
we have shown for comparison by a dotted curve the numerical treatment of the results. 
magnitude and the position of the principal maximum of 
I WJ6) 1 '. For  I q 1 >> 1 the asymptotic equation 

must hold. From Figure 6, it can be seen that for large 
positive q the equality (5.12) is attained quite rapidly 
while for negative q the asymptotic transition from V,(6) 
to Wq(6) occurs considerably more slowly. This fact i s  
also illustrated by Fig. 4. From Fig. 4d, e i t  can be 
seen, for example, that for q < O  the transparency band 
for the plasma wave determined by the function WA6) is 
situated at 6 > 0. But if the plasma wave is determined 
by the function V,(6), then the transparency band for 
q - -1 is basically still situated a t  6 <O. Thus, the 
maxima of I WJb) 1' and I VG(b) 1 ' a r e  situated respec- 
tively on opposite sides of the origin, while for q > O  the 
positions of the maxima of I W,( 6) 1 ' and I Vq(6) 1 ' approx- 
imately coincide (Fig. 4a, b). 
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We develop a kinetic theory of the nonlinear wave interaction in a semi-bounded plasma for the specular- 
reflection model. We obtain the nonlinear equation for the field; we use this to study the surface-wave 
resonant interaction that leads to decay and explosive instabilities. 

PACS numbers: 52.35.Mw, 52.35.Py, 52.25.Dg 

1. INTRODUCTION 

It i s  well known that the electrodynamic properties of 
a spatially uniform plasma a r e  described by giving the 
linear and non-linear electrical susceptibilities. The 
electromagnetic field is then given by the solution of the 
non-linear equations for a given distribution of the 
charges and currents in the plasma.[ll If the plasma is 
spatially bounded the electromagnetic field depends also 
on the conditions given on the surfaces bounding the 
plasma. A distinguishing property of a spatially 
bounded plasma is that together with bulk oscillations 
there exist in i t  also surface waves which propagate 

along the boundary surface and which a r e  damped deep 
in the plasma. 

The structure of the surface waves depends in an es- 
sential way on the shape of the surface and the nature of 
the boundary conditions. It is clear that the boundary 
conditions themselves must be determined by the nature 
of the interactions of the particles in a plasma with a 
bounding surface. The surface waves a r e  described in 
the simplest way in the case of the so-called specular 
reflection model, when one assumes that all charged 
particles incident on the surface a r e  specularly re- 
flected from A number of authorsr6*' (see also 
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Refs. 10, 11) have studied in detail the properties of 
various surface waves for the simplest case of a semi- 
bounded plasma. The f i rs t  indication of the existence of 
surface Langmuir waves in a semi-bounded plasma is 
in Refs. 12, 13. The excitation of surface Langmuir 
waves in a semi-bounded plasma during the motion of a 
charged particle along the boundary surface has beeh 
considered.c141 ~ o m a n o v ~ ~ '  has developed a kinetic the- 
ory of high-frequency Langmuir and low-frequency ion- 
acoustic surface waves in a semi-bounded plasma. 

It is clear that if the intensity of the surface waves is 
sufficiently large, effects connected with non-linear 
wave interactions turn out to be important (the theory of 
the non-linear wave interaction in an unbounded plasma 
is expounded in a number of  monograph^^^^"'^. A num- 
ber of  author^^^^"^^ have studied the non-linear wave in- 
teraction in a semi-bounded plasma in the hydrodynamic 
approximation; in particular, in Ref. 18 the decay in- 
stability of surface waves was studied. In Refs. 21, 22 
the non-linear wave interaction in a semi-bounded plas- 
ma was considered in the kinetic approximation where 
it leads to echo surface oscillations. 

In the present paper we develop a kinetic theory of the 
non-linear wave interaction in a semi-bounded plasma 
for the specular reflection model. We obtain the gener- 
al non-linear equation for the electric field and use that 
to study various non-linear wave interaction effects. In 
particular, we consider the resonance three-wave in- 
teraction of surface waves which leads to decay and ex- 
plosive instabilities. 

