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The question of the exact calculation of the excited states of the one-dimensional Hubbard model with 
p< 1 (p is the number of electrons per unit cell) is considered in connection with the experimentally 
observed anomalies, indicating the existence of a lattice superstructure, in the x-ray scattering and 
neutron diffraction by TTF-TCNQ crystals. A new branch of excitations is found (two others were 
calculated earlier by Coll [Phys. Rev. B9, 2150 (1974)], the energy of which vanishes at k = r p  (k is 
the momentum of the excitation) irrespective of the value of the electron-electron interaction constant c.  
It is found that at c+O t h e  excitations are of the single-particle type. An analytic expression is 
obtained for their energy for small and large values of c .  A generalization of the model considered to the 
case of an interaction potential of finite range a is proposed. Exact equations, valid for pa< 1 and 
determining the excitation spectrum in these model, are obtained. It is shown that in this case too the 
above-mentioned excitation branch possesses the property e(rp) = 0. 

PACS numbers: 63.10. +a 

A s  is well known, the one-dimensional Hubbard model 
is one of the few examples of a quantum-mechanical 
many-particle system for which it has been possible to 
obtain exact solutions. This model has been studied 
particularly fully in the case when p =  1 For this case, 
in particular, the different types of excitations have been 
classified and their energies calculated (see the re-  
vie wC1 3. 

The Hubbard model can be applied a s  the simplest 
model in the description of the electron states of quasi- 
one-dimensional donor-acceptor systems. However, 
since in the most interesting of these the charge trans- 
fer is not complete, c21 it is necessary to consider the 
Hubbard model with p < 1. In this connection it should 
be remarked that the properties of the model with p =  1 
and that with p < 1 differ very sharply. Thus, e . g. , un- 
like in the case p=  1, the single-particle excitation spec- 
trum for p <l is gapless. [I1 

Excited states in the Hubbard model with p < 1 have 
been studied in Ref. 3. Two branches AEl(k) and AE,(k) 
were found in the excitation spectrum, and, by analogy 
with the case p= 1, were classified a s  a spin-wave branch 
and a single-particle branch, respectively. As was 
shown in Ref. 3, irrespective of the strength c of the in- 
teraction these excitations possess the property h ~ ~ ( B k $ )  
= ~&(4k$)  = 0, where k$ is the Fermi momentum of a 
system of noninteracting electrons, connected with the 
density by the relation k$= 7rp/2. 

at  q = 0.295b* is associated with the direct excitation of 
spin waves. Although not all the features of the scatter- 
ing observed in the above-mentioned experiments were 
explained in Ref. 8, there is no doubt that investigation 
of the excited states of the Hubbard model with p < 1 is 
of obvious interest from the point of view of the study of 
the properties of donor-acceptor complexes with incom- 
plete charge transfer. 

As already mentioned earlier, the energies of the ex- 
citations found by collCS1 vanish at k = 2k0, and k = 4k$. 
The existence of these characteristic momenta in the 
Hubbard model with p < 1 is not surprising and is a con- 
sequence of the one-dimensionality of the problem. We 
shall explain this using the example of a one-dimension- 
a l  Fermi gas without interaction, i. e. ,  with c = 0. The 
spectrum of the single-particle excitations for this case 
is depicted in Fig. 1. The quantity h~(2k;) = 0, because 
the energy required to excite an electron from the state 
with k= - k$ to the state with k = k$ is equal to zero. At 
the same time, the single-particle branch found in Ref. 3 
does not coincide in the limit-c= 0 with the spectrum in 
Fig. 1. Moreover, a s  will be shown below, in this limit 
the above-mentioned branch corresponds to two-particle 
excitation. It also turns out that the very concept of an 
excitation of the single-particle type loses its meaning 
to a considerable extent for the model with p < 1, and can 
be introduced only in the limits of large and small val- 
ues of c. We shall indicate a method by means of which 
such a classification could be made. and shall calculate 

