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Physical fields and the perturbations of the space-time metric inside a slowly rotating and weakly charged 
black hole are investigated. It is shown that in the Schwarzachild coordinates r and t for r < r, the 
radiitable multipoles of scalar fields vary in the limit t-00 in accordance with the asymptotic law cP 
= ~ , t - 2 ( 1 + 1 ) + ~  t -  " I + ' )  In r .  Here, D, and D2 are constants and 1 is the multiple order. Fields with 
nonzero spin (including the gravitational field) increase as r+O in proportion to a power of r, and not In 
r ,  as in the case of a scalar field. Thus, at a fixed distance r = const from the singularity, the physical 
fields and all radiiatable perturbations of the metric are damped in a power-law fashion with respect to the 
coordinate I ,  which is the radial coordinate inside the black hole. Fields of external sources inside the 
black hole are also considered. 

PACS numbers: 97.60.Lf, 95.30.Sf 

1. INTRODUCTION 

The aim of this paper i s  to investigate the nature of 
the spacetime and physical fields (scalar, electromag- 
netic, etc) inside a black hole a long time after the hole 
has been formed as measured by the clock of a freely 
falling frame of reference. We shall assume that the 
collapsing body which formed the black hole had small 
deviations from sphericity and rotated slowly a t  the 
time when it crossed the surface of the gravitational 
radius, and that all  fields a t  that time were sufficiently 
weak for one to be able to ignore their back reaction on 
the metric. 

The solution of such a problem for the fields outside 
a black hole i s  well known. It was shown for the f i rs t  
time in'421 that all  deviations from sphericity in the ex- 
terior spacetime a r e  damped, and all  that remains a r e  
the spherical metric and the 'Xer r  rotational compon- 
ents" of the metric, which a r e  determined by the total 
angular momentum of the body. ~ n ~ * ~ ~  it was also shown 
that there i s  no magnetic field in the exterior space. 
Finally, the complete theory of fields with integral spin 
and zero rest  mass in the spacetime outside a slowly ro- 
tating black hole was constructed in C6-'21. These investi- 
gations established a law according to which the fields 
a re  damped with time in the exterior space a long time 
after thi formation of the black hole. This analysis was 
extended in''g'161 to fields with half-integral spin a s  well. 

The above investigations were followed by numerous 
others that considered the behavior of fields in the ex- 
terior space of charged and rapidly rotating black holes. 

The properties of the spacetime inside black holes is 
of fundamental importance for the problem of gravita- 
tional collapse and the nature of the singularity, although 
these regions a re  not accessible to direct investigation 
by an external observer. It has sometimes been assert- 
ed that below the black-hole horizon all  dynamic pertur- 
bations of the gravitational field increase and that they 
cannot escape in the form of waves to infinity, s o  that 
the properties of the spacetime and the behavior of the 
physical fields in this region a re  extremely complicated 
and all perturbations must grow as the singularity is ap- 

proached. We shall see  that these conciusions need to be 
reviewed. 

In the present paper, we show the following. 

Suppose that the deviations from spherical collapse at 
the time the surface of the body crosses the event hori- 
zon a r e  small and all fields weak, so  that their back re- 
action on the metric can be ignored. We denote by T the 
proper time of freely falling particles, and by r the 
length of a circle, divided by 277, around the singularity. 
I t  can then be shown that for large T (i.e., a long time 
after the formation of the black hole) and for any fixed r 
(i.e., a t  a fixed distance from the singularity) all  pertur- 
bations of the Schwarzschild metric inside the black hole 
and all  fields a r e  damped inapower-lawfashionwithre- 
spect to T. The actual power depends on the multipole 
order of the perturbation (and also on the initial condi- 
tions of the collapse). 

This conclusion about the damping does not apply to 
the perturbations of the metric and fields which a r e  de- 
termined by conserved (without allowance for radiation) 
integral propertiesof the collapsing body-its mass, an- 
gular momentum, and electric charge. 

