
Quantum spectroscopy of relativistic beams 

The spectral intensity of coWonl*~1 radiation from relativiatic kams is found, with quantization of thc 
motion of the chrvges taken into account. The mnclusio~ of the theory of equilibrium and COW& 
radiation from h w y  c o m p d  relativistic kamr arc employed for an analysis of urpaimentr with 
micmphhes in vacuum diodes. The theg. urpkinr the obcrved hard x-ray quanta emitted by the 
electrons in quantum tndtiona betww dircrrte energy levels under conditions of maximum beam 
o o m ~ o a  

1. INTRODUCTION 

Sukhorukov and the present authorc" determined the 
structure of relativistic beams compressed to very 
small dimensions by the forces of collective interaction 
of electrons and ions. The characteristic transverse 
dimensions of beams compressed due to the pinch effect 
turned out to be of the order of o r  smaller than the 
atomic Bohr radius. As was pointed out by ~ u d k e r , ~ ~ '  
in beams strongly compressed by the forces of collec- 
tive interaction an important role is played by the rad- 
iation connected with the finite motion of charges. This 
radiation bears no relation to the collisions of the 
charges, and i t  is natural to call it collisionless. A 
theory of the collisionless radiation of relativistic 
beams was developed in Ref. 3 under the assumption 

pearance of high-energy photons solely at the- very be- 
ginning of the x-ray flash indicates a rapid heating of 
the plasma, due to the pinch effect, to a very high tem- 
perature, followed by a slow cooling down connected 
with the energy losses through radiation. For a de- 
tailed comparison of theory with experiment a further 
development of the experimental as well a s  theoretical 
work is required. In particular, it is necessary to im- 
prove the time resolution of the emission spectrum in 
the experiment and also to develop a theory of the evo- 
lution of a relativistic beam in the process of the pinch 
effect. 

2. EQUILIBRIUM OF A RELATIVISTIC BEAM AT 0-1 

that the motion of the emitters is described by classic- In the preceding paperc" the structure of relativistic 
a1 mechanics. However, the smallness of the trans- beams was considered, assuming for clarity that the 
verse of the beam dictates the necessity Of average velocity of the electrons v,  is close to the vel- 
quantization bf the motion of charges and calls for an ocity of light c. In experiments with micropinches in investigation of its influence on the radiation. vacuum diodes, however, the average electron velocity 

' 

In the present work we consider the quantum theory is, a s  a rule, small in comparison with the velocity of 
of relativistic beams strongly compressed by the pinch light. To make the application of the theory to the ex- 
effect. As a preUminary, it is shown that the condition, periment[41 possible i t  is necessary to consider the 
used for the sake of clarity int'', that the average vel- beam equilibrium at an arbitrary 19 = v,/c - 1. 
ocity v, of the beam electrons be close to the velocity The structure of a beam compressed by the pinch ef- 
of light c,  is not essential. In 82 equations determin- fect can be found ifc'] 
ing the equilibrium structure of the beam a t  an arbi- 
trary value of I9 =vdc are  given and studied. In 63 the 
quantiaation of the motion of charges in the field of the 
forces of collective interaction is carried out. In 84 
general formulas are obtained for the intensity of spon- 
taneous radiation of a cylindrically symmetrical plas- 
ma as a function of energy of the quanta. In 05 the 
spectral intensity of the radiation of charges moving in 
a quadratic potential is found. This case admits of an 
exact solution. In 66 the dependence of the spectral 
intensity of the radiation of the degree of degeneracy of 
the electrons is examined. The intensity of the radia- 
tion of strongly degenerate electrons in the region of 
low and high frequencies is determined. In 87 the theo- 
ry developed is utilized for the explanation of the radia- 
tion accompanying the pinch effect in a vacuum diode.c41 
According to the theory set forth, the mechanism of 
emission of soft x-ray quanta consists in radiation of 
photons in the course of the electron transitions be- 
tween discrete energy states of the transverse motion 
in the field of collective-interaction forces. The ap- 

where T, is the temperature of the electrons in the co- 
moving frame of reference. With the condition (2.1) 
satisfied, as the density is growing in the process of 
compression, the degeneracy of the electrons sets in 
earlier than the non-ideality. Thus, in studying the 
structure of the beam, we are allowed to regard the 
electrons as an ideal gas obeying Fermi statistics. The 
equilibrium distribution function of the electrons in the 
laboratory frame of reference is of the form 