This feature of the excitation spectra of the Hubbard the excitation branch (absent in Ref. 3) that possesses 
model with p < l  (the presence of the characteristic mo-+ the correct single-particle behavior for c- 0. 
menta 2k0, and 4k:) has been used to explain recent ex- 
periments on diffuse x-ray ~ c a t t e r i n ~ ~ " ~  ] and inelastic 
neutron by TTF-TCN& crystals, inwhich 
strong scattering at the wave-vector values q=O. 295b* 
and 0.59b* was observed (b* =2n/b, where b is the lat- AE 

1 

tice constant in the direction parallel to the stacks of 
molecules). According to Ref. 8, the values of q at FIG. 1. Single-particle ex- 

citation spectrum of a non- 
which scattering occurs can be identified with the char- interacting Fermi gas. 
acteristic momenta 2k$ and 4ki (in this case, the value 
of p for TTF-TCNQis equal to 0.59), and the scattering a 
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Before proceeding to the calculation of the excitation 
spectrum we make the following remark. With no loss 
of generality we can assume that p<< 1. In this case the 
Hubbard Hamiltonian reduces to the Hamiltonian of a 
one-dimensional Fermi gas with 6-function repulsion; 
this has the form 

In (1) we have taken ti = l ,2m = 1. All the results ob- 
tained for the Hamiltonian (1) can be generalized without 
difficulty to the Hubbard model with p < 1 (for more de- 
tail, see below). 

According to ~ a u d i n ~ "  and Yang, 'lo' the exact energy 
eigenvalues of (1) in states with momentum k are equal 
to 

while the quasi-momenta Pj are determined by solving 
the transcendental system of equations 

x 
2 (&-PI) h-lb 2 z arctg - - 2n1.+2 C arctg- 

J- 1 W a  

Here the A, (a = l ,2,  . . . , M) are a set of unequal num- 
bers, the numbers Zj and J ,  are integers or half -inte- 
gers that label the eigenstates of the system, and L is 
the length of the one-dimensional chain. The total spin 
S of a state is equal to S= $(N-2~).  In the following we 
shall be interested only in states with S = 0 (in particu- 
lar, the ground state is always a singlet), and, there- 
fore, M =  N/2. 

For the ground state it is necessary to choose Zj and' 
J, as follows[' $ 

I ,"=- ' l z ( .V+l)+j ,  j=l. 2 , .  . . X ,  

J,o=-'lr(M+l)+a, a - i ,  2, . . . M. 

As shown in Ref. 1 for the Hubbard Hamiltonian with p 
= 1 (for which the corresponding transcendental system 
of equations is analogous to (4)), the excited states of 
'the spin-wave type correspond to the appearance of a 
hole in the distribution of the numbers J ,  as compared 
with their distribution in the ground state, i. e., 

The single-particle excitations for p = 1 are charac- 
terized by the presence of a hole in the distribution of 
the numbers Zj, i. e. , 

This classification was used by ~ o l l " ~  in the calcula- 
tion of the corresponding branches of the excitation spec- 
trum. The following expressions were obtained for the 
lower bounds on the energies of the excitations of the 
spin-wave type (A&(k)) and single-particle type (Aq(k)) 
(only in the limits c- 0 and c- is it possible to find 
them in analytic form): 

As can be seen from (8)-(ll), AEl = 0 at k = 0 and k = np 
=2k%, while AE,=O at k = O  and k=4k$. As shown by 
Coll, [31 these excitations will possess this property for 
arbitrary c. 

We note, however, that (10) does not coincide with the 
expression for the energy of the single-particle excita- 
tions of a system of noninteracting electrons (curve a in 
Fig. 1). The reason for th is  disagreement is that the 
method of constructing the excited states (at any rate, 
the single-particle states), while correct for p= 1, 
ceases to be correct for p< 1. 

A natural way of choosing the numbers Zj and J, cor- 
responding to such excitations can be found if we make 
use of the fact that the distribution of quasi-momentafor 
c- 0 (for finite N )  should correspond to the occupationof 
the momentum states for the ideal Fermi gas. We note 
here that, although Eqs. (4) are usually solved aftertak- 
ing the thermodynamic limit, for c - 0 they can also be 
solved exactly for finite N. 