A precise formulation of the assertion and i ts  proof 
will be given below, in Sec. 3. 

Thus, the interior regions of a blaw hole a re  charac- 
terized by damping of perturbations and fields and a 
tending of spacetime to a "stationary" state, just as the 
exterior regions are .  But there a r e  important differen- 
ces. 

Fi rs t ,  inside the black hole the Schwarzschild coordin- 
a te  r plays the role of the time, and one would more 
correctly say of the interior regions that they tend to a 
state which depends only on Y rather than that they tend 
to  a stationary state. 

Second, and this is more important, as the singular- 
ity is approached ( r  decreases) for fixed T perturbations 
of scalar type increase unboundedly in accordance with 
the logarithmic law a ln r ,  and other fields and the per- 
turbations of the metric increase in the general case a s  
apower of r. Therefore, near the singularity the linear- 
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ized theory of small perturbations ceases to be valid. 
The solution of the exact equations for the metric must 
be found from the general solution17 near the singularity. 
However, i t  should be emphasized that the region in 
which the method of small perturbations i s  inapplicable 
contracts toward the singularity, becoming smaller and 
smaller with increasing T (see Fig. 1). This region lies 
in the absolute future with respect to the regions with 
larger r (further from the singularity) and naturally 
cannot influence them a t  all. 

pricec7] has succinctly characterized the damping of 
all  exterior fields of a black hole by the expression: 
"Anything that can be radiated will be radiated". For  
the interior regions of the black hole one can say: "Any- 
thing that can fall will fall (will be radiated into the sing- 
ularity)." 

Note that we consider the nonquantum problem, i.e., 
we take into account neither the Hawking evaporation of 
the black hole nor quantum processes near the true sing- 
ularity. We shall say something about the quantum pro- 
cesses in the Conclusions. Finally, note the following. 
For  both the exterior and the interior regions of a black 
hole, the conclusion about damping of radiatable non- 
spherical perturbations and fields applies only to fields 
generated by sources on the collapsing body. If a black 
hole i s  placed, for example, in the quadrupole gravita- 
tional field of external bodies, this field i s  not of course 
damped either outside or  inside the black hole. We shall 
discuss perturbations of this kind in 05. 

2. PROPAGATION OF RADIATION FIELDS INSIDE A 
BLACK HOLE 

We shall consider weak fields and small perturbations 
of the metric on the background of the Schwarzschild 
metric near a black hole.['"] To do this, we shall use 
the mathematical formalism developed in I"-". Before 
we turn to the mathematical calculations, let us  describe 
the general picture of the propagation of field variations 
in Schwarzschild spacetime. The general situation is 

FIG. 1. Propagation of fields in the Schwarzschild spacetime 
outside and inside a black hole. The dashed curves represent 
null geodesics. 
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shown in Fig. 1. Inside the collapsing body (hatched re- 
gion) a comoving coordinate system i s  used (R i s  the co- 
moving radial coordinate and 7 is the proper time); out- 
side the body, the coordinate system is extended by the 
~ e m a ? t r e  system[191 of freely falling test particles, 
whose proper time i s  used. 

To be specific, we shall talk in this section about cor- 
rections 6g to the gravitational field1 ) associated with de- 
viations from sphericity in the matter distribution 6p of 
the collapsing body. These deviations 6p increase during 
the collapse. They a r e  still small when the surface of 
the body crosses r,, at  the time T =  r2 (seeC2'), and be- 
come very large, destroying the picture of spherical col- 
lapse near the true singularity a t  r = 0 .  

The mathematical analysis of Price et a ~ ~ ~ - ~ ~  refers  to 
the change in the field outside the gravitational radius in 
the region to the right and below the line r=r,. We shall 
make our analysis for the region inside the black hole, 
i.e., to the left and above the line r =r,. We shall use 
the results of for r >r,. 