where 6 = (m:~~+p~c?) ' /~+ Us(?') is the total energy, P, 
is the projection of the momentum p on the beam axis, 
T,= T,(l - fi2)'f2 is the effective temperature of the tran- 
sverse motion of electrons in the laboratory frame of 
reference, and a is a scalar determined by the normal- 
ization condition. 
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If the temperature T, and the Fermi energy r, = T, I&/ 
=Tl la! +mec2/T, I a r e  small in comparison with m,c2: 

then the gas is nonrelativistic in the co-moving frame 
of reference Kt. In this case the main contribution to 
the integrals with respect to the momenta comes from 
a small region near the minimum of the argument of 
the exponential (2.2). Denoting TI, = T,(1 - j32)'1/2, we 
obtain for the electron density the expression 

Here U,(r) is the potential of the collective-interaction 
forces acting on the electrons and m*=me(l  - is 
the effective mass of the transverse motion of the elec- 
trons in the laboratory frame of reference. 

The equations determining the potentials U,(r) and 
U,(r) of the collective-interaction forces for the elec- 
trons and ions respectively, with the degeneracy of the 
electrons taken into account, reduce to the form 

Here N, is the number of ions per unit length of the 
beam, Ti the ion temperature, v, the normalization in- 
tegral: 

and a=ti2/mee2 the Bohr radius. The scalar a' is conn- 
ected with the number of electrons per unit length of the 
beam Ne by the normalization condition 

It follows from Eqs. (2.5) and the normalization con- 
dition (2.7) that a t  large distances the potentials U,(r) 
and U,(r) increase logarithmically: 

If the number of ions N, satisfies the inequalities 

then both the electrons and the ions a r e  subjected a t  
large distances to an attractive force from the other 
charges. Since fi2 >O it is clear that the inequalities 
(2.9) can be satisfied for any arbitrary j3, and not only 
for j3 -1. From (2.4) it follows that at  large distances 
both the electron density ne(r) and the ion density nt(r)  
obey the Boltzmann statistics: 

and decrease with r according to power laws: 

For the normalization integrals vi and (2.7) to converge 
a s  r - - it is necessary that the inequalities 

K., K'>1 (2.11) 

be satisfied. 

If the dimensionless parameters on which the beam 
structure depends (B, Ti/TI,e2(N, - N,)/T,,e2[N, - (1 
- B2)N,]/Tl) a re  of the order of unity, i t  follows from 
(2.5) that the characteristic transverse dimension of the 
beam is of the order of ro (2.6), that is, of the order of 
o r  smaller than the Bohr radius. In the vicinity of the 
axis, a t  r <<r,,, the potentials U, and Uf depend on r 
quadratically, while a t  large distances r >> ro they in- 
crease logarithmically a s  r increases [Eq. (2.8)]. In the 
intermediate region r -yo, the coordinate dependence of 
the potentials Ue(r) and U,(r) can be found in the general 
case only by numerical integration of the Eqs. (2.5).C5*61 
The structure of the beam has been found analyticallyc1] 
in the limiting case j3 - 1 for strongly degenerate elec- 
trons under the condition T, >> T,. 

We note that the investigation of stationary equilibri- 
um configurations of a cylindrically symmetrical rela- 
tivistic beam does not change qualitatively also in the 
case of a relativistic electron gas. If the conditions 
(2.3) a r e  not fulfilled, the formula (2.4) for the electron 
density has to be replaced by the following: 

and a corresponding replacement of integrals must be 
carried out in the Eqs. (2.5). 

3. QUANTIZATION OF THE MOTION OF ELECTRONS 

If Eqs. (2.5) a r e  solved and the potentials Ue(r) and 
U,(r) found, then the vector potential A = (0, O,A,) and 
the scalar potential @ of the electromegnetic field of 
the collective interaction a r e  determined from the for- 
mulas 

The quantum-mechanical motion of an electron in the 
field (3.1) is described by the Dirac equation.c71 In a 
stationary, cylindrically symmetrical beam the time t 
and the coordinates z and q a r e  cyclic variables. The 
generalized momenta canonically conjugate with them- 
the total energy E,  and the projections of the general- 
ized momentum P, and of the total angular momentum 
ti, onto the beam axis-are quantum numbers. The 
quantum number P, corresponds to infinite motion along 
the beam axis and the spectrum of i ts  values is contin- 
uous. 

