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Generation of high-frequency magnons by nonequilibrium 
electrons polarized opposite to the direction of 
magnetization 

I. Ya. Korenblit and 6. G. Tankhilevich 
Leningrad Institute of Nuclear Physics, USSR Academy of Sciences 
(Submitted June 18, 1977) 
Zh. Eksp. Teor. Fiz. 73, 2231-2245 (December 1977) 

A theoretical investigation is made of the generation of high-frequency magnons by nonequilibrium 
electrons with spins directed opposite to the magnetization in wide-band ferromagnets. It is shown that the 
isotropic case is characterized by narrowing of the magnon generation range at high electron pumping 
rates: the range of momenta of the generated magnons decreases either exponentially with increase in the 
electron pumping rate or is inversely proportional to this rate, and the number of magnons in this range 
rises exponentially with the pumping rate in the tint case and quadratically in the second. Typical 
momentum of the generated rnagnons is of the order of the momentum of an electron whose kinetic energy 
is equal to the r d  exchange interaction energy. If the magnon spectrum depends strongly on the angle 
between the magnon momentum and magnetic moment of a crystal, an increase in the pumping rate 
gradually produces an almost monochromatic beam of magnons whose momenta are directed along the 
magnetization. At a certain critical pumping rate the generation of magnons becomes avalanchelike and 
the magnon system becomes unstable. 

PACS numbers: 75.30.D~ 

1. INTRODUCTION eration of magnons by nonequilibrium electrons with + - - -  

spin ("against the field"), which-under certain condi- 
Electromagnetic methods for  the excitation of the spin tions-can produce high-intensity beams of high-fre- 

system of a ferromagnet, capable of generating low-fre- quency almost monochromatic magnons. 
quency spin waves with wave vectors q <  10%m", a re  - - 
widely known. We shall consider the process bf gen- We shall consider the process of relaxation of non- 
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FIG. 1. Transitions of an electron transferred to the conduc- 
tion subband with spin against the field. The kinetic energy E 

of the electron is less than the optical phonon energy QO. The 
wavy line represents a magnon and the continuous curve-an 
electron. The interaction with magnons may be weuer (a) or 
stronger (b) than their interaction with phonons and electrons. 

equilibrium electrons transferred to a conduction sub- 
band with spin against the field in a wide-band ferro- 
magnetic semiconductor (Fig. I). We shall assume 
that the kinetic energy c of these electrons is less than 
the energy of a longitudinal optical phonon a,. Then, 
the most likely result is that an electron of this kind be- 
comes transferred to a subband with t spin ("parallel 
to the field") emitting a magnon in the process, and its 
new kinetic energy is approximately equal to the ex- 
change gap A in the conduction band. Since A >> a,,> &, 

the momentum q of the emitted magnon is of the order 
of Po= ( 2 r n ~ ) " ~ ,  where m is the effective electron 
mass. In the subband with spin parallel to the field the 
electron may: a) drop directly to the bottom of the band 
giving up the excess energy to phonons o r  electrons al- 
ready present there (Fig, l a )  or b) before dropping to 
the bottom, it may absorb a magnon and return back to 
the subband with spin against the field (Fig. lb). 

The situation b) occurs when the probability of ab- 
sorption of a magnon is higher than the probability of 
the electron-phonon or  electron-electron interactions. 
Clearly, in the case a) the density of nonequilibrium 
electrons whose kinetic energy is of the order of A in 
the subband with spin parallel to the field (denoted by 
B in Fig. lb) is much less than the density of nonequi- 
librium electrons with spin against the field (band A in 
Fig. la),  whereas in the case b) these densities a re  
approximately equal. If the electron population is in- 
verted (i. e. , if the electron density in the band A is 
higher than in the band B), stimulated emission of mag- 
nons predominates over their absorption by electrons. 

The ratio of the magnon generation frequency re(q) to 
the frequency of their relaxation (as a result of interac- 
tion with equilibrium magnons) r,(q) is a function of the 
wave vector q. We shall f irst  assume that re(q)/rm(q) 
is independent of the direction of q. Then, the distri- 
bution function of the nonequilibrium magnons ~ ( q )  is 
isotropic and has a maximum at the value of q = q* 
corresponding to the maximum value of re(q)/rm(q). 