During the contraction of the body, the increasing 6p 
generate a change in 6g-they generate gravitational 
waves. As Price's analysis showed, these waves emit- 
ted by the body near (but somewhat earlier than) the mo- 
ment r2 (the crossing of r, by the surface) a r e  reflected 
by the "potential barrier" in the region r = 3rJ2 and pro- 
pagate inward toward the horizon r=r,  (see Fig. 1 ) .  The 
closer the time of emission to the time T,, the more 
complete is the reflection. The interference between the 
direct waves propagating to the right and the reflected 
waves has the consequence that outside r, the perturba- 
tions 6g a r e  damped as one moves upward to the right 
(to large Schwarzschild t). 

We shall also investigate 6g a s  one moves upward to 
the right, but for  r <r,. This region is reached by waves 
that leave the body after T,, but very soon after this time 
(for example, a t  T, in Fig. I), and also waves reflected 
from the potential barr ier  r= 3r,/2 that left the body just 
before T, (for example, a t  7, ). The interference between 
these waves determines bg in the region r <r, a s  T - 00. 
This region is not reached by signals from the strong 
perturbatiors which develop in the body during the col- 
lapse near r=O. This i s  why we can use the method of 
small perturbations to solve our problem. Of course, 
in the region 7-- ,r<r, ,  the waves do grow a s  they ap- 

proach the singularity r=  0 ;  for example, the energy 
density of the waves grows. However, a s  we shall show 
in 03, this growth near r=O does not rule out applicabil- 
ity of our method since the curvature of spacetime also 
increases. The region of spacetime in which the devia- 
tions from sphericity a r e  important is shown in Fig. 1 
by the chain line. Inside the collapsing body, this region 
is determined by the time T, a t  which the increasing per- 
turbations a r e  no longer small, and outside the body this 
region i s  determined by Eq. (19) as 7-00. 

Our task is to solve the equations for  the fields in the 
region r < r, as T - 00, using a s  boundary conditions the 
conditions fo r  r = r, obtained in [6,7] from the solution 
of the problem for r >r, and the conditions on the surface 
of the collapsing body a t  times in the neighborhood of T,. 
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3. CALCULATION OF THE VARIATION OF 
- 
RADIATION FIELDS INSIDE A BLACK HOLE 

Here, we shall consider only radiatable multiples of 
the fields (i.e., 1 2 S, where 1 is the multipole order and 
S is the spin of the field). It was shown inc"lol that 
the properties of such modes for  all  fields a r e  very sim- 
ilar and described by equations that differ in minor de- 
tails. The same is true of the interior region. There- 
fore, we shall consider here the case of a scalar field. 
The generalization to other fields is made a s  inC6-101. 

Thus, we shall consider the scalar field of massless 
particles: 

We consider this field Q outside the matter of a collaps- 
ing s tar  on the background of the Schwarzschild metric 
inside the Schwarzschild sphere. As is shown in ['*I, 
one can here use the standard Schwarzschild coordinate 
system, except that r is now the time coordinate and t 
the spatial coordinate (c = 1,2GM = 1): 

0 < r  < 1. The "time" r flows in the direction of decreas- 
ing r, from 1 to 0.') We expand Q in scalar spherical 
harmonics with respect to the coordinate r as a radial 
coordinate. That physically it plays the role of the time 
is for us immaterial. We write 

We introduce the "tortoise c o ~ r d i n a t e " ~ ~ ' :  

Equation (1) then reduces to the following equation for 
*L (in what follows, we omit the subscript - 1): 

We shall solve this one-dimensional equation, whose co- 
efficients do not depend on t ,  by the ordinary Fourier ex- 
pansion method. The equation for  the Fourier transform 
rk, is 

(We recall that here and below r = r(x);  see  (4).) 

We consider the lowest radiatable mode - 1 = 0  of the 
scalar field. 