First we sha l l  consider the ground state. In this case 
the solution of (4), to within terms - c, has the form 
(see also Fig. 2) 

where n, = - (M + 1)/2 + a, a=  1,2, . . . , M. The expressions 
(12) are valid for cL << 1. We note also that (12) corre- 
sponds, in essence, to the concept, introduced by Gau- 
din, "I of pairs of quasi-momenta. 

The occupation of the states for c = 0 in accordance 
with formula (2) is conveniently depicted schematically 
(see Fig. 3). We now consider Eqs. (4), with I, and J, 
corresponding to the choice (7). The solutions of (4)for 
m = 2t have the form (CL << 1) 

??-I 
FIG. 2. Solutions (12) (schematic). 
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FIG. 3 .  Ground s ta te  for c -0 
(schematic). 

FIG. 4 .  Solutions (13)  ( s c h e m a t i c ) .  

for a < t ,  and 
0 

e=-2 j P ~ ( P )  d p + ~ ' - q ~ ,  
-a 

~ % - ~ = h n . + , l L -  (c lL)  ", p,.=2,zn.+,/~+ (c /L)  'h (13) o 
k - f f (p)dp+Q-q. 

for a>t; -0 

Pu-t==2nnJL, ~n=Zrtnt,,/L. Introducing the new functions fl(p) = f (p) + B(p - q) and 
h(A) = $(A) + $@(A -A,) and tm- the Fourier transform 

The solution (13) is shown schematically in Fig. 4. Com- with respect to A in the second of Eqs. (I@, we obtain 
parison of (12) and (13) shows that for c- 0 the states for h(P) the integral equation: 
associated with the choice (71 of I, and 3, corresuond to . . 
two-particle excitations. The sin'gle-p&ticle ex&- 2zfl  ( p )  =2n8 (p-q)  -2 actg  ex - - 

- due$. 'p' -~~ 

tions for c- 0 correspond to the scheme shown in Fig. P( ( h ~ p )  n . ) b  ( P < Y . ) ~ P J J  I+e,.~. . 
-0 -- 

5. It is not difficult to convince oneself that the solu- Q o 

tions of (4) that lead to this scheme correspond to choos- e=2 1 P ~ + ( P ) ~ P ,  k = 1 f , (p )dp .  
ing the numbers I, and 3, in the form -P -Q 

(20) 
I,=I;+e(j-2t), J.=ISn-0 (a- ( t + I ) ) .  (14) 

The solution of (4) that corresponds to (14) for arbi- 
trary c can be obtained by passing to a continuous dis- 
tribution of the numbers pj and A,. We represent p, and 
I& in the form 

where p; and A: are the solutions of (4) for the ground 
state, and W, and 5, are functions of p and A, respec- 
tively. Introducing the functions f (p) = g(p)w(p) and 
+(A) = u(A)[(A)(g'(p) and u(A) are the densities of the 
numbers p, and A, in the ground state), we obtain for 
them a system of integral equations: 

We note the following property of fi(p). When q = Q 
thequantityAo-m,fi(p)=Oand~(k=O)=O. Whenq=-Q, 
on the other hand, A, - - -, and, as  is easily seen from 
(20), the functionfi(p)lr" coincides with the solution of 
the equation"" for the density of the numbers p, in the 
ground state, i. e., with the function g (p). By virtue of 
(17), we have 

Thus, the excitation energy E (k) vanishes at k = 2k0, for 
arbitrary values of c. 

The equation (20) can be solved in analytic form for c - 0 and c - m. The quantity A. found from (18) for these 
cases is, respectively, 

&=-q and & - - ~ l n t g ; ( i - ~ )  

(16) Ia this case, for E (k) we have 

where Q is determined from the condition The expression (22) attests that the excitation branch 
Q N we have obtained is a single-particle branch for c - 0, 
j ~ ( p ) d p = ~ - p .  (17) as we should expect from the way it was derived. At 
-0 the same time, the Ferrni velocity of these excitations 

for c- 03 is twice as large as  we should expect starting 
and q =gh = A,, can be expressed in terms of q 
by means of the relation 

P b. 

g(p)dp=2 1 a(A)dA, -QG94Q.  
9 -- FIG. 5 .  Single-particle e x c i t a t i m s  

f o r  c 4 0 .  

