
The application of an external magnetic field increases 
the degree of the long-range order in a crystal and auto- 
matically reduces the activation energy in the region of 
T, and weakens the scattering of carriers by the mag- 
netic moments of the ferrons. Therefore, a giant nega- 
tive magnetoresistance is observed in the region of T, 
and the maximum of p(T)  is shifted toward higher tem- 
peratures, as observed in our study. 
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The temperature dependence of the cross section for hole capture by a negatively charged dislocation in an 
n-type semiconductor has been found. It is shown that because of the special character of the filling of 
the dislocation with the electrons that saturate it, this dependence is stronger than in the case of point 
centers. The magnitude of the cross section is in agre-ement with the experimental data. 

PACS numbers: 71.50.+t 

According to the Shockley modelc1] an edge disloca- in the crystal lattice, the temperature dependence of the 
tion in an n-type semiconductor behaves like an infinitely capture cross section is stronger than in the case of 
long negatively charged line of acceptors. AS a result, point centers. [ d l  

dislocations act as  recombination centers for excess 
carriers. In this situation the minority carriers, which 
are acted on by the electrostatic attraction, are  the 1. THE ELECTROSTATIC POTENTIAL OF A 
most effectively captured. To be captured by a disloca- DISLOCATION 
tion it is necessary for a hole to reduce its energy by 
an amount sufficient for it to undergo transition to the 
bound state. One of the energy-removal mechanisms 
which ensure experimentally observable large cross 
sectionsc2] is interaction with acoustic phonons. Since 
at sufficiently high temperatures the scattering of holes 
by phonons has a quasielastic nature and the levels 
associated with a charged dislocation are quite deeply 
situated in the forbidden band, the most probable pro- 
cess is ~ a x ' s ' ~ I  cascade capture mechanism. 

In a recent paper by Abakumov and ~assievich"' a 
convenient method was proposed for calculating the cross 
section for capture by attracting centers in semiconduc- 
tors. This method was first used by pi taevsdC5'  to ob- 
tain the electron recombination coefficient in a weakly 
ionized plasma. 

In the present paper we shall make use of the method 
developed incd1 to find the capture cross section for holes 
by a unit length of a negatively charged dislocation. Let 
us note that because of the special character of the elec- 
trostatic field of the dislocation a s  a linear imperfection 

It is well known that an edge dislocation can capture 
additional electrons on the broken bonds which arise at 
the edge of the extra half-plane, thereby building up a 
positively charged cylinder of ionized impurities around 
itself. In this situation the degree to which the disloca- 
tion is filled with the electrons that saturate it can be 
characterized by the ratio 3= a/c, where a and c are the 
distances between broken and saturated bonds respec- 
tively. However, in calculating the electrostatic poten- 
tial we shall consider the dislocation a s  a uniformly 
charged filament of infinite length. It is evident that th i s  
idealized approximation is valid only at not too small 
distances from the dislocation axis, where the discrete 
nature of the filament charge becomes significant. 

Let us introduce the cylindrical coordinates (Y, 0, z) 
with the dislocation axis as  the polar one. To find the 
potential (p(r) of the charged dislocation with allowance 
for the screening of the electric field by free charges 
and by the ionized impurity we shall make use of the 
Poisson equation 
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where A is the two-dimensional Laplace operator, x is 
the dielectric constant, and the charge density p is de- 
termined by the expression 

where n and p are the electron and hole densities, ni 
and n; are the concentrations of ionized donors and ac- 
ceptor s, while 

is the 6-function charge density of electrons which have 
attached themselves to the dislocation. In an n-type 
semiconductor with nd >> n,, the hole density may be ne- 
glected in the temperature range in which the impurities 
are fully ionized, while the electron density is deter- 
mined by the expression 

n=nd erp (ecp/kT),  

where nd is the total donor concentration. Under these 
conditions we have for the charge density p 

In the general case Eq. (1) with the boundary conditions 

cannot be solved analytically and it becomes necessary 
to analyze the limiting cases corresponding to small 
(IeqP/kTI >> 1) and to large (lep/kTI < c l )  distances from 
the dislocation, with subsequent merging of the solutions 
obtained at a certain point R at which 

The physical meaning of the cylindrical region of radius 
R is obvious. Inside such a cylinder the electrostatic 
energy of a carrier is large compared with its thermal 
energy and consequently there are no free carriers. At 
the same time the problem of the screening potential of 
a charged dislocation involves another characteristic 
length, viz., the Debye screening radius 

Depending on the ratio of these two radii, which is a 
function of the filling of the dislocation with electrons, 
two limiting cases must be distinguished; these corre- 
spond to strong (low temperatures) and weak (high tem- 
peratures) filling. At low temperatures (R>> rD) the so- 
lution of Eq. (1) is 

We have introduced a cutoff parameter c here, since it 
must be remembered that the model of a dislocation as 
a uniformly charged filament is valid only, generally 
speaking, at distances r >> c from the dislocation axis. 