We denote by *,, the t-independent solution of (5) and 
the corresponding solution of (6) for k = 0. This function 
has the form 

where A, and A, a r e  arbitrary constants, and the e is in- 
troduced into the denominator of the logarithm for con- 
venience. 

Before we go further, we note that the boundary of the 
collapsing body in the frame of reference [2] moves 
with a velocity that tends to the velocity of light when 

the boundary crosses r, (corresponds to the "time" r 
= I ) .  The boundary is moving in the opposite direction 
to the propagation of the waves. Therefore, all  waves 
have a large Doppler "red shift" a s  r - 1 and the wave- 
lengths tend to infinity (recall however that r is the time 
coordinate!). It is these waves that reach the region T 

- - , r<r , .  We shall therefore be interested in solutions 
of Eq. (6) for small k. 

Bearing in mind what we have said, we shall seek the 
general solution of (6) in the form of the series3) (every- 
where, as before, we assume - 1 = 0) 

Using (6), we can readily show that the following recur- 
sion relation holds for  finding a l l  the *,,: 

The general solution of (6) as x - oo(kx >>I) has the form 

'lrk=C,k-I sin kr+C,  ros kx+O(e-") 

=c,.r(l- (!~X)~/C,+. . .)+c~(I- (I;I)=/~+. . .) + O ( e - I ) .  (10) 

Comparing now the se r i es  (10) with the ser ies  (8) and 
using (7) and (9), we find expressions for  the coefficients 
C, and C, in the form of the ser ies  

where the Greek letters denote constants that ar ise  a s  a 
result of the integration (9). We require the expressions 
for A, and A, obtained from (11): 

We shall not particularize the values of the constants 
a,B, y, 6 since all that is important for us is to establish 
that the differences between the constants A and C are 
small for small k and that A and C a r e  equal in the prin- 
cipal terms in k. Allowance for  the following terms (in- 
cluding those O(eT)) does not change this result. We now 
use the boundary conditions. 

. -- - 

In accordance with the results of C60e1, as the gravi- 
tational radius is approached, r - r, + 0 ,  the solution for *, has the form 

where f, is a constant which depends on the amplitude of 
the perturbation, and B, is the "coefficient of reflection" 
from the "potential barrier," and i t  is determined sole- 
ly by the form of the second term in the square brackets 
in (6). As k - 0,B - 0. By continuity, the conditions (13) 
must also be satisfied as r - r, - 0. Expressing now C, and 
C, in terms of f,,B,, and k: 

C,=Zik-ikB, CI=B, (14) 

and substituting the resulting expressions in (12), we 
find 
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The relations (7), (8), (14), ,and (15) enable us to con- 
clude that a s  we advance into the region T - =, where the 
decisive waves a r e  those emitted ever nearer the time 
7, with, therefore, ever smaller k - 0, the coefficients 
C, and C,, which determine O, a s  x - 0 0 ,  and A, and A,, 
which determine *, a s  x - 0, tend to zero, and the com- 
piete solution is damped. 

Going over from the Fourier transform O, to the func- 
tion itself, a s  in and then to @, we find that Q, in 
order of magnitude-must have the form (for t -m)  

Similar arguments apply to the case of 1 #0  multipoles. 
The result is analogous except that the of t in the 
damping of the multipoles depends on 1: - 

Thus, for any fixed r and large t the field is damped in 
a power-law fashion with respect to t. We recall that t 
is here the spatial coordinate. On the other hand, for 
any fixed t a s  r- 0 the second term in (16) and (17) gives 
a logarithmic divergence at  the true singularity. 

To determine the back reaction of the field on the 
metric, it is necessary to compute the energy-momen- 
tum tensor of the,field @ and substitute it in the field 
equations. The calculation shows that as the true sing- 
ularity r = 0 is approached the tensor components T: 
and Ti increase unboundedly: 

~b-t-"r- '  (as r*O, t - m ) ;  (18) 

here, m depends on the multipole order. However, the 
individual terms in the tenso; components R: and R: in- 
crease a s  r- 0 only in proportion to f 3 .  Therefore, for 
sufficiently large t the components T b r e  always small 
compared with the individual terms in R: and so have 
little influence on the metric a s  r -0 .  Of course, allow- 
ance for the nonlinearity (self-gravitation) must change 
the result a s  r - 0. 

