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Interaction of classical Yang-Mills charges and the 
problem of quark confinement 

1. B. Khriplovich 
Institute of Nuclear Physics, Siberian Brnneh, Academy of Sciences of the USSR 
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Equations and boundary conditions arc obtained for the field produced by two point Yang-Mills charges 
at rest. A nontrivial property of this static system is the existence of a magnetic field. The connection 
between this modd and the problem of quark d e m e n t  is discussed. 

PACS numbers: 12.40.Bb 

It is well known that the classical solution for the 
field of a point Yang-Mills charge reduces to the ordi- 
nary Coulomb form, despite the formal nonlinearity of 
the equations. It is  helpful to establish why this hap- 
pens. We write down the equations of the Yang-Mills 
field for the case when its source has only a time com- 
ponent: 

A l l  the terms on the left-hand side of the time equation 

(1) except Abt contain the spatial components of the 
vector potential b:. In the spatial equation (2) in the 
static case, the only term which does not vanish when 
b: = 0 has the form g ~ a b * b ~ ~ , b ~ .  It is  therefore clear 
that if the direction of the field b; in the isotopic space 
does not depend on the coordinates (and this is obviously 
the situation in the case of a single charge when pa 
= g t u  a(r) ), this term vanishes, so that b; = 0 serves a s  
a solution of Eq. (2). Simultaneously, Eq. (1) for b t  
reduces to the ordinary Poisson form, and the problem 
as  a whole to the trivial Coulomb problem. 

At the first glance, it would seem from this to be an 
inescapable conclusion that to obtain nontrivial static 
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solution it really is necessary to mix the isotopic and 
spatial indices, i.e., seek a solution, say, in the form 
b;(r) =raf (r).  In fact, there is a simpler way: It is 
sufficient to consider the field produced by, not one, but 
two centers. It i s  easy to see that in this case the 
direction of the field b; in isotopic space depends, in 
general, nontrivially on the coordinates, so that the 
problem becomes genuinely nonlinear. 

Thus, let us consider the field produced by two point 
Yang-Mills charges at rest. To achieve maximal 
simplification of the problem, we assume further that 
the isotopic spins of the sources, and also their geo- 
metric sum, are  so large that both isospins can be 
regarded as  classical vectors. Then the source on the 
right-hand side of Eq. (1) can be represented in the 
form 

where t i s  the modulus of the isospin vector of the 
source (for simplicity we assume that it i s  the same for 
both particles) and T:, are  the unit vectors along these 
vectors. 

We seek a solution of the system (1)-(3) in the form 

The equations of motion for the vectors r:,(t) are ob- 
vious: 

Ta 1 - 
1.2 b? ( l , , Z ) ? ' , * ,  (6) 

in other words, the isotopic spin precesses around the 
vector b z .  It is easy to see that Eq. (6) guarantees 
vanishing of the generalized divergence of the external 
current: 

Equation (7) is, a s  is well known, a consequence of the 
field equations (1) and (2), so that Eq. (6) i s  necessary 
for self-consistency of the problem. Substituting (4) in 
(6), we obtain 

It i s  obvious that in the degenerate case when the iso- 
spins of the sources a re  parallel o r  antiparallel the 
problem again becomes trivial. 

In the general case though, substitution of (4), (5), 
and (8) in (1) and (2) leads to the equations 

where 

cp,.=a.cp,+(ecp,+cp,) b., c~~,=a.~cp~- (cp1+0cpz)b-~ 

0=rrarza, B=gVt/4n. 

It is remarkable that the field equations (9) and (10) 
do not contain the time component of the vector potential 
itself (through bl*'(r) but rather the quantities cp,,,(r) 
determined by Eqs. (11). This can be pictured as  fol- 
lows: The potential produced by one of the sources at 
the position of the other is expended, by virtue of Eqs. 
(a), on rotating the isospin of this other source, and it 
must therefore be subtracted from the dynamical vari- 
able which characterizes the field in ordinary space. 
The function ip,,,(r), simply by virtue of their definition 
( l l ) ,  satisfy the boundary conditions 

It should be emphasized that these conditions are  un- 
questionably a specific feature of the Yang-Mills na- 
ture of the field. 