2. NON-LINEAR EQUATION FOR A POTENTIAL 
FIELD IN A SEMI-BOUNDED PLASMA 

It is convenient for the consideration of surface and 
bulk eigenoscillations and their non-linear interaction 
in a semi-bounded plasma, as in the case of an un- 
bounded plasma, to s tar t  from the non-linear equation 
for the field which one can obtain using the kinetic equa- 
tions for the particle distribution functions and the 
equation for the self-consistent field. We shall assume 
that the plasma fills the half-space z > 0 and that i t  is 
spatially uniform and in a stationary state. We shall 
assume the half-space a < 0 to be  filled by a dielectric 
characterized by a dielectric constant to. We restrict  
the considerations to the electrostatic interaction be- 
tween charged particles (in that case the self-consistent 
field is a potential one). 

The kinetic equations for the electron and ion dis- 
tribution functions, and also the equation for the self- 
consistent field in the z > 0 region can be written in the 
form 

where f is the deviation of the electron o r  ion distribu- 
tion function from the unperturbed distribution function 
fo (we must use for fo the Maxwell distribution function 

for an equilibrium plasma), E is the self-consistent 
electrical field, and p0 the density of the external 
charges. The sum Z in (2) indicates summation over 
the electron and ion components. In the region of space 
z < 0  the electrical field E satisfies the equation 

div E-0. (3) 

(We assume that there a r e  no external charges in the 
region of space outside the plasma.) 

We must supplement the kinetic Eq. (1) with boundary 
conditions which a r e  imposed on the distribution-func- 
tion deviations f a t  the boundary surface z = 0. If we as-  
sume that the particles a r e  specularly reflected from 
the boundary surface, these conditions can be written in 
the form 

The electrical field a t  the boundary surface z = 0 must 
satisfy the usual boundary conditions which a r e  reduced 
to the requirement that the tangential components of the 
electrical field and the normal components of the elec- 
tr ical  induction a r e  continuous. 

To find the solution of the se t  of Eqs. (I), (2) given 
in the region of space z > 0 we use the following formal 
method. We continue into the region of space z <O the 
components EL of the electrical field s o  that they a r e  
even functions and the component E, so  that i t  is an odd 
function (we denote the electrical field continued in this 
way by E*) and we assume that the kinetic equations de- 
termine the distribution functions in the whole of space 
(we denote these distribution functions by f +): 

As the differential operator occurring in these equations 
for the given continuation of the electrical field is in- 
variant under the substitution z ,  v,- -2, -v,, the solu- 
tions of the equations will also be invariant under that 
substitution 

(We assume that the unperturbed distributions fo a r e  
even functions of v,.) It is clear that in the region of 
space z > 0 the distribution functions f and f + must be the 
same as at z = 0 the boundary conditions (4) follow di- 
rectly from Eqs. (6). 

The electrical field E* satisfies the equation 

which differs from (2) by taking into account an addi- 
tional surface charge which guarantees the jump in the 
normal component of the field at the boundary surface. 
(The density of external charges p0 is assumed to be 
continued into the region z < 0 in even fashion.) The 
electrical field determined in the region of space z < 0 
by Eq. (3) is similarly continued into the region of space 
z >0. This field which we shall denote by E' satisfies 
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the equation 

divE-=-2E.-(z, y, z=O) S (z). 

It is clear that the solution of Eq. (7) in the region 
a > 0 describes the electrical field in the plasma ( ~ ' ( r )  
= ~ ( r ) )  and the solution of Eq. (8) describes in the region 
n < 0 the field outside the plasma (~'(r) = ~ ( r ) ) .  At the 
surface of the plasma the following boundary conditions 
must be satisfied: 

It is convenient to use spatial Fourier transforms to 
write Eq. (7) in the form 

and then, because of the longitudinal nature of the field 

Similarly we write Eq. (8) in the form 

tlz~k-=-2E,, ( 0 ) .  (13) 

The quantity E;,,(O) which occurs in Eq. (11) can be 
found from the boundary conditions and we can rewrite 
Eq. (11) in the form 

where 

For the sake of simplicity we shall in what follows drop 
the + index of E, i.e., we shall denote E? by E. 