If the number N, of electrons per unit length of the 
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beam i s  small 4. QUANTUM THEORY OF COLLISIONLESS 
RADIATION 

and the transverse dimension ro large in comparison 
with the Compton wavelength 

-. - 

r, >>fi/m,c = 3.8 10'"-cm, (3.3) 

then the influence of the magnetic field of the beam cur- 
rent and the spin of the particles may be disregarded. 
In this case the problem permits separation of the vari- 
ables in cylindrical coordinates. The condition (3.2) is 
equivalent to a situation where the Larmor radius r, of 
the electrons in the magnetic field of the current is 
large compared to r, and their transverse motion re- 
duces to oscillations in the field v,(~). 

Under the conditions (2.3), (3.2) and (3.3) the wave 
function of the electron in the co-moving reference 
frame satisfies the SchrMinger equation and is of the 
form 

The transverse coordinates r and rp remain unchanged 
in Lorentz transformations. The radial part R of the 
wave function is normalized to unity and the function it- 
self to one particle on the length 2'. Using the formulas 
of the Lorentz transformations for the field (Ref. 8,024) 
and expressing the energy of the transverse electron 
motion t l = E  '-p;'/2m8 in the frame K' and the potential 
energy Ut(r) in terms of the respective quantities c and 
U,(r) in the laboratory frame: 

we reduce the equation for the radial part R of the wave 
function to the form 

As r increases, the potential U, in (3.4) changes from 
quadratic at small distances from the axis to logarith- 
mic at large distances. The transverse motion of the 
charges is finite. Equation (3.4) yields a discrete set of 
possible energyvalues <=en,,  n=O, 1,. . . , 1=0,  * I , .  .. 
In the region of small energies near the potential mini- 
mum the energy spectrum is equidistant. As the energy 
increases, the distance between levels decreases be- 
cause the potential U,(r) ceases to be quadratic. In the 
logarithmic region the distance between levels decreas- 
e s  exponentially with increasing energy.[3] 

For strong-current beams N, Z m,c2/ez (TI, - c) the 
spin and the radial variable in the Dirac equation are 
not separable. But even in this case electron states with 
definite values of the total energy E =E,,,,,, differ from 
one another by one continuous index P, and two discrete 
ones j and n. The discrete nature of the radial quantum 
number n is in general due not only to the oscillations in 
the field U,(r), but also to the quantization of the elec- 
tron motion in the strong azimuthal magnetic field of 
the current. 

Condition (3.2) is equivalent to the inequality 6 >> yo, 

where 6=c(4aou) is the depth of penetration of a field of 
frequency w into plasma, o-ezn,/m,w the electric con- 
ductivity, and n, -N,/wY~ the electron density. This 
means that the radiation of each individual charge 
leaves the plasma without appreciable absorption by 
other charges, and the radiation of the beam is the sum 
of the radiations of individual electrons. In the opposite 
limiting case 6 <<yo every photon is repeatedly absorb- 
ed and reradiated by other charges before leaving the 
beam. This puts the electromagnetic radiation in equi- 
librium with matter. To determine the intensity of ra- 
diation for 6 <<yo the absorptivity of the beam should be 
calculated and Kirchhoff's law applied. In 004 and 5 we 
assume the conditions (2.31, (3.2) and (3.3) as fulfilled. 

The relativistically invariant formula for the trans- 
ition of an electron from the initial state i to the final 
state f with emission of a photon with four-vector k, 
and polarization e,, is,  in the first order of perturba- 
tion theory, of the form 

where A,, = (2r/fiwV)'lae,, exp(ikvxv) is the four-potential 
of the photon, jft = *, yU*, the four-vector of the cur- 
rent of the transition from the state i to the state f. The 
probability of emission of a photon into the phase-space 
element d r ,  = Vd 3k/(2n)3 due to the transition of an elec- 
tron from the state i to the state f into the element d r f  
is equal, with the Pauli principle taken into account, to 

Here ff is the Fermi distribution function (2.2) of the 
electrons in the final state, dr,  = (2/2rK)Zdpd, and Z is 
a normalization length. 

The separation of the integration variables into fac- 
tors d 4~ =dzxLdzdt is relativistically invariant. The de- 
pendence of the transition current j;, on t and z also has 
the form of a relativistically invariant factor 

exp  { - i ( 8 1 - 8 1 )  t/A+i(p.t-p,,) z lh) .  