With regard to the point sources on the right-hand 
side of Eqs. (9), we shall assume, a s  usual, that they 
determine a singularity of the functions cp,,,, i.e., they 
lead to the boundary conditions 

The behavior of the remaining functions a s  r - r,,, must 
be sufficiently good to ensure that the terms Aq,,, . 
really a r e  the most singular ones on the left-hand side 
of Eqs. (9). 

Let us now discuss the relation of our equations to 
the isotopic gauge invariance of the theory. Our equa- 
tions (9) and (10) follow from the basic Eqs. (1) and (2) 
only if the vectors T,,  T,, and 7, X7,  are linearly inde- 
pendent, i.e., if the isospins of the sources a re  not 
parallel. It i s  however clear that such a condition i s  not 
in general gauge invariant; for by virtue of gauge invar- 
iance the vectors 7, and 7, at different spatial points 
can each be rotated through an arbitrary angle; in par- 
ticular, they may be made parallel, and in this case the 
solution must, it would seem, have the trivial Coulomb 
form. But in fact the choice of the solution in the form 
(4) and (5) already determines the gauge to a considerable 
extent, and the angle between 7, and 7, i s  essentially 
fixed by means of Gauss's theorem by the specification 
of the total isospin T of the system and the coefficients 
of r-' in the asymptotic expressions for the functions 
cp, and cp, if, of course, the asymptotic behavior of 
these functions i s  reasonable. Thus, despite the iso- 
topic gauge invariance of the basic equations, our 
formulation of the problem appears reasonable. 

In fact, the gauge invariance can be used to eliminate 
the precession of the isospins described by Eqs. (8), 
i.e., to make T,,, constant, keeping, of course, the 
angle between them fixed. Then the boundary conditions 
(12) ar ise  simply from the condition of compatibility of 
the system of equations (9) and (10). This can be readily 
seen by substituting Eqs. (9) in the divergence of the 
vector equation (10). 

It should also be noted that the system of equations 
(9) and (10) is invariant under transformations whose . 

infinitesimal form i s  and 
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An additional requirement imposed on these transfor- 
mations is that the boundary conditions (12) and (13) 
should remain unchanged. Because of this invariance, 
the vector potential b, can be chosen differently. It is 
convenient to take the Coulomb gauge anbn = 0, and this 
is what we shall use in what follows. 

We investigate the solution near one of the centers, 
for example, the first. Since the function cp, here has a 
singularity: q1=-j3/o,p= ( r - r , ( t he  problem lineari- 
zes with respect to the other quantities. To solve the 
problem, it is convenient to introduce the magnetic 
field vector h= V X b, which in spherical coordinates has 
only one component, with azimuthal direction. In this 
linear approximation, we readily obtain for it from (10) 
the equation 

The general solution is 

From the same Eq. (10) in the Coulomb gauge, when 
anbn = 0, we obtain 

From this we readily find that the condition (12) is sat- 
sified provided all c; = 0, and c: are nonzero only for 

Further, standard calculations show that the complete 
solution in the neighborhood of the point r, i s  

~ l = B ( a - i / P ) ,  
rgz=2$bl ( 1 +  l )  pl-'!'PI (8) , 
b,-- ~ 2 b l ( l + l ) p L - " P l ( B ) ,  

be-,3'b(h+3/2)p'-"Pi' (B) ,  

h = ~ z b ( W + i - ~ ' ) p " " P ~  ( 8 ) .  

The coupling constant B has been separated from the 
constants of integration a and b in such a way a s  to 
make clear which i s  the perturbation order in P in which 
the corresponding function arises. 

