
Here d is the dimensionality of space. It is logical to 
assume that the property of conformal invariance is  pos- 
sessed not only by the model studied but also by other 
systems in the critical region. Knowledge of the phe- 
nomenological Hamiltonian (31) can turn out to be useful 
if the system being investigated is  in weakly nonuniform 
external conditions. 

The Ward identities (14)-(15), (17)-(18), (17')-(18') 
and (22)-(23) are useful for establishing whether any 
particular system possesses the conformal symmetry 
(2'), (3'). In general, the description of strongly fluc- 
tuating systems with the aid of a locally defined correla- 
tion length may be of interest in the case of weakly non- 
uniform or  slowly relaxing systems. 

In conclusion I wish to thank A. A. Migdal for super- 
vising the work and V. L. ~okrovskil for valuable criti- 
cal comments. 

')1n the first order in 1/N we have (rp) = rp, = ri2. This implies that 
the system can be imagined to be a set of noninteracting re- 

gions of volume d, with energy equal to -A (in our notation 
the factor - T multiplying F has been omitted), which corre- 
sponds to the usual ideas about critical fluctuations. 

''This follows from the fact that 

- 

3'We recall that our definition of the free energy F @ l  differs 
&om that of the usual Fo[T]: F D I  =-PF~[~/PI .  Therefore, 
F does not coincide with the energy. - 

"~ecause of the symmetry, B P * ' / B ~ ,  l ,;o = 6 , ~ ~ ~ .  
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By the renonnalization-group method the exact temperature dependences of the susceptibility and specific 
heat (above T, in zero external field) are found for the four-dimensional Ising model with short-range 
exchange forces and randomly distributed, rigidly fixed impurities. The stability of the impurity fixed 
point in (d = k)-dimensional space is demonstrated and the critical exponents are calculated to second 
order in P " ~ .  

PACS numbers 75.1O.Hk. 75.40.Dy, 75.30.Cr 

One of the few exactly soluble realistic problems is obtained by the renormalization-group (RG) method in 
that of the phase transition in a three-dimensional easy - a by Aharoni (T > T,, h = 0): 
axis ferromagnet (or ferroelectric of the displacement 
type) with dipolar interaction and randomly distributed r-~exp{-(Dlln ~ 1 ) ' ~ ) .  (1) 
fixed impurities, the impurity concentration being con- 
siderably below the percolation threshold. Near the C-erp{-2(Dlln~l)'~} I ln~ l" ,  (2) 
transition point the indirect interaction of the critical 
fluctuations of the order parameter via the impurities 
becomes important, and as  a result the behavior of all 
the thermodynamic quantities is greatly changed from 
that in the impurity-free case. Although the interaction 
via the impurities is attractive in sign it does not violate 
the stability, and, therefore, a second-order phase 
transition occurs in the system. The temperature de- 
pendences of the uniform susceptibility Y-' and specific 
heat C of an impure easy-axis dipolar ferromagnet (in 
d= 3 dimensions) and of the four-dimensional impure 
Ising model with short-range exchange forces have been 

where r = (T - T,)/T,; D = 9/(81 ln($ + 53) for the impure 
dipolar ferromagnet (d=3) and D = &  for the impure 
Ising model (d= 4). (The equation of state and the dy- 
namics of these systems have been considered in Refs. 
2 and 3.) 

However, the results (1) and (2) a re  in need of refine- 
ment. It is  shown in this paper that the true singubri- 
ties of the susceptibility and specific heat are  described 
by the formulas (41) and (43), which differ from (1) and 
(2) by slowly varying logarithmic factors. This refine- 
ment is of interest because it can, apparently, be 
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checked experimentally. In experiments with the pure 
uniaxial ferromagnets L ~ T ~ F , ' ' ~ ]  and ~ d ~ 1 ~ ~ ~ ~ ~ ~  loga- 
rithmic corrections to  the molecular-field approxima- 
tion, in brilliant "agreement with the theory of Larkin 
and Khmel'nitskii, cS1 have been discovered. To calcu- 
late the exponents in the powers of logarithms in (41) 
and (43) it is necessary to obtain the Gell-Mann-Low 
(GML) function to fourth order of perturbation theory 
in the invariant charges (the three-loop approximation), 
and this is not difficult to do for the impure Ising model 
i f  we make use of the results of Refs. 10, 11 on the 

scalar field theory (see below). For the impure 
uniaxial dipolar ferromagnet the calculation of the 
fourth-order graph presents great difficulties and has 
not yet been carried out; the powers of the logarithms 
are,  therefore, unknown, but i t  may be hoped that the 
results in the two cases will turn out to  be numerically 
close. 