Taking, a s  usual, integrals of the form 

to mean 2nffT6(St - 6 - fiw), where T is the duration of 
the emission process, we obtain for the probability (4.1) 
the expression 

where 
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sinO(1- j32)112(1 - j3 C O S ~ ) - ~ ,  we obtain is a relativistically invariant quantity. This means that 
if i t  is expressed in some frame K', i ts  expression in 
the frame K is 

A matrix element W f ,  equals 
where the primed quantities a r e  expressed in terms of 
the unprimed quantities by the formulas of the Lorentz 
transformation. 

The scalar A is easiest to find in the simplest way in 
the co-moving frame of reference Kt. Under the con- 

The integral with respect to cp in (4.3) is different from 
zero for I f  = I, 1 only. As i t  should be, in the case of 
cylindrical symmetry and in the dipole approximation 
only transitions with unity change in the azimuthal angu- 
lar momentum a r e  allowed. 

dition (2.3) the radiation is described in the frame Kt by 
means of the formulas of the nonrelativistic dipole ap- 
proximation. t'] In this approximation the integrals (4.2) 
reduce to matrix elements of the velocity operator com- 
puted with the help of nonrelativistic wave functions of 

Neglecting, under the condition (2.3), the recoil and 
using the law of conservation of the projection of the 
momentum onto the beam axis: pd = P C ,  - Plw cosO/c, we 
can reduce the Lfunction expressing the law of energy 
conservation to the form 

the transverse motion. According to the rule of opera- 
tor differentiationte1 the velocity matrix element v;, is 
conveniently expressed in terms of the acceleration 
matrix element W;,: 

where 

(e.,r,--EnIII)/~t~-p cos e) 
Taking the four-vector of photon polarization in a three- 
dimensional transverse gauge and summing over the 
photon polarizations: 

is the transition frequency in the laboratory frame. We 
introduce the notation 

where n' i s  the unit vector in the direction of kt, we ob- 
tain 

After summation over the final-state polarizations and 
averaging with respect to the initial spin state we obtain 
for the differential emission probability per unit time We change now to the laboratory frame. Recognizing 

that U,' does not explicitly depend on cp we have 

and since the transverse coordinates a r e  not changed by 
Lorentz transformations, we obtain In the initial state the phase-volume element 

contains f ,d r ,  particles. The intensity of emission from 
a phase volume element dl?, is obtained multiplying d o v  
by the quantum energy iiu and by the number of elec- 
trons f , d , r , ,  summing over the final states of the dis- 
crete spectrum and integrating with respect to dpd: 

After separation of the variables z and t the wave func- 
tions still contain the normalization length Z I, which is 
connected with the normalization length Z in the labora- 
tory frame by the Lorentz contraction formula Z=Z1( l  
- j32)'12. If a coordinate system is now chosen in such 
a way that the direction n1 of photon propagation lies in 
the xz-plane, we obtain, in virtue of azimuthal symme- 
try 

After summation over the spectrum of initial states we 
find the intensity of emission per unit length of the beam 
in a unit frequency interval into a unit solid angle where 8' is the angle between the propagation direction 

of the radiation and the beam axis in the frame K'. 

Taking into consideration the law of conservation of 
energy 6 1- 6 ;= t iw1 ,  the Doppler effect w l =  w(1- j? cos8) 
(1 - 82)''12, and the aberration of light sine1= 
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In the quasiclassical limit n ,,nf, 1 >> 1 the matrix ele- 
ment (4.3) goes over into a Fourier component [formula 
(4.4) inB']. The transition frequency (4.4) takes the 
form 

or,--(Ano,+Al%)l(l-p cos O), 

where w, and w, a re  the fundamental frequencies of the 
radial and azimuthal motion An =n, - n,, and Al = f ,  - Zf. 
Passing ffom summation over n, and I ,  to integration 
with respect to the energy E and angular momentum M: 

it is easy to see that (4.8) formulas of the quantum theo- 
ry of radiation goes over into the corresponding class- 
ical formula (4.9) fromt31 with the only difference that 
the angular dependence (4.5) differs from Eq. (3.5) oftS1 
by the factor 1 - 8 cose. This difference is due to the 
curcumstance that inta1 the radiation intensity pertains 
to that length dZ of the beam which is occupied by emit- 
ters  at an instant of time t =t  '+ R(t ')/c that is delayed 
relative to the emission instant t'. To allow for the in- 
fluence of the emission on the structure and evolution 
of the beam, formula (4.5) has to be used. 