On the other hand, to calculate the behavior of fields 
with S #0, including perturbations of the metric, i t  is 
necessary to make additional calculations with @ (seeco3), 
which leads to a power-law (and not logarithmic) 
growth of the perturbations as r- 0. The corrections 
to the metric become of order unity for 

Finally, we note that the coordinate T canbe expressed 
in terms of t and r in the form 

r=t+f ( r ) .  (20) 

Therefore, the law of damping of Q, with respect to T 

and t a s  t ,  7-03 and fixed r has the same form. 

4. NONRADIATABLE FIELDS ASSOCIATED WITH THE 
COLLAPSING BODY 

We comment here briefly on the nonradiatable multi- 
poles of the source. For the electric field we have, for 

example, the multipole 1 = 0 (the field of the electric 
charge of the collapsing-body) and for the gravitational 
field 1 = 0 (the mass) and 1 =1 (the field of the total angu- 
lar momentum of the body).4) If the corrections to the 
metric associated with these fields a r e  small on r = r, 
(small charge, slow rotation), then these fields can be 
continued in a known manner into the black hole (Reis- 
sner-NordstrClm and Kerr metrics) and they do not 
change a t  all with respect to t and grow with respect to 
r. Near the singularity, they rearrange the metric. 

Both types of field lead to the so-called future hori- 
zons (inner horizons) within the black hole. Such hori- 
zons a r e  unstable and, probably, a true singularity a- 
r ises  on them because of perturbations. [203 

Thus, the fields of the nonradiatable multipoles in our 
problem must be regarded a s  additive terms until, a t  
small r, theybecome large, modify the solution, and, 
probably, lead here to the occurrence of singularities. 

5. FIELDS OF EXTERNAL SOURCES INSIDE THE 
BLACK HOLE 

Hitherto, we have considered an isolated black hole, 
assuming that there is no influence of external bodies on 
it. 

An external influence on a black hole can be of two 
kinds. First ,  there may be stationary fields of sur- 
rounding bodies. An example is the quadrupole gravi- 
tational field of external bodies. Second, radiation or 
matter can fall into a black hole, and this will also in- 
fluence its internal structure. 

Let us consider first the stationary fields of external 
sources.*' These fields penetrate through the gravita- 
tional radius into the black hole. We shall assume that 
they a r e  weak on the radius r=r,. Inside the black hole, 
a s  outside, they do not depend on the coordinate. As ex- 
amples, let us consider the quadrupole gravitational 
field of external sources and a magnetic field which is 
homogeneous fa r  from the black hole. 

We begin with the gravitational field. lnt'l it is 
shown that the exact expression for the metric of a 
black hole placed in an external quadrupole field has the 
form 

Here, rn is the mass of the black hole (q is the param- 
eter which characterizes the quadrupole moment, c = 1 ,  
G = 1). If q = 0, the field is spherical. The transition to 
the ordinary Schwarzschild coordinates is made by the 
substitution 

>.=r /m-I ,  ~ = r o s  8. (23) 

In the expression (22), all  corrections associated with 
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the external quadrupole field occur in the argument of 
an exponential. F o r  small  q ,  these corrections are 
small. 

The metric (22) also applies inside the black hole for 
(X- l ) / ( X + l )  <O. Here, the spatial coordinate i s  t and 
the time coordinate A. This metric describes the quad- 
rupole field inside the black hole of external sources. 
I t  can be seen from the expression (22) that if the quad- 
rupole corrections a r e  small  on the gravitational radius 
they remain small  as the singularity is approached, 
A - - 1 .  