Stimulated emission of magnons provides conditions 
favorable for preferential increase in the number of 
magnons with q = q* when the electron pumping rate is 
increased. Therefore, at  a sufficiently high pumping 
rate, when the number of the nonequilibrium magnons 
exceeds the thermal background, the magnons a r e  gen- 
erated mainly in a narrow range of wave vectors Aq 
near q*. Then, depending on the nature of the function 
re(q)/rm(q), the number of magnons in this interval 
r ises  on increase of the pumping rate either exponen- 
tially o r  quadratically, and the interval itself decreases 
either exponentially o r  inversely proportional to the 
pumping rate. The exponential narrowing of the range 
of frequencies in which this magnon generation takes 
place is considered in our earlier paper. 

The magnon generation rate is a function of the num- 
ber of electrons in the subband with spin against the 
field, and this number is governed-in i ts  turn-by the 
pumping rate and the total number of the emitted mag- 
nons. This feedback stabilizes the steady state of the 
magnon system in the isotropic case for any finite elec- 
tron pumping rate. 

If the ratio re(q)/rm(q) depends on the direction of the 
wave vector q and is maximal for a certain fixed value 
q = q* , the magnon distribution function N(q) becomes 
strongly anisotropic a t  high pumping rates and above a 
certain critical value of this rate the value of N(q) be- 
comes infinite, i. e . ,  the generation of magnons with 
q=q* becomes avalanche-like and the magnon system 
becomes unstable. 

An increase in the electron pumping rate increases 
the number of electrons in the state B in the subband 
with spin parallel to the field; then the processes in- 
volving magnon absorption and electron transfer to the 
subband with spin against the field become increasingly 
important and they suppress the narrowing of the mag- 
non generation region. Therefore, the narrowing effect 
may be expected only if the frequency of electron loss 
from the state B to the bottom of the band is sufficiently 
high. This frequency should be much greater than the 
difference between the frequency of electron transitions 
from A to B (accompanied by magnon emission) o r  the 
frequency of return transitions (accompanied by magnon 
absorption). 

We shall assume that the electron density in the states 
B of the subband with spin parallel to the field is low and 
we shall ignore the magnon absorption processes. 
Moreover, with the exception of Sec. 7, we shall as-  
sume that the interaction of electrons with longitudinal 
optical phonons is stronger than their interaction with 
magnons o r  electrons. This situation is typical of fe r -  
romagnetic semiconductors in which the lattice binding 
is largely ionic. 

2. SYSTEM OF KINETIC EQUATIONS 

We shall describe quantitatively the magnon genera- 
tion process by deriving a system of kinetic equations 
for the electron fo(p) (cr=t, +) and magnon N(q) distri- 
bution functions. We shall allow for the interaction of 
electrons with magnons and optical phonons and for the 
interaction of magnons with electrons and other mag- 
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nons. We shall derive the kinetic equations using the 
Keldysh diagram technique. C31 In the Keldysh technique 
the electron kinetic equation is obtained for  the Green 
functions G:(p, E) and G(p, &). It i s  convenient to intro- 
duce generalized electron distribution functions fa(p, E)  
u ~ i n d ~ * ~ I  

where Gi(p, E)  and q ( p ,  E) a re  the retarded and ad- 
vanced Green functions. 

Near the mass surface the difference between these 
funct io~s  is 

where 

);:(p, E) is the self-energy part  of the function G:. We 
shall assume that the interaction of electrons with opti- 
cal phonons i s  stronger than the electron-magnon in- 
teraction. Therefore, we shall allow for the electron- 
magnon interaction in the lowest order  of the perturba- 
tion theory; consequently, y and in Eqs. (2) and (3) 
are  governed only by the interaction with optical pho- 
nons. The electron energy &,(p), renormalized by the 
electron-phonon interaction, will now be denoted sim- 
P ~ Y  by &a(p). 