Knowledge of the GML function in the three-loop ap- 
proximation also enables us to prove the stability of the 
impurity fixed point (FP) in a (4 - &)-dimensional space 
and to obtain at the same time the values of the critical 
exponents to second order in zU2. 

The order of the exposition is a s  follows. First ,  the 
Gell-Mann-Low equations for the invariant charges in 
the impure Iqlng model a r e  obtained to fourth order in 
the amplitudes (d = 4 - &), the impurity F P  is determined 
to within terms of order c ,  i ts  stability is demonstrated, 
and the critical exponents a re  calculated. Then, with 
the aid of the RG equations, the temperature dependences 
of the susceptibility and specific heat ( T  > T,, h = 0) and 
the behavior of the pair correlation function in the re- 
gion of small momenta at the transition point a r e  found 
in the four-dimensional problem. 

The Hamiltonian of the (4 - &)-dimensional impure 
Ising model has the form 

where 9(x) -n(x) - (n(x)) is a random variable describing 
the local fluctuations of the temperature in the mean- 
field approximation; n(x) is the density of impurities, ro 
is a linear function of the temperature and A is the mo- 
mentum cutoff. In constructing a diagram technique for 
impurity systems i t  is convenient to apply the effective- 
Hamiltonian method. C'21 The f ree  energy of a system 
with the Hamiltonian (3) is a functional of the quantity 
Nx): 

The experimentally observed free energy is obtained by 
averaging over the possible configurations of the im- 
purities: 

F=- J ~ Y  ~(Y)lnJd@exp[-a(@, Y)], (5) 

where P(9) is the distribution function of the impurities. 
In order to integrate over the variables 9 in (5) we rep- 
resent the logarithm in the form 

Substituting (6) into (5), we obtain 

a 
~ = - - { ~ d o e x ~ ~ - ~ . ~ , ( o ) l ) ~  an "-* , 

where 

Near the transition point the impurity-density fluctua- 
tions can be assumed to  be 6-correlated and Gaussian; 
consequently, 

4na G ( ~ ) - - - A ~ u ~  j ~ P Z  (a')'. 
3 (10) 

Nongaussian impurity-density correlations lead to the 
appearance of interactions of the type ( u ~ ) ~ ,  (d)4 and 
higher orders, which a r e  irrelevant in (4 - E)-dimen- 
sional space. Ci914J As is easily seen from (8) and (lo), 
the impure Ising model is equivalent to an n-component 
Heisenberg ferromagnet with cubic anisotropy in the 
limit when the number of components goes to zero (n - 0). The king vertex v plays the role of the cubic ver- 
tex, the impurity vertex u plays that of the isotropic 
vertex, and uo < 0, so > 0. 

The RG equations for the invariant charges, describ- 
ing a system with the Hamiltonian (8) a t  the phase-tran- 
sition point T = T,, have the following appearanceciC'": 

where 

By definition, the quantity Z is expressed in terms of the 
pair correlator : 

while the quantities r, and r, a r e  related to the sym- 
metric vertex function with no external lines: 

r'biP. (p2) =r~"(~~)z . , ,+rb~(~~)%~,  
(15) 

r~:~ . (p ' ) - (oa@i)o , (~z )~ (~s )o , (~ , ) )  

for  p,p, = (6,, - t)p2 and Pi + P2 +Ps +P4=O; heres 
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We give the scheme for calculating the critical expo- 
nents. In the region of small momenta, according to 
scaling theory, 

where d, is the scaling dimension of the field a and 7 is 
the Fisher exponent. On the other hand, for Z we have 
the Lie differential equation of the renormalization 
group: 

dlnZ -=- at r i b ,  v )  . (1 7) 

At infinitely large values of t the invariant charges u, 
v tend to a stable fixed point u*, v* of the system of 
equations (1 1); therefore, 

To calculate the critical exponent y of the susceptibil- 
ity we introduce a vertex function (with no external 
lines) containing the composite operator d(x): 

l-2," (P2) = r ( l . z ) ( p Z )  = dazI d k 2  erp (-ip,z,-ip2z2) 