We now consider a magnetic field. The solution for  a 
magnetic field which is homogeneous at infinity is given 
i n ~ 4 ~  . In this solution, the following components of the 

electromagnetic field tensor are nonzero: 

This solution can be continued into the black hole. It is 
described in the frame of reference (2) by the same Eqs. 
(24). Inside the black hole, r is the time coordinate, and 
in the frame of reference (2) there is, in addition to the 
radial magnetic field, an electric field with respect to 
the coordinate q. Note that the components of Fik a r e  
variable with respect to the "time" r a n d  constant with 
respect to the radial coordinate t. 

These electric and magnetic fields can be continued 
to the singularity r = 0. The field energy density in- 
creases unboundedly a s  r - 0. 

We now make a remark about the perturbations made 
by matter falling into the black hole. Note that the sing- 
ularity r = O  in the metric (2) is formally a Kasner sing- 
ularityCz1] with axial symmetry. For  an investigation of 
perturbations near such a singularity in the general 
case, see,  for  example,c2Lz21. We shall not consider 
them here in detail. It i s  only important to emphasize 
that, like the perturbations of the metric due to inhomo- 
geneities of the collapsing body, and for  the same reason, 
a l l  perturbations of the metric due to matter falling into 
the hole are damped as t - -, r = const < 1 in the manner 
described in 83. 

6. CONCLUSIONS 

The main result of our analysis is the establishment 
of the rapid damping of the radiatable modes of all 
fields inside the black hole, just as happens in the ex- 
terior region. Generalizing Wheeler's well-known dic- 
tum: "A black hole has no hair," we can say: "A black 
hole has hair neither outside nor inside." 

Let us make some remarks  about the role of quantum 
processes. F i rs t ,  the quantum evaporation processes 
of black holes for holes with m >>m,,= 10-5g have char- 
acteristic times T,,, much greater than the character- 
istic time T,,=r,/c of the black hole: 

L a p  

. - 
Therefore, for t in the range 

T , h K t  eT,,, 
the laws we have obtained above inside the black hole are 

valid. For  t ST,,,, of course, it is necessary to take 
into account the change in the metric due to the quantum 
processes in the entire region 0 < r < 1. 

On the other hand, as the singularity is approached 
the quantum processes grow (seecz3') and fo r  r =r,, 
= cm become decisive. In 63 we have seen that the 
perturbations of the metric associated with the growth 
of the radiatable modes become large when 

rp ( r , )  = I D ~ - ~  1 tUCS, (25) 

where q ( r )  = v-", lnr. 

If in (25) we replace r, by r,,, we thereby determine 
a t,, such that for  t >t,  for  all r>r, ,  the metric is de- 
scribed by the expression (2), and there are no devia- 
tions from sphericity outside the quantum regions. 

We are sincerely grateful to Ya. B. Zel'dovich and 
A. A .  ~tarobinskf i  for  discussing the results  and to V. N. 
Lukash for  numerous discussions and cri t icism. 

 he behavior of other fields i s  analogous, see 0 3. 
 h he boundary of the matter of the collapsing star is described 

in the metric (2) by the equation 

and the constant is arbitrary (the pressure of the matter in 
the star can be ignored). The metric (2) applies only outside , 
the matter of the star. It is assumed that at small r the 
matter i s  compressed nearly parabolically. 

3 ' ~ h e  ideaof seeking a solution of (6) in such a form is  due to 
V. N. Lukash, to whom we are very grateful. 