The energy E and momentum k of an excitation have the 
form 
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from the idea that the Fermi gas becomes spinless as  
c- -, U1 The reason for this is easily understood if we 
consider the solutions of (4) for finite N as  c -  -. The 
expressions for p, in this case have the following simple 
form: 

L A'L a 

The solutions (24) for the ground state and the excita- 
tions corresponding to (6), (7) and (14) are shown sche- 
matically in Fig. 6. (The dashed lines in Figs. 6b and 
6d show the positions of the levels for the ground state 
and the arrows indicate the corresponding shifts of the 
levels. ) From the standpoint of these schemes the sin- 
gle-particle excitations found by ~ o l l ' ~ '  are  indeed sin- 
gle-particle for c - -. In this limit, the excitation 
branch that we have found is, generally speaking, a 
combination of single-particle and collective (spin- 
wave) excitations (compare Figs. 6b and 6d, and also 
(9) and (23)). Thus, it turns out that the classification 
of the excited states depends in an essential way on the 
magnitude of c. 

Up to this point our treatment has pertained to a one- 
dimensional Fermi gas with 6-function repulsion, i. e., 
to the Hubbard model with p << 1. However, everything 
expounded above can be generalized without difficulty to 
the case of a lattice Fermi gas with 1, < 1. Thus, e. g., 
Eq. (20) is replaced by the following equation: 

2nfl ( p )  =2z0 ( p - q )  -2 arctg exp 

u - exp[io (sinpf-sin p) 1 
+ J cos e'f1 (P') dpt J i+e ,.lu,z do ,  u = ~ c ,  (25) 

-0 -- 

It i s  not difficult to convince oneself, in a manner 
analogous to the way this was done above, that & (rp) 
= 0 for any u. For u - 0 the energy c (k) found from (25) 
coincides with the expression for the single-particle ex- 
citations of a noninteracting lattice Fermi gas, while for 
u- 03 it has the form 

b d 
FIG. 6.  Solutions (24) (schematic): a) the ground state; b, c ,  
d) excited states corresponding to ( 6 ) ,  (7), (14), respectively 
(c - - ) .  

E ( k )  = 4 sin(np-k)sin k - - lBp ln2 [sin np s i n ( n p - k ) d  

As we should expect, for p << 1 (26) goes over into (23). 

Before proceeding to consider the other generalization 
of the model that we are  investigating, we make the fol- 
lowing remark. Our analysis of the excited states of the 
one-dimensional Fermi gas has been based on the exact 
solution of the Hubbard model with p < 1. Another ap- 
proach to this problem, intensively developed in recent 
times in the papers of Luther, Emery and Peschel, '1e441 

is associated with the investigation of a one-dimensional 
model with a linear spectrum (the linear model), which 
is a .generalization of the well-known Luttinger model. 
In particular, in Refs. 12-14 spin degrees of freedom 
were incorporated into the Luttinger model, and Um- 
klapp processes and the interaction describing the back- 
ward scattering were taken into account. The most 
representative Hamiltonian, incorporating other types 
of interaction too, is given in the paper by Prigodin and 
Firsov. 'lB1 On the other hand, linearizing the kinetic 
equation about k, and introducing two kinds of particles 
with k - k ,  and k = - k, makes it possible to reduce the 
Hubbard Hamiltonian to a Hamiltonian ali, coinciding 
with that given by Prigodin and Firsov. "'I True, all 
the possible types of interaction contained in $,, appear 
here with the same constant c. According to Luther and 
Emery, '"I gli, can be separated into commuting opera- 
tors  & and & describing the spin and single-particle 
excitftions, respectively. Then, if p< 1, the Hamilto- 
nian H, can be diagonalized by the method of Lieb and 
Mattis. c151 It is easy to show that its excitation spec- 
trum has the form ~ ( k )  = vkl kl , where the renormalized 
Fermi velocity v i  = q ( l  + 2~/.rrv~)~' '  (in our notation, v, 
= rp). It can be seen by comparing this expression with 
(22) and (23) (this comparison has meaning only for I kl 
<< rp, since for large k the linearization of the Hubbard 
Hamiltonian i s  not legitimate) that the excitation spectra 
of a one-dimensional Fermi gas with the Hamiltonian (1) 
and the linear model coincide only for small values of 
~ ( J P  << 1). 