In the opposite, high-temperature limiting case, R 
<< r, and 

where KO(%) is the MacDonald function. In this case we 
have for the radius R 

where Iny = C = 0.577 is Euler's constant, while 

is a parameter which characterizes the ratio of thecou- 
lomb interaction energy of neighboring electrons which 
have attached themselves to the dislocation to theirther- 
ma1 energy. The case of strong filling, when the radius 
of the cylinder deprived of free carriers is sharply de- 
fined, corresponds to values a>> 1. In this case screen- 
ing is due only to ionized impurities and the concentra- 
tion of free carriers may be neglected. The existence 
of such a cylinder was first pointed out by Read.t81 In 
the opposite case of weak filling (a<< 1), the boundaryof 
the region depleted of carriers is strongly smeared out, 
and the dislocation potential is screened mainly by free 
carriers. 

2. THE CROSS SECTION FOR HOLE CAPTURE BY A 
DISLOCATION 

To find the cross section for hole capture by a dislo- 
cation we shall make use, followingt", of the kinetic 
equation for the distribution function f (r, p, t )  with a c d -  
lision integral which allows for the interaction of holes 
with acoustic phonons. At temperatures which are not 
unduly low, scattering by phonons has a quasielastic 
character and the fraction of energy lost by a hole in 
each collision is A& =&(8m~~/&)"~ ,  where E =pz/2m is 
the kinetic energy of the hole, m is its effective mass, 
and s is the velocity of sound in the crystal. For a hole 
to be captured by a dislocation it is necessary that, in 
a cascade of collisions, it be in a bound state with an- 
ergy 5; - kT, where T is the temperature of the lattice. 
In other words, it is necessary for the hole to be in the 
region of the cylinder of radius R in which its electro- 
static energy eq  exceeds its thermal energy kT. Since 
hE << kT, the condition for the cascade model to be ap- 
plicable is 

where I is the momentum relaxation length for phonon 
collision. On the other hand, the smallness of 1 allows 
the distribution function to be considered as dependent 
not on the momentum, but on the kinetic energy E .  In 
this case, in the absence of degeneracy, the kinetic 
equation isC7 
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where 6 = 2ms2/kT << 1 is the quasielastic scattering pa- 
rameter, 

is the density of states in the energy interval (E, E + k), 
and 

is the frequency of collisions between holes and acoustic 
phonons which determines the momentum relaxation 
length I. Here E, is the deformation-potential constant, 
p is the density, and V is the volume of the crystal. 

If it is assumed that the energy relaxation length for 
phonon collision l e  = l6" is much greater than the Debye 
radius, then the second and third terms on the left-hand 
side of the kinetic equation (10) will be large compared 
to the other terms. From the fact that the sum of these 
terms, which is a classical Poisson bracket, is equal to 
zero, it follows that the distribution function depends 
only on the total energy 

and on time. Averaging of the remainder of the equation 
in the phase space between the hypersurfaces E = const 
and E + A E  = constc5 leads to the equation 

where 

Here S is the area of the surface perpendicular to the 
dislocation axis, while r,, corresponds to the turning 
point of the finite motion which is determined according 
to Eq. (13) from the condition 

To find the total hole current j flowing into the dislo- 
cation in stationary conditions in the negative-total-en- 
ergy region it is necessary to solve the differentialequa- 
tion 

with the boundary conditions 

lim f ( E )  4, lim f ( E )  =js(E-O), 
x-59 %-re 

where E, is the energy of the ground state. The first of 
these conditions means that a particle which has entered 
the ground state "goes out of play, " while the second 
corresponds to the smooth merging of the distribution 
function in the negative total energy region with the 
Boltzmann continuous spectrum function of the valence 
band. Taking account of what has been said, we have for 
the current j 

Inasmuch a s  I Eol - l erp(c) l >> kT and the integral con- 
verges at values of E - - kT, it is easy to see that the 
lower integration limit may be replaced by - -. Accord- 
ing to Eqs. (3) and (17) we then have for the turning 
point r m ,  

where R is defined by expression (7). From this we ob- 
tain for the coefficient B(&) in the limiting low- and high- 
temperature cases 