4 ) ~ f  course, the spherical gravitational field (1=0) itself i s  
not radiated; it i s  assumed that the coordinate origin is at 
the center of mass of the body, so that there i s  therefore no 
trivial dipole moment. 

 he stationarity condition means that the characteristic time 
of variation of the field is T >> r,/c. 
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The excitation of a nucleus by a positron beam during the annihilation of the positrons with atomic 
electrons is discussed. Results are reported of a calculation of the excitation cross section for "'1n and 
'"U. The calculations were performed in the transition current and charge scheme, using wave functions 
obtained by the relativistic Hartree-FockSlater method through a numerical integration of the Dirac 
equation. The Weisskopf single-particle nuclear transition matrix elements were used for 'I51n to estimate 
the cross section for the nuclear E 1 transition induced by a monochromatic positron beam. The cross 
section at resonance is found to be U,(E l)-10-~' cm2. A similar calculation for l3V yielded a, 
( E  1)-5 X m2. More accurate cross sections have been obtained for particular levels on the basis of 
existing experimental data on the nuclear-level spectrum. 

PACS numbers: 34.90. +q. 23.20.J~ 

INTRODUCTION 

The annihilation of positrons with atomic electrons is 
one of the possible processes during the scattering of a 
positron beam by atoms. The annihilation process can 
be accompanied by the emission of one o r  more  photons, 
o r  by the excitation of the nucleus. In this paper we re-  
port the results  of an analysis of the c ross  section for  
nuclear excitation by a positron beam during the annihil- 
ation of positrons with atomic electrons. 

cally by Present and chen,[ll and the nuclear excitation 
c ross  section for positron annihilation was calculated in 
the Born approximation without taking into account the 
finite width of the K-shell hole. A more accurate theo- 
retical analysis has become necessary following the 
work of Mukoyama and ~ h i m i z u , [ ~ '  who reported an ex- 
perimental attempt to determine the c r o s s  section for 
the positron excitation of "'In, and who concluded that 
the c ross  section was greater  by two o rde r s  of magni- 
tude a s  compared with the theoretical prediction.[ll 

If an atom intercepts a positron beam of energy E +  In this paper, the nuclear excitation c r o s s  section will 
and energy spread AE, annihilation between a positron be calculated within the framework of the well-known 
and an atomic electron with quantum numbers nlj (n is transition current and charge scheme.[3] The wave func- 
the principal quantum number and j and I a r e  the resul- tions of the electron and incident positron will be taken 
tant and orbital angular momenta of the electron) may be to be the solution of the Dirac equation fo r  the average 
accompanied by resonant excitation of nuclear states atomic field deduced by the Hartree-Fock-Slater method. 
with energies in the interval AE around Ef = E +  +En, 
(E+ and Em,, a re ,  respectively, the total relativistic en- 
ergies of the positron and the electron). It follows that, 
if a sufficiently narrow positron beam is available (AE 
l e s s  than the separation between the nuclear levels), one 
can scan the nuclear spectrum. by varying the energy of 
the incident positrons. One would expect that the main 
contribution to the c r o s s  section would be that due to 
K-shell electrons. Our calculations have shown that, 
for the L, shell, the c r o s s  section is already smaller  
than the K-shell c r o s s  section by roughly an order  of 
magnitude. We shall therefore confine our attention to 
K-shell electrons, i.e., we shall assume that only nu- 
clear levels with energies Ef =E+ + El, a r e  excited. 

The c r o s s  sections have been calculated for "51n and 
z35U. The choice of '151n was dictated by the fact that the 
f i rs t  estimates of the c r o s s  sections were maderz1 f o r  
this nucleus, whereas z55U i s  an example of a heavy fis-  
sile nucleus fo r  which i t  i s  interesting to investigate ex- 
citation during positron annihilation a s  a possible way 
of investigating nuclear fission in the subbarrier  re-  
gion. In both cases  (l151n and z35U), there a r e  modern 
experimental data on the nuclear excitation spectrum a t  
energies Ef below -1.5 MeV. In this energy range, the 
excitation c r o s s  section can be calculated for individual 
levels by using experimental reduced nuclear transition 
probabilities o r  some accepted model. F o r  example, 
the Nilsson model was used to identify the 2S5U levels. 

The above problem has already been treated theoreti- In the region of nuclear excitations where there a r e  no 
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