Applying a space-time Fourier transformation to the 
kinetic Eq. (5) and solving the equation obtained by the 
method of successive approximations, we write the de- 
viation of the distribution function f ;, as a power ser ies  
in the field strength E,,. Substituting this expansion in- 
to (14) we get the following non-linear equation which 
completely determines the electrical field in the region 
of space occupied by the plasma: 

where c (w, k) is the permittivity, and x'2'(wl, k,; w,, &) 
and ~ ' ~ ' ( w , ,  k,; w,, &; w,, &) a r e  the non-linear suscepti- 
bilities of the unbounded plasma. 

The electrical field in the region outside the plasma 

is, according to (13) and (15), directly expressed in 
terms of the solution of Eq. (16): 

The complete solution of the problem of finding the field 
of a plasma half-space reduces thus to solving the non- 
linear Eq. (16). 

One can use the non-linear Eq. (16) to study a number 
of effects in a semi-bounded plasma: the three-wave 
decay interaction; the four-wave interaction leading to 
the appearance of a shift in the eigenfrequencies and the 
non-linear Landau damping; non-resonance echo effects 
connected with the undamped nature of the oscillations 
of the distribution function, induced scattering of waves 
by particles, and so on. Even i f  one can restrict  one- 
self in the analysis of the decay interaction of waves to 
the hydrodynamic approximation (although in that case 
there remains an arbitrariness in the determination of 
the coefficients) one needs the kinetic approach for a 
description of the other effects listed here. 

3. DISPERSION EQUATIONS FOR BULK AND 
SURFACE WAVES (LINEAR APPROXIMATION) 

Neglecting the non-linear terms in (16) and putting 
the density of the external charges equal to zero, we 
get the basic equation of the linear approximation which 
describes the eigenoscillations in a semi-bounded plas- 
ma: 

Here and henceforth we introduce, to simplify the nota- 
tion, the notation 

i.e., we understand by the quantity Eb, the value of the 
tangential component of the field strength at the surface 
of the plasma. 

One easily finds from (18) the following equation for 
the quantity Eh,: 

f (u, kl)Br,.=O, (20) 

where 

1 
f ( o . k , ) = l + ~ ~  dk.-. kae ( o ,  k )  

Two kinds of eigenoscillations-bulk and surface oscil- 
lations-are according to (18) possible in a semi- 
bounded plasma. 

The dispersion equation for the bulk eigenwaves 
(E,, # 0, Eh, = 0) is determined by the same condition a s  
in the case of an unbounded plasma, 
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We shall denote the eigenfrequencies which a r e  the so- 
lutions of Eq. (22) for fixed value of k by w, and we 
write the field of the eigenoscillations in the form 

where E, and cp, a r e  the initial amplitude and phase. 
Using the boundary conditions (9) and (10) one can easily 
show that 

and as E,, cp,, and w, a r e  even functions of k, the con- 
dition E,, = 0 is satisfied for the bulk oscillations. 

The dispersion equation for the surface eigenwaves 
(Eb,# 0) is given by the condition 

We denote the eigenfrequencies of the surface oscilla- 
tions by w,, and we write the field of the surface oscil- 
lations in the form 

Since -t (a, k) + 0 in the case of the surface oscillations, 
we easily get from (18) the total spatial field component 
for the surface oscillations 

One can show that the field of the surface oscillations 
decreases exponentially when one goes away from the 
boundary surface. 

4. SURFACE WAVES 

We consider various types of surface waves in a 
semi-bounded plasma, which a r e  given by the disper- 
sion Eq. (24). In the high-frequency region the disper- 
sion of the surface waves is determined, just as for the 
bulk waves, by the electron component of the plasma. 
In the long-wavelength limit a2kl<< 1 (a is the Debye 
radius) the eigenfrequency and the damping coefficient 
of the high-frequency surface waves a re  described by 
the formulae 