5. SPATIAL OSCILLATOR 

The calculation of the spectral intensity of collision- 
less radiation can be carried through completely in the 
case where most of the emitters are  situated near the 
minimum of the potential energy U,(r) so that in the ex- 
pansion of U, in powers of r we can limit ourselves to 
the quadratic term: 

The SchrWnger equation for the spatial oscillator (5.1) 
is solved more conveniently in Cartesian than in cylin- 
drical coordinates. After separation of variables the 
problem reduces to the solution of independent equa- 
tions for two linear oscillators describing the motion of 
charge along the x and y axis respectively .['I The en- 
ergy spectrum is of the form 

where n, and n, a re  quantum numbers labeling the ener- 
gy levels and 

is the frequency of the oscillators. 

Computation of the matrix elements of the accelera- 
tion reduces to finding the matrix elements of the radius 
vector: 

bU*") ' ( ( X ~ ~ " ~ ) ~ + ( Y . , " ~ ) ~ .  IW.,.,lZ-- - 
4m. l dp I 
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which a re  different from zero only for transitions that 
change one of the quantum numbers by unity. For ex- 
ample, 

For the oscillator the transition frequency (4.4) does not 
depend on the quantum numbers: w,, = w,(l- B cosB)". 

The quantum energy A o  is a positive quantity. Emis- 
sion corresponds to transition to a lower level n - - 
n - 1. In the expression for the intensity of radiation 
only those terms should be kept which correspond to 
transitions with lowering of the quantum numbers. 

By taking into account the laws of conservation of 
energy and momentum, the combination f,(l - ff) that 
takes account of the fact the electrons a re  present in the 
initial state and that the final state i s  not occupied can 
be written in the form 

that is, a s  the difference between the occupation num- 
bers of the initial and final stake, multiplied by the 
Planck factor. Turning to summation over k=n, ,+n,,, 
we have 

The integration with respect to dpd is eliminated by the 
6-function, and the remaining integral with respect to 
dp,, and the sum over k a r e  exactly the same as in the 
normalization formula: 

The final expression for the spectral intensity of radia- 
tion by a spatial oscillator is of the form 

dl czN, 
-=-. Roo' 
dZ do do 4ncam' exp (fie)olT,) -1 ~ ( e ) ( ( w - - ) .  (5.4) 

Formula (5.4) holds for an arbitrary degree of degen- 
eracy and an arbitrary ratio Aw0/T,. All that is re- 
quired is that most of the particles be near the mini- 
mum of the potential U,(r), where the expansion (5.1) is 
valid. 

The radiation intensity is concentrated in the case of 
the spatial oscillator (5.1) in a narrow spectral line 
near the transition frequency. Its width is determined 
by the collisions of the emitters, by the Doppler effect, 
and by the anharmonicity of the collective-interaction 
potential. 

It should be noted that the condition 6 >>yo, which al- 
lows us to represent the intensity of radiation of the 
beam as a sum of radiation intensities of individual el- 
ectrons, leads in the case of a narrow line to a restric- 



tion more stringent than (3.2), namely 

(Aw is the width of the spectral line) because of the res- 
onant dependence of the electric conductivity o on the 
frequency. 

6. SPECTRAL INTENSITY OF RADIATION BY 
STRONGLY DEGENERATE ELECTRONS 

The frequency dependence of the intensity of collision- 
less radiation i s  determined both by the pecularities of 
the energy spectrum of the electrons and by the nature 
of the population of the energy quantum states. The 
emission spectrum of the electrons is different in the 
two limiting cases of Boltzmann statistics and strong 
degeneracy. For  potentials U,(r) that go over smoothly 
from quadratic as r -0 to logarithmic as r-00 the fre- 
quency of the finite motion and the distance between the 
energy levels both decrease a s  the energy increases. 
With increasing frequency w the main contribution to the 
spectral intensity of collisionless radiation comes from 
electrons situated lower and lower on the energy scale. 
In the case of Boltzmann statistics the spectral intensity 
of the radiation increases with quantum energy. In the 
region of low frequencies emitted by electrons a t  large 
distances from the axis, the radiation intensity in- 
creases with increasing photon energy tiw according to 
a power law:c31 

where K, is given in (2.10). As the frequency becomes 
higher, the basic contribution to the radiation comes 
from electrons situated lower on the energy scale. Near 
the minimum of U, the energy spectrum becomes equi- 
distant. In the case of Boltzmann statistics the radia- 
tion intensity reaches i t s  maximum at  the transition 
frequency w U  = w,(l - P cos0)" and falls off sharply 
thereafter. 