On dividing the total current j determined from Eqs. (20) 
and (22) by the hole density p and the average hole ve- 
locity (v) = ( 8 k ~ / m ) " ~ ,  we obtain the cross section for . 
hole capture by a unit length of a negatively charged 
dislocation 

where A is a number of the order of unity. From Eq. 
(23) it is evident that the cross section for hole capture 
by a negatively charged dislocation is significantly larger 
at low temperatures than at high temperatures. Because 
of the special features of the filling of the dislocation 
with electrons, the temperature dependence of the cross 
section turns out to be larger than in the case of point 
centers of attraction. At low temperatures this depen- 
dence is a power function, while at high temperatures it 
is exponential (see (4), (7), and (8)). The transition 
from the one type of dependence to the other takes place 
at a temperature TO: 

at which a= 1 and the electrostatic interaction energy of 
neighboring electrons on the dislocation becomes of the 
order of their thermal energy. 

3. CONCLUDING REMARKS 

In deriving the kinetic equation it was assumed that the 
scattering of holes by phonons has a quasielastic char- 
acter, the momentum relaxation length being much less 
than the Debye leagth. The latter assumption permitted 
restriction of the analysis to the isotropic part of the 
distribution function only. However, it should be noted 
that this condition is much more important inasmuch as 
the Lax cascade mechanism ceases to be meaningful if 
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it is violated. On the other hand, for r~ << 2, the distri- 
bution function depends only on the total energy E. It is 
thus necessary to satisfy the chain of inequalities 

which leads to a lower temperature bound on the range 
of applicability of the results obtained. 

Let us note that in finding the potential of a charged 
dislocation we regarded the donors as fully ionized and 
in doing so restricted ourselves to temperatures such 
that kT>>cd, where c, i s  the activation energy of the do- 
nors. However, our results hold qualitatively even at 
lower temperatures, when screening is provided by elec- 
trons moving among the donors without their prior ac- 
tivation. This occurs until quasicontinuity of the donor 
distribution in the volume of the semiconductor is en- 
sured, i. e., until the distance between the donors nil/' 
is much less than the characteristic scale of variationof 
the electrostatic potential, given by the Debye radius, 
i. e. 

For germanium in which m - 10'a8g, x = 16, nd - id3 c ~ ~ ,  
and 1Oq < < c lo-', a combined analysis of the inequalities 

(25) and (26) shows that the results obtained in this work 
are qualitatively valid down to temperatures T- 30 K. 
For the temperature at which the dependence of the cross 
section on temperature goes over from a power function 
to an exponential one we obtain To- 130 K. The absolute 
magnitude of the capture cross section (radius) in the 
temperature range '30 K < T < 300 K proves to be of the 
order of 3 10'' cm c o < 2 10" cm, which is in agree- 
ment with the experimentally observedca1 large cross 
sections. 

The author is deeply grateful to I. B. Levinson, Yu. 
A. Osip'yan, and V. B. Shikin for numerous discussions 
of the results of the work and for valuable comments. 
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The temperature dependence of the electron-phonon thermal conductivity is obtained by numerid solution 
of the kinetic equation and compared with experiment. 

PACS numb: 74.30.Ek 

1. In very clean superconductors the electronic ther- 
mal conductivity x, is determined entirely by the scat- 
tering of electrons by phonons (%,*) and by the crystal 
boundaries, while the phonon thermal conductivity ic ,,is 
determined entirely by the scattering of the phonons by 
electrons (X ,he) and also by the crystal boundaries. The 
solution for the nonequilibrium correction rp to the elec- 
tron distribution function f has the f ~ r m ~ " ~ '  

where c = (6% A~)"'. Under the conditionc2' 

the decisive role in the calculation of the electronic 
thermal conductivity, a s  was noted in the work of Gure- 
vich and Krylov, ['I is played by the function cp~. InRef. 
3 an integral equation for rp, was obtained. In this arti- 
cle we report the results of a numerical calculation of 
the electronic thermal conductivity, based on the solu- 
tion of th is  equation, and compare the results with the 
experimental data. We neglect the influence of the non- 
equilibrium character of the phonons on the electrondis- 
tribution function, which is permissible for tempera- 
tures that are  not too 10w~*~ ' :  

2. For the electronic thermal conductivity in a nor- (2) 
mal metal we have, using Matthiessen's rule, 
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