In the low-frequency region the dispersion of the sur- 
face waves depends in an essential way on both the elec- 
trons and the ions. We assume that the electron tem- 
perature is appreciably higher than that of the ions 
T, >> T, (strongly non-isothermal plasma) and we con- 
sider the frequency range satisfying the condition 
s >> w/k,>>s,. In that case we can use for the dielectric 
permittivity the approximate expression 

s  ( o ,  k )  =i+l/aaP-8:/oz, 

and using this we find easily 

Putting after this the quantity t(w, k j  equal to zero we 
get for the eigenfrequencies and damping coefficients of 
the surface waves in the long- and short-wavelength 
limits, respectively: when a8k8, << 1 

and when a%; >> 1 

The high-frequency electron and low-frequency ion- 
sound and ion surface waves considered here a r e  char- 
acterized by positive energies. It is well known that in 
an unbounded non-equilibrium plasma there a r e  possi- 
ble not only waves with positive energy, but also waves 
with negative In a non-equilibrium semi- 
bounded plasma surface waves with negative energy a re  
also possible. As an example we consider a plasma 
through which a compensated low-density ion beam 
(ni <<nd passes with velocity u (the vector u is parallel 
to the boundary surface). Neglecting the thermal mo- 
tion of the ions we can write the permittivity of the 
plasma in the form 

i P,' 
s (o ,k) - I+- - -  nII 

aVca oz 
] q - - - < I .  (30) 

(a-k,u)= ' no 

(This expression is applicable in the frequency range 
w <<k,s.) Substituting (30) into the general Eq. (21) and 
integrating over k, we get Eq. (28) for the quantity 
t(w,kJ in which we must understand by r, 

After that putting L(w, k,) equal to zero and restricting 
the discussion to the  long-wavelength limit a2k: << 1 we 
can write the dispersion equation in the form 

Assuming the beam density to be sufficiently small 
(q << 1) we can easily find the roots of that equation 
which correspond to the eigenfrequencies of the surface 
waves: 

Waves corresponding to the eigenfrequencies w"' and 9 wc' a r e  characterized by positive energies, while the 
wave corresponding to the eigenfrequency wg' is char- 
acterized by a negative energy. 
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5. NON-LINEAR INTERACTION OF SURFACE WAVES 

The non-linear interaction of bulk and surface waves 
in a semi-bounded plasma is described by the general 
non-linear Eq. (16). Assuming there to be no external 
charges we rewrite this equation in the form 

2e + x"'(ol ,  k t ;  or, k2; ox, lix)Er,, ,E,Jk.. ,+. . .+A &A"-0. 
u,+~,+u,-L). 
k8+kr+ks-k 

Using the method of multiple time consecutive approxi- 
mations we can obtain from this equation a hierarchy of 
equations which determines the time-dependence of the 
amplitudes caused by the non-linear resonance interac- 
tion of the waves. 

The simplest example of a non-linear resonance wave 
interaction is the three-wave resonance which occurs 
in the case when the frequencies of the interacting 
waves satisfy the condition 

It is clear that three-wave resonance is possible in a 
semi-bounded plasma in the case of the interaction of 
three bulk waves, two bulk and one surface wave (two 
cases a r e  possible: a s  the result of the interaction of 
two bulk waves a surface wave is formed, and the inter- 
action of a bulk wave with a surface wave leads to the 
formation of a bulk wave), two surface waves with a 
bulk wave, and of three surface waves. In the case 
when there a r e  no three-wave resonances the four-wave 
resonance interaction which occurs when the following 
resonance condition between frequencies holds, 

turns out to be the most important one. 

We restrict  ourselves to a more detailed discussion 
of the resonance interaction of surface waves. We mul- 
tiply Eq. (33) by the quantity kJkc(w, k) and integrate 
over k ,  and then, using the surface nature of the inter- 
acting waves, we use Eq. (26) to express the fields 
E, Ek2,,, . . . in terms of the surface components ' 

~ h ~ , ~ .  EGy,. . . As a result the basic equation de- 
scribing the interaction of surface waves in a semi- 
bounded plasma can be written in the form 

where 2"' and 2"' a r e  the non-linear surface suscepti- 
bilities of the plasma, determined by the equations 

e 'k, 
= -"-J ( o t ,  k , ;  o 2 ,  kz; o , ,  k t )  

d k l z J d k z z J  dk3x k l h k , b  ( o , .  k , )  e ( a z .  k I )  e ( a J ,  kal e ( 0 ,  ~ r )  . IT" 

(3 8) 