The two constants of integration a and b a re  sufficient 
to specify in the neighborhood of the point r, the values 
of the functions and their partial derivatives of first 
order. (Since the function cp, i s  here singular, we 
should speak of the values of pcp, and the partial deriva- 
tives of pcp,.) Therefore, the solution in other regions 
obtained by continuation from this neighborhood i s  also 
completely determined by the two parameters a and b. 
The values of these constants are  fixed by means of the 
two remaining boundary conditions (12) and (13) at the 
point r,. Thus, Eqs. (9) and (10) in conjunction with the 
boundary conditions (12) and (13) completely determine 
the solution of the problem. We emphasize that, a s  
follows from the condition (l8), the minimal multipole 
order of the solution near the source, and, therefore, 
the qualitative behavior of the solution as a whole a s  
well, depends on the magnitude of the coupling con- 

stant ." 
There is an attractive physical analogy for this 

problem. By means of the substitution 

the system of equations (9) and (10) can be reduced to 
the form 

The omitted 6-function sources on the right-hand side of 
Eq. (21) a re  taken into account by means of obvious 
boundary conditions imposed on the function $. We have 
thus arrived at the electrodynamics of the scalar field 
$ in three-dimensional space. The only difference i s  
the sign in the Maxwell equation (22), which is opposite 
to the usual one. The reason for this i s  easy to under- 
stand: Whereas usually the terms I (-iv - a)$I2 and $HZ 
enter the Lagrangian with the same sign, in our case, 
in which the first term i s  the transformed if& f& and 
the second the transformed if z,  f z , ,  their signs in the 
Lagrangian are  different. This difference in the sign is 
of no small importance. The azimuthal magnetic field 
generated by the currents does not, a s  usual, pull the 
currents together, but rather pushes them apart. There 
is, a s  it were, an antipinch effect. In itself, the exis- 
tence of a magnetic field in the static problem of the 
interaction of Yang-Mills fields is, from our point of 
view, an extremely interesting fact. In such a situation, 
it is not surprising that even the qualitative picture of 
the phenomenon changes with increasing coupling con- 
stant. 

Unfortunately, it has not been possible to solve the 
problem completely. It i s  not even obvious that a sen- 
sible solution exists at all. A s  we have noted above, 
Eqs. (9) and (10) and the boundary conditions (12) and 
(13) can be expected to determine the solution uniquely 
in a finite region containing both centers. But in gen- 
eral it i s  not clear whether this solution goes over in 
the limit r - m into a well decreasing asymptotic solu- 
tion corresponding, by virtue of Gauss's theorem, to a 
given value of the total isospin of the system. If there 
really i s  no sensible solution, and in addition the con- 
figuration with parallel isospins is unstable, does this 
not mean in the language of quantum chromodynamics, 
i.e., on the transition from the group SU(2) to SU(3), 
that only "white" states a re  realized in nature?" 

But if a solution exists, then the interaction energy of 
the charges depends on the distance between them as  
I rl-r, 1 - '. This follows uniquely from dimensional con- 
siderations. It i s  not however clear whether this inter- 
action will be attractive o r  repulsive. A certain argu- 
ment in favor of repulsion for a sufficiently large coup- 
ling constant is the fact that the energy of the magnetic 
field, which is always positive, increases in perturba- 
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t ion theory with p f a s t e r  than the electrostat ic  energy. 
Nevertheless, it cannot by  any  means  b e  precluded that 
the interaction is attractive. If at the same t i m e  the  
at t ract ion increases  rapidly with increasing coupling 
constant,  then such  a situation could b e  an indication of 
quark confinement in a less simplified model of the 
interaction. 

The naturalness  and nontriviality of the model  con- 
s idered here  s e e m  to m e  to justify publication of th i s  
paper ,  despi te  the  absence of definite conclusions. 

I a m  v e r y  grateful  to V. N. Gribov f o r  numerous 
stimulating discussions,  which f o r  m o r e  than two y e a r s  
have maintained my interest in the p r e s e n t  problevm. I 
a? also extremely grateful  to h im and to A. I. Vainsh- 
tein f o r  a number  of v e r y  important  critical r e m a r k s ,  
to L. B. Okun' f o r  h i s  i n t e r e t t  in  the  work and valuable 
comments ,  and to B. N. Bre izman and V. S. Synakh f o r  
a helpful discussion of the possibi l i t ies  of solving the 
resul t ing equations. 