Since the kinetic energy of an electron with spin 
against the field i s  l e s s  than the energy of an optical 
phonon, the damping of such electrons by optical pho- 
nons is y+(p, E,) and 

The magnon-electron and magnon-magnon interactions 
will also be allowed for in the lowest order of the per- 
turbation theory, i. e. , the magnon Green functions 
D(q, w) and P(q,  w) a r e  

\ 

DC(q ,  w )  =2ni6(o-o, ) iV(q.  o ) ,  

D-(q,  o )  =2ni6 (o -a , )  ( l + N ( q ,  o ) ) .  
(6) 

The collision integral Re" of electrons with spin 
against the field interacting with magnons is obtained 
by applying the diagram technique rulesLs1: 

where q = (q, w), p = ( p, 6). Here, Z is the s-d exchange 
interaction constant and S is the localized spin. Simi- 
larly, the integral Rme representing collisions of mag- 
nons with electrons i s  

In the derivation of Eqs. (7) and (8) the complete ver- 
tex of the electron-magnon interaction is replaced by a 
simple vertex. Estimates indicate that renormaliza- 
tion of the electron-magnon vertex due to the inter- 
action of electrons with optical phonons is of the order 
of  an,^", where a i s  the usual dimensionless constant 
of the coupling of electrons with optical phonons and the 
exchange gap is A = 2ZS>> 51,. Thus, the kinetic equa- 
tions obtained below a re  valid if a << ~ n , ' .  

We shall be interested in magnons with sufficiently 
large momenta whose relaxation is governed mainly by 
four-magnon exchange processes. In deriving the cor- 
responding collision integral Rmm by the Keldysh tech- 
nique we must bear in mind that the vertex matrix of 
the four-body interaction is diagonal and that yiiii = 1, 
Y2222 = - 1: 

R'""'(p) = d'p' dbq"I V ( q ,  q'; q", q+q1-q") 12. 

x [D+  (p+p1-q") D- (q")D- (q ' )D- ( ( I ) -D  (9) 

- (p+n'-q")D- (q")D+(q ' )Dt (q )  I ,  

where V(q, q'; q" , q + q' - q") is the matrix element of 
the magnon-magnon i n t e r a ~ t i o n . ~ ~ ]  

We shall now introduce the electron and magnon dis- 
tribution functions: 

Substituting the Green functions (1) and (6) in the col- 
lision integrals Rdm, Rme, and Rmm we obtain the fol- 
lowing system of kinetic equations: 

where the frequency of the magnon-electron relaxation 
is 

the frequency of the electron-magnon relaxation is 

and the magnon-magnon collision operator i s  

v1 
F m ( N ( q ) )  = --aJJ d"' d""l v ( ~ ,  q': q". q+qe-q") I" 

( 2 4  
x{N(b')N(q+q'-q") ( t+N(q ' )  ( l + - v  ( q )  ) - ( l + N ( q + q r - q i )  

X(f+N(q"))N(qr)N(q)}6(oq+o,~-wq~~-os+,--). (16) 

Here, v is the volume of a unit cell and g(&,) is the gen- 
eration function of electrons with spin against the field. 
We shall assume the latter to be the delta function: 

where g is the generation function amplitude. 

1169 SOV. Phys. JETP 46(6), Dec. 1977 I. Ya. Korenblit and 8. G. Tankhilevich 1169 



In deriving Eqs. (12) and (13) we have ignored, fol- 
lowing the comments in the Introduction, the terms 
proportional to f, . Moreover, we have assumed that 
electrons with spin against the field a r e  not degenerate. 
The damping of electrons with spin parallel to the field, 
due to the emission of optical phonons, is-according to 
Eq. (4)-given by the following expression in the lowest 
order of the perturbation theory: 

where q,, ~ f ,  are  the free Green functions of electrons 
and ad, %*, a- are  the Green functions of ph~nons.'~' 
Equation (18) yields the well-known expression (here , and x, are  the static and high-frequency permittivi- 
ties): 

For electrons of energy &,=A, the damping i s  

The system of kinetic equations (12) and (131, togeth- 
e r  with Eq. (19), describes completely the dependences 
of the electron and magnon distribution functions on the 
pumping rate. 

3. INTEGRAL EQUATION FOR N(q) 

If we ignore the interaction of the nonequilibrium 
magnons with one another, we find that the oper*or 
frn(N'(9)) of Eq. (16) describes the relaxation of the 
nonequilibrium magnons because of their interaction 
with the equilibrium magnons ("test particle" relaxa- 
tion) and it can be rewritten in the form 

where the equilibrium distribution function i s  fl0'(q) 
= (exp(wdT) - 1)"and the magnon-magnon relaxation 
frequency is given by ' 

if the generated magnons a re  subthermal, and 

if the generated magnons a r e  suprathermal. Here, w, 
is the magnon spectrum, a is the lattice constant,, and 
the temperature is assumed to be T << T,. It should be 
noted that in r,(q) we may include not only the four- 
magnon exchange processes but also other types of mag- 
non relaxation. 