We apply to the non-linear Eq. (36) the method of 
multiple time consecutive approximations. In f i rs t  ap- 
proximation the fields of the surface waves are,  a s  
before, given by Eq. (25), but if the non-linear interac- 
tion of the waves is taken into account the amplitudes 
Et, and phases a,, must be assumed to be slowly vary- 
ing functions of the time. The equations determining 
the time-dependence of the amplitudes EL and the 
phases +t, can be found from the conditions that the 
secular parts of the higher approximations of Eq. (36) 
must vanish. Under the conditions of three-wave reso- 
nance for surface waves: 

the equation determining the time-dependence of the 
amplitude of the linear approximation of the surface 
waves has the form 

I a i (aL;kL:kL) ) -' 
--,Era exp (-i@k,) = - 
d t  2 0 k 

x <(') (ok,,, kt,; or,,, kZL)  EklLEkIL exp[- i (@t, ,+ @hr) I. (40) 
k L - k , ~ + k , ~  
This equation describes three-wave decay processes, 

i.e., processes in which two waves fuse to form one 
wave and processes in which one wave decays into two 
others. The decay interaction appears also when we 
neglect the thermal motion of the particles, i.e., i t  can 
be described also on the basis of the hydrodynamical 
discussion. 

If condition (39) is not satisfied, the correction to the 
field i s  in second approximation expressed in terms of 
the field in the f i rs t  approximation as follows: 

The time-dependence of the amplitude and phase can in 
this case be found from the condition for removing the 
secularity in the equations of the third approximation. 
Resonance interaction occurs if the following relation 
holds between the frequencies 

In the four-wave resonance case the equation determin- 
ing the time-dependence of the field of the surface wave 
has the form 

i) i  ( a"o2kL) 1-1 
-ELI exp (-i@r,) =- - 
at 4 a .  

x (a t , , ,  kt,; o r , , + ~ r , , ,  kZL+k,,) x"' (or,, ,  krr; @a,, kn) 
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The prime on the summation sign on the right-hand side 
of (43) indicates the necessity to take all  possible wave 
combinations which a r e  in accordance with condition 
(42) for  various signs in front of the frequencies into 
account. 

Equation (43) describes induced wave decay processes 
and the processes of induced scattering of waves by 
particles which lead to the appearance of a non-linear 
shift of the eigenfrequencies and non-linear Landau 
damping. These effects, like the linear damping, can 
only be described in the framework of the kinetic theory. 

6. THREE-WAVE SURFACE WAVE DECAYS 

We consider the resonance interaction of three sur- 
face waves with frequencies wq, w,,, and wl, and fixed 
values of the wavevectors k,, k,,, and $, for which the 
resonance conditions 

a r e  satisfied. Each of the interacting waves is charac- 
terized by an energy 

The energy of the separate waves can be either positive 
o r  negative (the nature of the wave energy is deter- 
mined by the sign of the derivative b.L = 8t(wq, kL)/8w,>. 
For the sake of convenience we introduce the amplitudes 
A,, and sign factors s,, defining them by means of the 
equations 

At,-leal br,'l/8nk,l'::E~r, exp (-iOk,), sk,=-sign &,'. (46) 

The expressions for  the energy and momentum of the 
surface waves then take the form 

Using the definitions (46) we can write the basic Eq. (40) 
in the form of a Schriidinger equation in the interaction 
representation 

where VLliklLiLZ, is an interaction matrix element de- 
fined by means of the equation 

Using the symmetry properties of the non-linear 
plasma susceptibility 3(2)(wh,, k,; o +, $3 one can eas- 
ily show that the time-dependence of the amplitudes of 
surface waves with frequencies oh, and ok2, is de- 
scribed by the equations 

i-= a A k l ~  

d t  
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in which occurs the same interaction matrix element a s  
in Eq. (48). The set  of coupled Eqs. (48) and (50) com- 
pletely describe the dynamics of three interacting sur-  
face waves. This set  can be solved exactly.'241 