X <~(Z~)U~(Z.)(JO(~))~P,P,-(~~,,-I,P'. (19) 

In analogy with (16) and (I?), we haveci5' 

din r N . 2 '  ,, - -P(%v)*  (20) 

where d,z is the scaling dimension of the composite op- 
erator d(x),  connected with the exponent y by the rela- 
tionti5] 

From (20) and (21) we obtain 

d*=W+p(u', v') . (23) 

The results of Refs. 10, 11, in which the fourth-order 
graphs and the GML functions to fourth order of pertur- 
bation theory were calculated in a massless theory 
(i. e. ,  T = T,) with the Hamiltonian (8) with vo = 0, can 
be generalized without difficulty to the case of a (4 - &)- 

dimensional system (E << 1) with cubic anisotropy vo + 0. 'A 

The Gell-Mann-Low functions (11) have the form (in the 
impurity system: n = 0) 

10 
f (u, v )  - 4 a- (n+8) a'-2uv+6(3n+ 14) u'+44u2v + - uu2 

2 3 
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where ~ ( 3 )  = 1.202 is the Riemann Zeta function and J - 0.75. CtO1 Putting v = O  in (24) we obtain the GML func- 
tion of the single-charge (ai@,)* model; for & = 0 this 
function coincides with that found incio1. If n =2, the 
functions (24) and (25) satisfy the exact symmetry rela- 
tions 

which a r e  valid to all orders of perturbation theory and 
for any E. In the lowest, quadratic approximation in 
the invariant charges the system of equations (11) for 
n = 0 is degenerate and does not have stable solutions 
corresponding to physical initial conditions. This de- 
generacy is accidental and does not obtain for the exact 
GML functions; to remove the degeneracy it is sufficient 
to calculate the functions f (u ,  v) and g(u, 2)) to third order 
in the amplitudes. 

We seek the impurity FP in the form 

Substituting (26) and (27) into (24) and (25) and equating 
the coefficients of c3I2 and ldZ to zero, we obtain two sys- 
tems of equations, for A, D and B, E, respectively; 
solving these we find the renormalized charges u* and 
v* to terms of order E inclusive (we draw attention to 
the fact that in (24) and (25) the terms quadratic in u and 
v a re  of order c3I2, and not E as might appear a t  f i rs t  
glance): 

To calculate the coefficient F it is necessary to take into 
account the terms of fifth order in the invariant charges 
in (24) and (25) and also the dependence on c of the CO- 

efficients in the GML functions. 

The question of the stability of the FP (26), (27) is 
solved by linearizing the system (11) about u*, v* and 
finding the signs of the eigenvalues Xi and A, of the 
matrix 



In the two-loop approximation we have 

The fact that Xi is equal to zero i s  a consequence of the 
above-mentioned degeneracy of the RG equations in the 
approximation quadratic in the invariant charges; it is, 
of course, not rigorous, but simply indicates the fact 
that to determine the sign of Xi the two-loop approxima- 
tion is not sufficient and one must calculate the next or-  
der in the expansion in cU2. 

From (24), (25) and (28), (29) it is not difficult to find 
the matrix elements in (30) to terms of order & and to 
show that, in this approximation, Xi < 0. Thus, since 
both eigenvalues a r e  negative, the impurity fixed point 
is a stable zero. 

Expanding the functions p(u, 21) and q(u, v )  in powers 
of u and z1 and confining ourselves to second order of 
perturbation theory, we find 

We substitute u*, ti* from (28), (29) into (31), (32) and 
obtain the values of the critical exponents: 

The quantities yand 7 were calculated to first  order 
in E " ~  in Refs. 1, 18. All the other critical exponents 
can be expressed in terms of y and 7 using the well- 
known relations of scaling theory. It is interesting that 
three constants (1;(3), J and ln($)) appear in the Gell- 
Mam-Low functions while only one (~(3) )  appears in the 
expressions for the fixed point and critical exponents. 

The RG equations of the four-dimensional impure 
Ising model a re  obtained by taking the limit & -  0 in ( l l ) ,  
(24) and (25). The solution of these equations that cor- 
responds to the impurity critical behavior has the form 

4 6 ' a  489+189:(3) 
u - ( )  + (53)'t ' (35) 

where 

t=ln (Azlz'), x2=rnax {r, p'}. 