In the case of low values of q, when the four-magnon 
processes become unimportant, r,(Q) ceases to depend 
on qtll: The following integral equation for N(q) i s  ob- 
tained from Eqs. (12) and (13) if use is made of Eq. (21): 

Equation (24) resembles formally the expression for  the 
magnon distribution function under parametric pumping 
conditions. However, in our case the frequency re is 
itself a functional of N(q) since the number of emitted 
magnons depends on f,(p), which i s  the distribution 
function of electrons with spin against the field and 
which-according to Eqs. (13) and (15)-is itself gov- 
erned not only by the pumping rate g(c,) but also by 
some average Z(O) of the distribution function of the 
emitted magnons. Therefore, the behavior of N(q) i s  
different from that in the case of parametric pumping. 

4. ASYMPTOTIC BEHAVIOR OF THE DISTRIBUTION 
FUNCTION N(q) AT HIGH PUMPING RATES 

We shall f i rs t  consider the isotropic situation when 
rrn(q) and r,(q) a re  independent of the direction of q. 
Then, 

p, = (2rnt)'I2. Here, v = 2-112~-2gvm312&'12 is the number 
of electrons transferred to the subband with spin against 
the field (per unit time and per unit cell). Substituting 
Eq. (27) into Eq. (241, and then Eq. (24) into Eq. (261, 
we obtain the following transcendental equation describ- 
ing the dependence of Z on the pumping rate v :  

where 

cp ( 9 ) ~  I a, 6(7 (P-q) ~e.'-o.-8:-.) - d 4  6 (7 (p-q) 182-o.-e:-,) . 

(31) 

We can easily see that the functions @(q) and a re  
bounded. 

We shall introduce P(v) = Z(v)/v, where f satisfies 
the equation 

Figure 2 shows the graphical solution of Eq. (32). The 
curve represents the right-hand side of Eq. (32) con- 
sidered a s  a function of 5 and the horizontal line cuts 
off (on the ordinate) an intercept equal to v. The point 
of intersection of the line and curve gives the solution 
of the equation. For low values of v, we have 

An increase in v reduces the function 5 which tends to 
a certain constant value f,, which coincides with the 
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FIG. 2.  Graphical solution of 
Eq. (32)  for C ( V )  in the iso- 

I I 
tropic case. 

upper limit of @(q). Consequently, asymptotically, we 
find that 

z ( v )  - t w v + z l  ( v ) ,  lim ZI ( v )  -0. 
*-.a 

The asymptotic behavior of the distribution function 
N'q) requires also the determination of the dependence 
of Z ,  on v. There a r e  two possible situations. 

1. The upper limit of the function @(q) may be i t s  
maximum. We shall use q* to denote the point a t  which 
this maximum occurs and we shall expand $(q) in the 
vicinity of q*: 

We shall substitute this expansion into Eq. (28) for Z 
and assume that *i(q) i s  a smooth function of q near q 
= q*; after integration we obtain: 

This formula is valid if the higher terms of the expan- 
sion a r e  ignored in Eq. (35) and if the second term in 
Eq. (36) is less than the first ,  i.  e. , if v> vf = max(vi, v2), 

Thus, at high pumping rates the distribution function 
N(q) is 

Hence, 

Consequently, a t  pumping rates higher than the critical 
value only those magnons a re  generated whose momenta 
lie within a narrow range near q*. The width of this 
interval decreases a s  v" and the number of magnons in 
this interval r ises  a s  v2. 

2. Let us now assume that the upper limit of the 
function @(q) is reached at a point q* such that @'(q*) 

# 0. For simplicity, we shall assume that ~ ( q )  = 0 if 
q <q*. Then, expanding @(q) in terms of the powers of 
q -q*, we shall rewrite Eq. (32) in the form 

At high pumping rates,  i. e. , when 5 - t,, the contribu- 
tion made to the above integral in the interval of q close 
to q* i s  proportional to (5 - 5,)". Therefore, introduc- 
ing the cutoff parameter qi +q* in Eq. (42), we obtain 
the following equation for  5 which is valid with loga- 
rithmic precision a t  high pumping rates: 

Hence, i t  follows that if 

then 

Z=VQ (q') +vqr I @'(q') I exp (-vivC1') .  