The spectral intensity of collisionless radiation be- 
haves differently in the opposite limiting case of strong 
degeneracy of the electrons in the vicinity of the beam 
axis. Owing to the Pauli principle, the emission inten- 
sity is proportional not only to the number of emitters, 
but also to the number of unoccupied final states. If the 
electron degeneracy is strong ( 1 d 1 >> 1, d < O), practic- 
ally all  lower quantum states a re  occupied. With in- 
creasing energy < a transition to the Boltzmann statis- 
tics, i.e., from occupied to unoccupied states, takes 
place in the Fermi-energy region E - Iz I T  of width 
A€ - T,. 

The maximum of collisionless radiation coincides in 
the case of Fermi statistics with the transition frequen- 
cy for electrons with energy of the order of the Fermi 
energy E- 16 IT,. In the region of higher frequencies 
the emission intensity drops as the photon energy in- 
creases. In this frequency region the spectral intensity 
is determined by details of the behavior of the potential 

U, in the range U,(O) < U, < U,(O) + 16 I T,  and cannot be 
calculated in general form. 

The dependence of the radiation intensity on the pho- 
ton energy in the high-frequency region can be found in 
the limiting case of strong degeneracy, when the main 
contribution comes from electrons chiefly in the region 
of logarithmic potential far  from the axis. In the limit- 
ing case tiw << T this dependence was found previously .c31 

The relation (5.3) allows to calculate the spectral inten- 
sity of the radiation in the high-frequency region (w 
>> w,,) for  arbitrary Aw/T, - 1 : 

d l  2. ~ % K : ~ T , J U .  --- F ( 0 )  (ln A) 'I' A(1-fi eosO)/TL 
dZdodO n (ACT)' om, exp[ho(l-gcos O)/TL]-l  ' 

(6.2) 
where K, is defined in (2.10), 

w,,= (vT/re)(l - 82)1'2(1 - 8 ~ 0 ~ 9 ) - ' ;  r, is the character- 
istic dimension of the region occupied by the electrons. 
We note that with N, and N, given, the temperature of 
the electrons T ,  appears in (6.2) only in the exponential 
of the Planck factor and under the logarithm sign. 

7. MICROPINCH IN  A VACUUM DIODE 

We consider the micropinch in a vacuum diodec4] in 
the light of the theory of equilibrium and collisionless 
radiation of relativistic beams. For  lack of a nonsta- 
tionary theory of beam evolution, the description of the 
process itself is only qualitative. 

In the course of discharge the electrons impinging on 
the anode destroy it. In the vicinity of the anode posi- 
tive ions a r e  formed as a result of ionization of the 
atoms by the beam electrons. The electrons produced 
in the ionization process a r e  subjected to strong repul- 
sion by the beam electrons and fly away in the radial 
direction. But the ions a re ,  on the contrary, subjected 
to attraction and a r e  accumulated near the beam axis. 
When the number of ions per unit beam length N ,  gets 
into the region (2.9), both the ions and the electrons a t  
large distances from the axis a r e  acted on by the re- 
maining charges with attraction forces. Under the ac- 
tion of these forces the beam collapses and a pinch ef- 
fect occurs. In the course of compression the tempera- 
tures of the electrons and ions increase. Simultaneously 
with the heating, the charges lose energy to the radia- 
tion, whose intensity increases with the compression in 
inverse proportion to the square of the beam radius.cs1 

If the electrons o r  ions a r e  heated in the course of 
compression so strongly that any one of the inequalities 
(2.11) is violated, then the corresponding energy of 
compression will be smaller than the energy of the ther- 
mal scatter of the particles in the transverse direction, 
and the compression will be stopped. Otherwise, i.e. 
if the inequalities (2.11) a re  not violated, in the process 
of compression and radiative cooling the beam is "con- 
densed" in the vicinity of the axis. The compression 
proceeds until further increase of the electron density 
becomes impossible because of degeneracy. The sub- 
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sequent evolutiap of the beam is determined in the main 
by the radiative cooling of the electrons. -The electron 
temperature drops, and in accordance with (2.6), the 
transverse dimension of the beam grows. 