Using the Lie equation (1 7), and also (32), (35) and 
(36), we obtain the behavior of the pair correlation func- 
tion at small momenta at the phase-transition point: 

We note that in "pure" systems (d= 4) the Ornstein- 
Zernike approximationcs1 is usually valid for ~ ( p ' ) :  

The inverse susceptibility r obeys the equation 

where T(Y) is the vertex with two external lines and one 
angle, for which the following representation holds: 

The important point is that in the exponent in (39) we 
cannot confine ourselves to first  order in the invariant 
charges, a s  was done in Ref. 1, but must take into ac- 
count the second-order terms leading to additional, log- 
arithmic factors in the temperature dependences of the 
specific heat and susceptibility. Substituting (35) and 
(36) into (39) and integrating, we obtain 

The singular part of the specific heat is determined in 
terms of the polarization operator: 

The expressions obtained for the thermodynamic 
quantities of a disordered uniaxial ferromagnet a r e  valid 
only for "weakly nonuniform" systems (the impurity con- 
centration is considerably below the percolation thresh- 
old) and in a comparatively narrow temperature region 
near T,, the size of this region being determined by the 
impurity concentration. In principle, an experimental 
study of disordered systems could be carried out on, 
e. g. , a substance such a s  LiTbF, with added nonmag- 
netic atoms by measuring the specific heatc4' o r  mag- 
netizationc6] with the use of high-sensitivity optical 
methods. 

The author is grateful to A. I. Sokolov and A. L. 
~orzhenevski i  for useful discussions. 
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The electrical resistivity p of Cd,-,wCr,Se, single crystals (x = 0.017, 0.019, 0.037, 0.048, and 0.091) 
was investigated in the temperature range 4.2-300°K in magnetic fields 0-50 kOe. The dependence 
p(T) was found to be nonrnonotonic with a minimum below the Curie point T, and a maximum in the 
region of T,. The position of the maximum of the p(T) curve shifted toward higher temperatures on 
increase of the magnetic field. In the region of the minimum, and particularly near the maximum, the 
behavior of p(T) indicated a giant negative uiagnetoresistance: p in H = 50 kOe near T, was one or two 
orders of amgnitude less than p in H = 0. The observed anomalies were attributed to the presence of 
ferrm in this compound. 

PACS numbers 72.15.Eb, 72.15.Gd 

An investigation was made of the resistivity of 
Cd1,,Ga,Cr$e4 single crystals ( x =  0.017, 0.019, 0.037, 
0.048, and 0.091) in a wide temperature range from 4.2 
to 220 OK, applying magnetic fields up to 50 kOe. The 
samples, application of ohmic contacts, and the method 
used to measure p were all described earlier. c'921 

The magnetic field was produced in a superconducting 
solenoid. During measurements a sample was placed in 
an enclosure with double walls where vacuum down to 
10'~ Tor r  was maintained. The necessary temperature 
was produced by an electric heater wound bifilarly on a 
single-crystal quartz rod and the sample was bonded to 
the end of this rod. The temperature was measured 
with a copper-copper-iron thermocouple. 

Figure 1 shows the temperature and magnetic-field de - 
pendences of p obtained for a sample of Cdo.9ssGao.o17CrzSe4. 
It is clear from Fig. l a  that the temperature dependence 
of p is complex; when the temperature is increased 
from 4.Z°K, the value of p f irst  falls, passes through a 
minimum, and then r ises  steeply by about four orders of 
magnitude reaching a maximum in the region of the 
Curie point, and then falls again. 

The resistivity depends strongly on the magnetic field 
H at temperatures beginning from the minimum and 
ending in the region of the maximum; the dependence 

FIG. 1. Properties of Cd0.983G%.011Cr2Se4. a) Temperature 
dependence of the logarithm of the resistivity in various mag- 
netic fields: 1) H = 0; 2) 5 kOe; 3) 10 kOe; 4) 20 kOe; 5) 30 kOe; 
6) 50 kOe. The dashed line represents the temperature a t  which 
a has its maximum value. b) Dependence of logp on the mag- 
netic field a t  various temperatures: 1) T = 124.5 OK; 2) 128°K. 
3) 132°K. 
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