In the case of the interaction of three surface waves 
with energies of the same (positive or  negative) sign, 
i.e., when the condition 

is satisfied, a decay instability ar ises  in the system. 
Let a wave of frequency w,, initially at time t =O be 
characterized by a large amplitude IA,, 1 >> IA,,, 1 and 
[A,, l 2  >> JA 1'. As a result of the resonance interac- 
tion the am&ude Aq in the f i rs t  stage of the temporal 
evolution will change insignificantly, while the ampli- 
tudes Ah, and A%, will exponentially increase with time. 
The growth rate of the waves with frequencies wk1, and 
ah, is determined by the intensity of the wave of fre- 
quency wq: 

The reciprocal of (52) determines the decay time. As 
an example of a decay interaction of surface waves in a 
semi-bounded plasma we consider the decay of a Lang- 
muir surface wave into a Langmuir and an ion-sound 
surface wave, the dispersion of which is given by Eqs. 
(27) and (29) (ak, << 1). The frequencies and wavevectors 
of the interacting waves satisfy the decay conditions 
which take the form 

k,z-k,a+k,,'-2 1 k, 1 I k,, 1 cos a, (54) 

where a is the angle between k, and k,,. Putting I k,/ 
= Ik,,{=k, we have k2,= 2kosintor and the decay condi- 
tions a r e  then satisfied, i f  

Using (49) and (37) we find the growth ra te  of the sur- 
face oscillations (Eq =Ed: 

The expression (55) for the non-linear growth rate 
was obtained assuming that the linear damping rates of 
the interacting surface waves were small compared to 
the corresponding eigenfrequencies. It is clear that the 
growth of the Langmuir and ion-sound surface waves 
will occur, if the non-linear growth ra te  given by Eq. 
(55) turns out to be  larger than the linear damping rates 
given by Eqs. (27) and (291, i.e., when the conditions 
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a r e  satisfied. However, i n  that c a s e  it  is necessary  for  
the validity of the considerations that  the  non-linear 
growth r a t e  does  not exceed in magnitude the eigenfre- 
quencies of the growing sur face  waves, i.e., that the 
conditions 

a r e  satisfied. 

In the c a s e  of the decay of a Langmuir bulk wave into 
Langmuir and ion-sound bulk waves the growth r a t e  is 
given by the expression: C251 

We note that the growth r a t e  of the decay instability of 
surface waves is appreciably l a r g e r  than the growth 
r a t e  of the decay instability of bulk waves ( y / y -  l /ako 
>> 1). 

In the c a s e  of a resonance interact ion of th ree  s u r -  
face waves with different s igns of the  energy', f o r  in- 
stance, when the condition 

holds, a n  explosive instability o c c u r s  i n  the sys tem i n  
which the  amplitudes of the interact ing waves turn to  
infinity a t  s o m e  finite value of the  t i m e  t,. The wave 
with negative energy gives energy to the  waves with 
positive energy (or  the waves with negative energy give 
energy to the  wave with positive energy) and the ampli-  
tudes of the  interact ing waves increase  without bounds, 
notwithstanding the  conservation of the total energy of 
the system. By a n  appropriate  choice of the initial con- 
ditions one can achieve that  the  amplitude of the (in- 
itially) s t rongest  wave changes with t i m e  according t o  

The explosive t ime  t ,  will in  that  c a s e  be  determined by 
the initial value of the amplitude and the mat r ix  element  
of the non-linear interaction 

t,-'= 1 V k * ,  k,~. k l A A k ( 0 )  1. (59) 

The explosive instability is possible in  a semi-bounded 
p lasma when a compensated beam of ions p a s s e s  
through i t  a s  the r e s u l t  of the resonance interact ion of 
th ree  sur face  waves, the  dispersion of which is given 
by Eqs. (33). Putting Ik, I= Ikl,l=ko we find f rom the 
decay conditions k,,= -2q1/ 2kov,/~. 