The collisionless radiation is most intense in the 
state of strongest compression and heating of the beam. 
The spectral maximum of the intensity is then in the re- 
gion of the highest frequencies, the discrete nature of 
the energy spectrum is most strikingly manifest, and 
the hardest quanta a re  emitted. Subsequently, as the 
radiative cooling proceeds, higher and higher energy 
levels become populated, as a result of which the maxi- 
mum of the spectral intensity of radiation is shifted into 
the region of low frequencies. 

If the accelerating potential difference and the diode 
current a t  the moment of the pinch effect is known (16 
kV and -100kA inL4]), then the following parameters a r e  
unambiguously determined: j3 = 0.25, N,= 0.83 X loi4 cm-'. 
The total potential energy of the collective compression 
is e Z N p  = 750 keV. One part of this energy, namely 
e w e -  N,), pertains to the ion, and the remainder 
e2[N, - (1 - f12)Ne] to the electron. This means that in 
the process of compression the conditions (2.11) a r e  not 
violated until the electrons o r  ions a re  heated to a tem- 
perature of the order of hundreds of keV. Under such 
conditions the beam may be completely condensed in 
the vicinity of the axis in the course of compression and 
radiative cooling. 

On the basis of x-ray pictures, the transverse dimen- 
sions of beams in the state of greatest compression a r e  
estimated to be of the order of a few micronscio1 with an 
average density of the order of loz1 cm-3.C41 Unfortun- 
ately contemporary experimental techniques do not an- 
swer unambiguously the question whether the current is 
distributed uniformly over the cross section of the beam 
o r  is concentrated in one o r  several veins whose trans- 
verse dimensions correspond to the density of the con- 
densed state. Recently a paper by ~ o c h t e - ~ o l t g r e v e n ~ ~ ~ ~  
was published in which i t  is reported that in an electric 
explosion of deuterated liquid filaments strong heating 
takes place in &parate regions of very small size, 
which results in nuclear fusion if the density exceeds 
10as cm". 

For an estimate of the energlF of the emitted quanta 
we note that the electron density in the degenerate state 
is of the order n, - ( r n , ~ , ) ~ / ~ / t ~  3. The characteristic 
beam radius ro is determined from the condition n,nr 
-N,, i.e., Y , - N ~ ~ ~ ~ ~ ~ ~ ( ~ , T , ) ' ~ / ~ .  In the case of weak 
current (3.2) we obtain, using (5.2), for the energy of 
an emitted photon 

where (Y is the fine-structure constant (U, -eZN,P). 

In the opposite limiting case of a strong current, the 
Larmor radius is small in comparison with the size of 
the beam. The energy of the emitted quantum is equal 
to the distance between Landau levels. Noting that the 
magnetic field of the current is of the order H-l/cr0, 
we obtain 

For  temperatures of the order of hundreds of keV and 
currents of the order of hundreds of kA this corresponds 
to the region of hard x-radiation. 

Thus the emission of hard x-ray quanta in the experi- 
ment of ~ e e ' ~ ]  is naturally explained a s  collisionless 
emission of photons by electrons in transitions between 
discrete energy levels in the state of strongest com- 
pression and heating of the beam. 

In the literature there a r e  attempts to explain the hard 
x-ray emission by linking i t  with current dips and to the 
appearance of strong induction fields which can acceler- 
ate the electrons to the required energies.L121 A possi- 
ble cause of current breakdown is assumed to be the 
anomalous resistance of the plasma, which may be made 
turbulent by the developing electrostatic instabilities. 
The electrons accelerated by the induction field could 
emit hard quanta in collisions with plasma ions and with 
the surface of metallic electrodes. However, and this 
is also pointed out by ~ e e , " ~ ]  the induction field con- 
nected with dLZ/dt (where L is the inductance) i s  evi- 
dently insufficient to explain fully the hard x-radiation 
of large intensity. In particular, this mechanism does 
explain why the radiation intensity decreases inpower-law 
fashion with increasing photon energy. Also, it remains 
unexplained why the electrons accelerated by the induc- 
tion field emit hard quanta predominantly in the plasma 
of the anode vapor and not in collisions with the anode 
itself. This was shown experimentally by Cilliers e t  