Consequently, 

1I1(q)= 
@ ( q )  + N O 1  ( q )  0 (!I.) 

@ (Q.) -@ ( q )  +q,W (9') esp(-v/v.") ' 

and hence 

q-q'aq, exp -- . ( ,:I1 1 
For q -q* >> qi exp(- v/v:'), the distribution function is 
independent of the pumping rate and is described by 
Eq. (41). 

Thus, i f  a t  a point where the function @(q) reaches 
i ts  upper limit it has either a kink o r  changes very 
abruptly, the magnon generation interval decreases 
exponentially with increasing pumping rate and the 
number of magnons whose momenta a r e  q = q* r i ses  
equally rapidly with the pumping rate. The critical 
pumping rate v: i s  governed completely by the functions 
0, and * known for each specific case. In general, only 
the preexponential factors in Eqs. (46) and (47), depend- 
ing on the cutoff parameter qi, remain indeterminate. 
It follows from the foregoing analysis that no matter 
how fast the pumping rate, the frequency of magnon 
generation re is less  than the frequency of magnon re-  
laxation r,, so that the magnon system i s  always sta- 
ble. This is associated with the above-mentioned de- 
pendence of re on the level populations in the subband 
with spins against the field. As the pumping rate is in- 
creased, not only does the numerator in Eq. (25) be- 
come larger,  but the function Z in the denominator in- 
creases and N(q) r ises  with v in such a way that the 
function Z remains finite. 

5. DETERMINATION OF THE CRITICAL PUMPING 
RATE 

Realization of the f i rs t  o r  second regime and the 
critical pumping rate depend on the relationship be- 
tween the electron energy & in the subband with spin 
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against the field and the damping of electrons by opti- 
cal phonons in the subband with spin parallel to the 
field. We shall consider first  the case of weak damping 
and go to the limit y-0 in Eq. (31) for cp(q). Then, 

In the majority of cases I',(q) can be regarded a s  a 
power function of q: rm(q) = r ,(P,)(q/~~)~. In particular, 
if rm(q) is governed by the magnon-magnon exchange 
scattering and a gap in the magnon spectrum can be ig- 
nored, i t  follows that j3= 4 for the subthermal magnons 
[see Eqs. (22) and (2311. It is clear from Eq. (49) that 
the upper limit of @(q) is reached at the point q =q* 
=Po - p,, where @'(q*)t 0. This means' that at pumping 
rates higher than the critical value, only the magnons 
with momenta exponentially little different from q* are  
generated and the number of magnons in this exponen- 
tially narrow interval r ises  exponentially with the 
pumping rate. The critical pumping rate can be found 
from Eqs. (291, (441, (481, and (49): 

Since in this case the function al(q) vanishes for q> Po 
+ p , and also we have po + p, -q* = 2p, << Po, there is no 
need to introduce an indeterminate cutoff parameter for  
the integral (421, and qi in Eqs. (46) and (47) for N(q) 
and Aq should be replaced with 2p,, so that!'' 

Pa p + i  v 

Aq=7,p. exp - -- ( (52) 

The physical meaning of the characteristic pumping 
rate vo can be understood a s  follows: The ratio of the 
rate of magnon generation to the rate of magnon relaxa- 
tion rJrm reaches its upper limit at  q =Po -p, and its 
lower limit (where it vanishes) a t  q =Po + p,, i. e., there 
is an excess generation at the left edge of the interval 
compared with the right edge. As a result of stimu- 
lated emission, this asymmetry increases with the 
pumping rate. Therefore, nonlinear generation begins 
when the difference between the number of the non- 
equilibrium magnons at  the ends of the interval becomes 
comparable with the number of the equilibrium magnons, 
i.e., when 

o r  r&?/po-rrn. It follows from Eqs. (26) and (27) that 
if ~(9)-N")(q) ,  then the magnon generation (emission) 
frequency is re- Tvpom/pcpge , i. e. , nonlinear genera- 
tion begins at  pumping rates 