The explosive t i m e  t ,  fo r  the  decay of a wave with 
negative energy WE' into waves with positive energ ies  
w g l  and w: i l  is given by the  expression 

We note that in  the c a s e  of the explosive instability 
caused by  the interaction of bulk waves the  explosion 
t ime equals 

The ra t io  of the  explosive t ime  f o r  bulk waves t o  the 
explosion t ime  for  sur face  waves is a quantity of the 
o r d e r  of 

In conclusion we note that  the charac te r i s t i cs  of the 
decay and explosive instabi l i t ies  discussed by u s  
(growth r a t e  and explosion time) depend on the nature 
of the  boundary conditions a t  the sur face  bounding the 
plasma.  F o r  the applicability of the specular  reflection 
model i t  is necessary  that  all charac te r i s t i c  dimensions 
of the  problem (wavelengths, Debye radii,  and s o  on) 
a r e  appreciably l a r g e r  than the  s i z e  of the  inhomogen- 
eity of the p lasma density near  the boundary. A s  we 
have i n  th i s  paper  studied three-wave interactions of 
just the long-wavelength sur face  oscillations the choice 
of such  a model is qualitatively 
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An analysis is made of instabilities of a homogeneous high-frequency discharge maintained by the field of 
a traveling plane electromagnetic wave in a cold gas of electronegative molecules; a low electron collision 
frequency is assumed. A general dispersion equation is obtained for arbitrary wave perturbations of the 
field and plasma density. The maximum increments are found, as well as the characteristic scales of the 
main types of instability, which are large-scale transverse and longitudinal modulation, backscattering, 
and small-scale stratification in the direction of the electric field vector. 

PACS numbers: 52.80.Pi. 52.40.Db 

1. One of the important tasks in the theory of high- 
frequency discharges i s  the determination of the main 
types of instability of possible steady-state postbreak- 
down We shall discuss instabilities of a ho- 
mogeneous discharge maintained by the field of a travel- 
ing plane electromagnetic wave in a cold gas of electro- 
negative molecules. The wave frequency w is assumed 
to be high compared with the electron collision frequen- 
cy v(w >> v) and the plasma i s  regarded a s  a nonabsorb- 
ing medium with a rea l  permittivity E =  1 -,V/S,>O (N i s  
the electron density and N, = szw2/4se2 i s  the cri t ical  
value of this density). The adopted homogeneous absorp- 
tion-free model makes it possible to reveal instabilities 
of real  discharges due to perturbations of characteristic 
scale smal ler  than the wave attenuation length. A simi-  
l a r  problem has been considered by Gurevich and 
ShvartsburgC2' for  the opposite limiting ca se  of v >> w , 
Re€=  1 assuming a specific type of perturbation (long- 
wavelength modulation in the longitudinal direction). 

We shall begin from the vector wave equation for the 
slowly varying (with time) complex amplitude of the 
electric field E(r, t )  

and from the ra te  equation for the electron density 

in which the frequency of ionization by electron impact 
vi is  regarded a s  a given function of the field amplitude 
[ L ' ~ =  vi( I E  I)]," whereas the diffusion coefficient D and 
the frequency of capture by neutral molecules v,, both 
depending much less strongly on I E  I, a r e  assumed to 
be constant. 

We shall introduce dimensionless variables by the 
substitution: 

Here,  E,  i s  the amplitude (known a s  the breakdown val- 
ue) corresponding to v , ( \  E 1 )  = v,, i.e., the amplitude at 
which a homogeneous discharge is  in equilibrium. In 
t e rms  of the new variables, Eqs. (1) and (2) become 

Here ,  

i s  the dimensionless diffusion capture length; f( 1 E 1 )  
=vi /v , -1 ;  for l ~ I = 1 ,  we havef=Oanddf /dIEI>O.  

Let u s  assume that, under steady-state conditions the 
field is a plane wave of unit (breakdown) amplitude E 
= Y o  e ~ ~ ( - i E ~ ' ~ x ) ,  traveling along the s axis in a homo- 
geneous plasma with an  arb i t ra ry  value of .\ = No< 1 
(E = E,= 1 - No >0)." We shall investigate the stability of 
this  s tate in the presence of small  perturbations. As- 
suming that 

N = N c + N , ( r ,  t ) ,  E,= (l+El(r, t))esp(-ie: I) 

and linearizing Eqs. (4) and (5), we obtain the following 
equations for the perturbations El and iVl: 

(here a =df/d 1 E 1 for  1 E I= I ) ,  o r ,  representing E l  in the 
form E l= t t l+  i ~ , ~ ,  where ul and L,, a r e  r ea l  functions: 
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