who attempted to determine the spatial localiza- 
tion of the x-ray source. The radiation intensity aver- 
ated over the time of radiative cooling, obsewed in,c41 
decreases with the decrease of the photon energy in a 
power-law manner. If we assumed a power-law cooling 
T, = To(l + t/,), where To >>Ew, then on averaging the 
Planck factor we obtain a power-law decrease of inten- 
sity: 

dt 

(&) - ~ u p [ ~ r ( l - ~ c o s B ) / T L ( t ) ] - l  - (ho) -"&. 

The author thanks P. L. Kapitza, I. M. Lifshitz, L. P. 
~ i t aevsk i i ,  E. D. Korop, and S. T. Sukhorukov for use- 
ful discussions. 
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We consider the one- and three-dimensional problems of plasma heating taking nonlinear effects into 
account. We study in the oned i i s iona l  cape the buildup of Langmuir solitons due to dissipative 
slowingdown, we obtain the way the spectrum develops in time in the constant pumping regime, and we 
investigate the self-similar electron heating regime. We consider in the three-dimensional case the effect of 
nonlinear conversion of the Langmuir oscillations into sound on the plasma heating when acoustic collapse 
takes place. We estimate the maximum extent of the inertial range corresponding to such a regime. We 
obtain the self-similar electron distribution for heating due to nonlinear conversion. 

PACS numbers: 52.H).Gj, 52.35.M~ 

In connection with the problem of the heating of a 
plasma target by powerful beams of light or  of relativ- 
istic electrons, the heating of a plasma under strong 
Langmuir turbulence conditions has recently been 
studied intensively (see, for instance, Refs. 1 to 5). In 
those papers the main subject of the study was the res- 
onance mechanism for the formation of hot electron 
"tails" and the influence of non-linear effects was not 
taken into account, although the role of non-linear dis- 
sipation in the dynamics of Langmuir solitons had been 
studied earlier.c1*61 Only the recent paper by Galeev 
et a1 .C71 drew attention to the non-linear conversion pro- 
cess of Langmuir waves into sound which under condi- 
tions of constant pumping i s  generated when collapsing 
solitons are  This process is the main one 
in a typical three-dimensional problem; in the one-di- 
mensional case, and also under conditions of adiabati- 
cally slow damping of a collapsing soliton,[s1 the sound 
produced cannot guarantee conversion-in that case the 
process of the slowing-down of the solitons by trapped 
particlesc1] comes into play and it can, in particular, 
determine completely the structure of the wave spec- 
trum .C6 ] 

The aim of the present paper is the study of the de- 
tails of the heating of the particles under conditions 
when the dynamics of strong Langmuir turbulence is es- 
sentially determined by the non-linear dissipation, as 

1. STRONG ONE-DIMENSIONAL TURBULENCE. 
SOLITON BUILD-UP REGIME 

We consider a one-dimensional model of strong Lang- 
muir turbulence which i s  a set of Langmuir solitons- 
localized non-linear Langmuir waves JS1 The frequency 
of the oscillations of the solitons is close to (0,. 

Characteristic parameters are: amplitude E, recipro- 
cal of the width ko =eE/J6T, and velocity v, 0 g v <cS. 
The spectral expansion of the Langmuir soliton field has 
the form 

It is well known that an isolated Langmuir soliton is a 
stationary and stable structure. Therefore, the trans- 
fer of energy from large to small dimensions which is 
characteristic for the strong turbulence regime pro- 
ceeds in the case of not too powerful pumping through 
the fusion of solitons which a re  close in size>lol As 
solitons with appreciably different amplitudes do not 
interact, the transfer can only take place in relays. In 
the hydrodynamic approximation a steady-state soliton 
amplitude distribution is established 

well as  the determination of the conditions for the ex- and in the model with discrete levels E, =2E, we have 
istence of such regimes. We consider the one-dimen- accordingly for the occupation numbers N(E) 
sional case in the framework of the soliton-gas model, 
and the three-dimensional one in the acoustic collapse N(E)=const.E-',  
approximation, which to some extent distinguishes our 

(3) 

considerations from the ones in ref. 7. which gives the spectral energy density I E , ( ~ C  k'2. 
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