As regards the spin-excitation spectrum, here, un- 
fortunately, it is not possible to carry out such a com- 
parison, since the method proposed in Ref. 12 to diag- 
onalize kl i s  applicable only for a particular value of c. 
and this c < 0 (attraction). 

We return now to the analysis of the one-dimensional 
Fermi gas with the Hamiltonian (1). Another generaliza- 
tion of this model is a Fermi gas with an interaction po- 
tential of finite range. For simplicity we shall consider 
the case when the interaction has the form of a potential 
step: 

The boundary conditions relating the wavefundion and 
its derivative at xi - x, =+ a lead to a system of transcen- 
dental equations: 
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Y 

~ ~ = 2 n 1 , - 2  Caretg- - 2 arctg 7; + arctg - Pi-k  , 
0-1 

CI 
i-1 1-1 

c2 

We note that this generalization i s  valid if pa<< 1 (other- 
wise, the Bethe hypothesis, on the basis of which Eqs. 
(27) were obtained, is certainly incorrect). 

The system (27) can be reduced in the standard way to 
a system of integral equations, in terms of the solutions 
of which the energies of the ground and excited states 
are determined. In particular, the equation describing 
the excitation branch corresponding to the choice (14) of 
I, and Ja has the form 

( ( y p )  n) 2nfl(p) =2nB(p-q) -2 arctg erp - - 

It is possible to show, in a manner analagous to the way 
this was done in the derivation of (21), that E (np) = 0 in 
this case too. 

Thus, the excitations considered possess the property 
(21) irrespective of the strength of the interaction or of 
whether it i s  attractive. We note, however, that the ex- 
cited states of the Fermi gas with an interaction poten- 
tial of finite range have a number of features distinguish 
ing them from those in the case of 6-function repulsion. 
We shall consider, e. g., the limit y - - (a Fermi gas of 
hard rods). The presence of two "interaction con- 
stants" c, and c, in (27) and (28) leads to the result that, 
for y- m, the expression for E (k) is a series in powers 
of y* and y'le"y: 

s(~)=*~c(np-k) (I-?) ... 

16k(np-k) 4 ...+ k (29) 
pae-2'(1-21n 2)- -(np)3Qe-2'sin- + ... 

r 3 7 P 

As can be seen by comparing (29) and (23), the "collec- 
tive" spin-wave contribution to c (k) is exponentially 
small. The energies of the spin-wave excitations cor- 
responding to the choice (6) of I, and Ja are just as  ex- 
ponentially small in the parameter y. They have the 
form (9) with c =ya-1ky/2. 

This i s  a consequence of the fact that a potential step 

of infinite height i s  impenetrable, and the exchange in- 
tegral that appears in the corresponding spin Hamilto- 
nian is exponentially small for y -m. 

In conclusion we note the following. The new branch 
of excitations of the Hubbard model with p < 1, obtained 
in this work, possesses the property that its energy is 
equal to zero at k = 2k;. It is possible to assume that 
the excitations of this type are  associated (together with 
the purely spin-wave excitations) with the scattering at 
q= 0.295P observed in the experiments of Refs. 4-7. 
A justification for this is provided by the fact that for c - (and, evidently, c >> 1 in TTF-TCNQ~'), this branch 
is a combination of single-particle and collective exci- 
tations and is associated with both the neutron and the 
x-ray scattering. However, only by calculating the re- 
sponse of the system to a periodic perturbation i s  it pos- 
sible to say this with certainty. Unfortunately, for the 
corresponding calculation in second order of perturba- 
tion theory in the external field it is necessary to know 
the wavefunctions of the unperturbed system, and these 
are too complicated to calculate, even for c -  a. 

The authors are grateful to A. Heeger, A. Garito, J. 
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