"~ormal ly ,  the situation recalls the one that arises in the 
solution of the problem of the behavior of a small deviation of 
the Yang-Mills field from the Coulomb solution correspond- 
ing to a single point center."] However, the singularity of 
the vector field found in ['I in the Coulomb potential for suf- 
ficiently large coupling constant, o r  "the fall toward the cen- 
ter," is by no means peculiar to the Yang-Mills problem. 
This phenomenon is well known in the ordinary relativistic 
Coulomb problem and does not depend in renormalizable the- 
ory on the spin of the particle (in this case, the problem con- 
cerns the renormalizable interaction of a vector particle). 
The dependence that is found in the present paper of the so- 
lution on the magnitude of the coupling constant is  peculiar to 
the Yang-Mills situation and certainly has no electrodynam- 
ic analog. 

 his possibility of interpreting the absence of a solution was 
pointed out by V. N. Gribov. 

'J. E. Mandula, Phys. Lett. B 67, 175 (1977). 

Translated by Julian B. Barbour 

lntracavity laser spectroscopy with continuously and 
quasicontinuously operating lasers 
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P. N. Lebedev Physics Institute, USSR Academy of Sciences, Moscow 
(Submitted 1 April 1977) 
Zh. Eksp. Teor. Fiz. 74, 43-56 (January 1978) 

Ways of increasing the sensitivity of the method of intracavity laser spectroscopy (ICLS) are investigated 
experimentally and theoretically. Factors restricting sensitivity include the selective properties of the 
cavity, finite time of continuous generation in the neighborhood of the lime under investigation, 
spontaneous emission of the active medium, and spatial inhomogeneity of inversion decay in the active 
medium. The selective properties of the cavity can be improved by simplifying it and reducing the area of 
surfaces in its interior. The optimum configuration is a cavity with a single surface separating the medium 
under investigation from the active medium. In contrast to most other work concerned with ICLS, it is 
shown that the influence of spatial inhomogeneities in inversion decay is negligible in comparison with the 
influence of spontaneous emission in practical lasers. Spontaneous emission restricts the sensitivity of the 
ICLS method to - 10-12 cm-'. A sensitivity of cm-' has been achieved experimentally in the range 
between 0.6 and 1.06 p. This sensitivity is determined by the time of quasicontinuous generation in the 
neighborhood of the absorption line under investigation. A concentration sensitivity for the detection of I, 
and NO2 of better than mole/mole has been achieved. 

PACS numbers: 42.60.Da, 42.60.Kg 

1. INTRODUCTION cavity. 

Quantitative m e a s u r e m e n t s  are based  on the  t i m e  de- 
Intracavity laser spectroscopy (ICLS)'~-~~' is based on pendence of the generated spectrum. The time of 

the availability of act ive media  i n  which the  amplifica- stable generation in the neighborhood of a given line, 
tion coefficient can  be held constant i n  the  neighborhood necessary for the intensity to fall by a factor of e, is 
of a given absorpt ion (amplification) line. The theoret i -  related to Ok,(oo) and the velocity of light by the 
cal sensitivity l imi t  of th i s  method that  c a n  b e  attained ing formula: c1,s3 
i n  the  case of continuous generation is determined by  - 
the ratio s, /J,  of spontaneous to induced radiated pow- t=l!c6k,(oo) (6k ,wk ,  s.,/J,). 
er p e r  longitudinal mode: 

(2) 

6k, l k ,  =s.,!J,, (1) In lasers with a n  inhomogeneously broadened ampli- 
fication band, the amplification coefficient can  b e  held 

where k, and kt, are, respectively, the absorpt ion coef- constant with a high degree  of precis ion due to inhomo- 

ficient f o r  the given l ine and the  threshold absorpt ion geneous saturat ion i n  a spec t ra l  interval  comparable 

coefficient, both averaged over  the  length L of the  with t h e  amplification band width. For example, in  
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