jo(2a) -J2(2a) cos 201. 

Here J,, J,, and J, a r e  Bessel functions. 

"we have dropped from the integrand in (16) the terms that 
give zero in the integration over y . 

2 ' ~ h e  author is  grateful to the JETP referee for recommending 
a discussion of this circumstance. 
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