We shall now allow for the influence of the damping 
of electrons whose spin is parallel to the field. If y t  0, 
then @i(q) and @(q) a re  finite for all values of q satis- 

fying the inequality &,,, > no. The function cp(q) has a 
maximum at q =Po and the lower the value of y, the 
sharper is this maximum. On the other hand, if /3 > 1,  
the quantity G1(q) r ises  on reduction of q. Therefore, 
the function @(q) may have a maximum at q =Po and also 
another maximum at low values of q. Estimates indi- 
cate that for a< (A/S~~)(")/~, the upper limit of @(q) is 
reached a t  q =  Po, i. e.  , effectively only the magnons 
with the momenta q =  Po a r e  generated. Assuming that 
this inequality is satisfied, we shall replace y(pi - q) in 
Eq. (31) for ~ ( q )  with y(Po), which makes i t  easy to car- 
ry  out the integration: 

2m A-q2/2m+p,q/m ) ( A-q2/2m-p.q/m ) 1 
v ( q ) = - [ m u (  . -arctg 

P*Q r Y 

(53) 
If y<< ~ ( E A ) ' ~ ~ ,  the arguments of a rc  tangents in Eq. 
(53) a r e  large so that 

The position of the maximum of the function ~ ( q )  de- 
pends on the ratio of y and & . If y << n(B + I)& i ,  the max- 
imum occurs at  a point 

and throughout the range of q-with the exception of a 
very narrow interval po - p, 6 q 6  q* -the function ~ ( q )  
is almost independent of y. This means that at  pumping 
rates exceeding vo the generation interval Aq and the 
number of magnons N(q) in this interval vary exponen- 
tially in accordance with Eqs. (51) and (52) until Aq 
contracts to a width of the order of 

A further increase in the pumping rate results in a 
change from the exponential to power-law magnon gen- 
eration, which is described by Eqs. (40) and (41) and 
now v: differs logarithmically from vo. 

If n(P+ I)& < y < 2(&h)'I2, the maximum of the function 
~ ( q )  is displaced from the point q* = po -p, to the point 
q* = Po and throughout the nonlinear range we have the 
power-law r ise  of N(q). The critical pumping is then 

Finally, if y> 2(&~)'/ ' ,  the denominator ~(y(p ,  -q) 
x I E: -&La - w,) can be simplified by dropping the term 
p,q/m-p,p,,/m, which is small compared with y; then, 
the integrand ceases to depend on the angles and ~ ( q )  
is given by 

The function @(q) still has a maximum at q= Po and the 
critical pumping rate is 
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6. INFLUENCE OF THE ANISOTROPY. INSTABILITY 
OF THE MAGNON SYSTEM 

Narrowing of the interval of effective magnon genera- 
tion considered above i s  due to the fact that the magnon 
generation conditions are optimal for certain values 
q = q*. Clearly, if the ratio of the magnon generation 
rate r,(g) to the relaxation rate l?,(q) i s  an anisotropic 
function of the wave vector q, the distribution function 
N(q) becomes strongly anisotropic in the nonlinear re- 
gion because of stimulated magnon emission. The an- 
isotropy of I',(q)/r,(q) may partly be due to the anisot- 
ropy of the magnon spectrum associated with the di- 
pole-dipole interaction. As a rule, we have D&>> 8npM, 
where D is spin-wave "stiffness," p i s  the Bohr magne- 
ton, and M is the saturation value of the moment. 
Therefore, the spectrum of magnons with wave vectors 
q =Po can be represented in the form 

where X = 4nW/woo<< 1 and 9, is the angle between the 
directions of the vectors q and M. We shall assume 
that the generated rnagnons a re  subthermal; then, ac- 
cording to Eq. (221, the dependence of r, on the angles 
is  given by the same factor (1 + X sin29,). 

The quantity ~ ( p )  given by Eq. (26) now depends gen- 
erally on the angle between the vectors p and M and it 
satisfies the equation 

Z(P) - TUN''' ( 4 6  (7 (p-q) l e,4-e:-q--o,) 
7 -  - 7  

6(y (p-q) le:-~-.-a.)gd(e.~-e)d~p 

which reduces to Eq. (28) for X = 0. 

The general form of Eq. (59) cannot be analyzed. We 
can obtain its solution in two limiting cases, when the 
function 2 is independent of the direction of p. 

1. We shall first consider the case when the damping 
y i s  strong so that y>> ~ ( E A ~ L ) ~ ~ .  Then, 

Equation (59) for Z(p) becomes 

To  within terms of higher order in respect of the pa- 
rameter &/po, we find from Eq. (61) the following 
transcendental equation for b(v) = ~ ( v ) v ' ~ .  

The results of the preceding section for the isotropic 
case can be deduced from Eq. (62) i f  the argument of 
the arc sine is  small, which corresponds to pumping 
rates v<< T V ~ ~ A ' ~ X " ~ .  This inequality shows that even 

FIG. 3. Graphical solution of Eq. (62) for L(v) in the aniso- 
tropic case. Curve 1 represents the right-hand side of the 
equation. Straight lines 2, 3, and 4 represent the left-hand 
side of the equation; v rises with the number of the curve. 

a slight anisotropy becomes important if the pumping 
rate i s  sufficiently high. Figure 3 shows qualitatively 
the graphical solution of Eq. (62). This equation has a 
real solution if  the pumping rate v is less than a certain 
critical value Ti, for which the straight line in Fig. 3 
passes through the point A. It follows from Eq. (62) 
that 

~ubitituting Eqs. (63) and (64) into Eqs. (24) and (251, 
we obtain the magnon distribution function at the crit- 
ical pumping rate: 

If q =Po and 9, = 0, the denominator of the above expres- 
sion vanishes. 

Thus, the steady-state solution of the system of ki- 
netic equations (12) and (13) exists in this situation only 
for pumping rates lower than 5. When the pumping rate 
reaches 3, the number of those magnons whose momenta 
are equal to po and which are directed along the mag- 
netization rises exponentially with time to some value 
which is clearly limited by nonlinear processes in the 
nonequilibrium magnon system itself. 

We recall that in the isotropic case the magnon sys- 
tem i s  stable at any pumping rate because of feedback 
relationship between the magnon emission frequency 
and the population of the band A in the subband with 
spin against the field. In the anisotropic situation con- 
sidered here this feedback is ineffective since the di- 
vergence of N(q) for a fixed direction of the wave vector 
q does not result in divergence of the function Z and, 
therefore, the rate of loss of electrons from the sub- 
band with spin against the field-proportional, according 
to Eqs. (15) and (26), to the function 2-remains finite. 
Thus, this example shows that an instability of the mag- 
non system may appear because magnons are not gen- 
erated directly by photons but by an intermediate sys- 
tem, which a r e  the electrons with spin against the field. 

2.  In the second case the damping goes to the limit 
y - 0 and then the dependence of Z on the direction of p 
can be ignored only if P,<< p& and v<< v&n(poX/p,). 
Then, in the delta functions in the numerator of Eq. (59) 
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we can substitute p = 0; consequently, we obtain q =Po. 
In other words, this approximation implies that all the 
generated magnons have the same momentum Po. In 
this approximation the ratio rJr, is the function of 
just one variable, the angle a,, and it reaches its upper 
limit a t  the points where 9, = 0 o r  r, where the deriva- 
tive is 

Therefore, the divergence of the generated magnon 
beam decreases exponentially with increasing pumping 
rate. Calculations similar to those in See. 4 show that 
for v> 2vg,/p,~' /~,  

i. e., the number of magnons with momenta in the an- 
gular range 

r i ses  exponentially with increasing v. s ow ever, we 
recall that this solution is valid only if v<< voln(po~/p,), 
because the nonmonochromaticity of the magnon beam 
increases with rising v. 

7. STRONG ELECTRON-ELECTRON INTERACTION 

If the density of nonequilibrium electrons a t  the bot- 
tom of the conduction band is sufficiently high, the elec- 
tron-electron collision frequency may be higher than 
the electron-magnon frequency. This has two impor - 
tant consequences. First, the population of the levels 
in the band B of the subband with spin parallel to the 
field is low irrespective of the degree of interaction of 
electrons with optical phonons. Second, the electron 
distribution function in the subband with spin against the 
field is Maxwellian (or Fermi-type) with an effective 
temperature T* identical with the electron temperature 
a t  the bottom of the subband with spin parallel to the 
field but generally different from the lattice tem- 
perature: 

The normalization constant C is found from the condi- 
tion of balance of the number of electrons pumped to the 
subband with spin against the field and transferred to 
the subband with spin parallel to the field (the latter 
process is accompanied by magnon emission). Conse- 
quently, we can find C by substituting in Eq. (13) the 
expression (67) for f,(&J and summing over all the 
states. If we confine ourselves to the case of small 
damping, y<< T*, we find that in the first  order in y/T* 
the normalization constant is given by 

where pT = ( 2 r n ~ * ) ~ / ~ .  

Equations (141, (67), and (68) give us  the frequency of 
relaxation of magnons by interaction with electrons: 

We shall introduce 

According to Eqs. (24) and (70), Z satisfies the equation 

d q  q  ( i+X( ' )  ( q )  ) ~ - ~ j * . ~ ~ ~ ( - $ )  O n-9r j ( I - V ~ D ~ ( ~ ) I Z )  

The function a2(q) has a maximum a t  q =Po (to within 
terms of the order of pT/po). 

The structure of the integrand in Eq. (71) i s  the same 
a s  in Eq. (28) and, therefore, at high pumping rates the 
main contribution to the integral i s  made by q near Po, 
s o  that integration with respect to dq can be carried out 
from zero to infinity. Consequently, Eq. (71) reduces 
to the form completely analogous to Eq. (28). Thus, 
we reach the conclusion that in the case when the elec- 
tron-electron interaction predominates over the elec - 
tron-magnon interaction and the damping y i s  weak, the 
nature of the dependence of N(q) on v a t  high pumping 
rates (v>> 2rvop,/p,) is the same a s  in the case when the 
electron-magnon interaction predominates and the 
damping i s  y> &: 

8. CONCLUSIONS 

The results obtained in the preceding sections a r e  
based on the assumption that the population of the states 
B in the subband with spin parallel to the field i s  small 
compared with the population of the state A in the sub- 
band with spin against the field; in other words, it is 
assumed that the frequency of dropping of electrons to 
the bottom of the band with spin parallel to the field due 
to the electron-phonon o r  electron-electron interactions 
is high compared with the frequency of the electron- 
magnon collisions. However, we can show that the nar- 
rowing of the magnon generation interval occurs also 
when a "softer" condition is satisfied. In fact, i t  is 
sufficient that the frequency of dropping of electrons to 
the bottom of the conduction band be greater than the 
difference between the frequencies of arrival of elec- 
trons from A in B (accompanied by magnon emission) 
and loss from B to A (accompanied by magnon absorp- 
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tion). If the damping y, is much less than & and the 
dropping of electrons i s  due to interaction with optical 
phonons, this condition reduces to the inequality 

We shall now give some numerical estimates. The 
ferromagnetic semiconductor EuO i s  characterizedc8] 
by the following parameters: the permittivities a r e  'Ao 

= 25 and x, = 5; the optical phonon energy is 51, = 0.08 
eV; the exchange gap in the conduction band i s  A = 0.6 
eVS1; the magnon mass i s  3 3 0 m , ~ ' ~ ~ ;  the effective elec- 
tron mass is m = 0. 35mo. t"] Then, a! = 1.4, the damping 
constant is y -  0.06 eV, and the criterion y >> ~ ( E A ) " ~  i s  
satisfied by the electrons in the subband with spin 
against the field where their energy is c << 0.01 eV. The 
wave vector of the generated magnons is q =Po = 2.5 
x lo7 cm", w,,= 7 .4"K,  and a t  T >  10°K the magnons a r e  
subthermal. If we assume that r,(po) - 10' sec", we 
find that v, = lo2' sec" ~ m ' ~  and the narrowing of the 
generation interval begins from pumping rates vf 
= rryvo/A vd3. We also have X =  0.1 so that the insta- 
bility of the magnon system begins a t  F = v,. If & >>0.01 
eV (but< no), the inequality y << n(o+ 1)c applies and we 
then have p /pas A. Therefore, a t  pumping rates of the 
order of v, the angular divergence of the generated mag- 
non beam and i ts  radius decrease exponentially. 

For CdCr2Se, we can use the parameters taken from 
Ref. 12 and we find that a! - 0.1. The inequality (75) i s  
satisfied if the energy is c << 0.01 eV. Then, the damp- 
ing i s  given by y << n(o + 1)c , i. e.  , the generation inter- 

val at pumping rates v> vo should decrease exponentially 
in width. The critical pumping vo is still of the order of 
of sec" ~ m ' ~ .  

The authors a re  grateful to A. G. Aronov for valuable 
comments. 
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