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We study the fluxes along the spectrum for stationary power-law distributions of the radiation and for the 
relativistic electrons in a plasma turbulent reactor m), which is a model for cosmic ray sources. We 
show that the flux of relativistic electrons is proportional to the flux along the spectrum, and we 
detumine the normalization constants and the directions of the fluxes. We discuss the problem of the 
sources producing these fluxes. 

PACS numbers: 94.40.Cn 

1. INTRODUCTION. KOLMOGOROV CHARACTER OF mc2. Since we are considering one and the same pro- 
THE PTR POWER-LAW SPECTRA cess, each of the kinetic equations for the photon distri- 

bution N, and the electron distribution n, contains the It is well known that power-law energy (frequency) 
same combination of distribution functions w~an/ae +n, distributions are characteristic for many cosmic ray 

sources. Cosmic rays, the radio emission of discrete multiplied by u and the density of electron states za: 

sources, and also the optical, x-ray and y-ray emission 
in a number of cases show this behavior (see, e. g., 
Refs. 1 to 4). 

The explanation of the power-law spectra of radio 
emission as being due to spontaneous synchrotron mech- 
anismt3' led to a connection, which agrees well with ex- 
periments, between the exponents of the spectral density 
of the radiation wQ and the particle distribution c", 201 
= y - 1, which follows from the way the characteristic fre- 
quency w depends on the energy e of the emitting rela- 
tivistic electron 

provided the radiation leaves the source freely, that is, 
for small optical thicknesses. By virtue of the general 
character of the Doppler transformation of the frequen- 
cy, the relation (1.1) i s  realized regardless of the actu- 
al s 4 e r i n g  mechanism (Fig. I), which determines 
only the quantity wo, which has the meaning of the cy- 
clotron frequency for synchrotron radiation, of the plas- 
ma frequency or  frequency of the low-frequency photon 
for the inverse Compton effect, and so on. In this case 
the power-law spectrum of the particles is given. 

Equation (1.2) has been written down in the isotropic 
case, N, =Nu, n,=n, to which we restrict ourselves in 
the present paper. The PTR equations which take into 
account the differential nature of the electron energy 
transfer (W << E) have the formt81 

For the sake of convenience we give in Appendix 11 a 
quantum-mechanical derivation of the PTR equations 
which also holds in the isotropic case.2' 

The PTR equations admit two stationary power-law 
solutions. ['I One of them (y = 2, (Y = -$), found by Nor- 
man and ter Haar, corresponds to a constant flux of rel- 
ativistic electron number along the spe~trurn.~' ' The 
other (y = 3, (Y = -%) found by Tsytovich and Chikha- 
~ h e v [ ~ ' ' ~  corresponds, as shown below, to a constant en- 
ergy flux along the spectrum both for electrons and for 

Power-law distributions of both particles and radia- photons. 3' 

tion could be obtained for a system of relativistic elec- 
trons and radiation which are  scattered and contained by 
a turbulent plasma o r  by random magnetic fields." li 

L\ / 0 /  0 

ift 

In a plasma turbulent reactor (PTR) stationary power- 
law distributions are established as a result of the mu- 
tual cancellation of induced and spontaneous processes 
under conditions of large optical thickness, i. e., for /\ lower frequencies and energies than those in the spon- e ,, P 

taneous-emission region. Condition (1- 1) appears in the FIG. 1. The direct and inverse compton-effect processes with 
frequency dependence of the averaged scattering proba- the conversion of a plasmon 2 (or synchrotron mode) into a pho- 
bility only in the form u(w/e2), where we have already ton t ,  which determine the spectra of the relativistic electrons 
assumed that w is measured in units wo and & in units e and the photons in a PTR. 
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In the present paperwe introduce explicitly particle and 
energy fluxes along the spectrum and we find stationary 
power-law solutions of the PTR equations by requiring 
these fluxes to be constant. The electron distribution 
is normalized by the fluxes along the spectrum (Secs. 2 
and 3). This fact entails important physical conse- 
quences which refer to the model as  a whole. Indeed, it 
turns out that all solutions found in Refs. 5 and 6 refer 
to the "inertial" range which i s  positioned between the 
(wave and particle) sources and their sinks (the region 
where there i s  dissipation o r  where the particles and 
radiation leave freely), which a re  far from one another 
in energy space. 

Under the same general assumptions which led to the 
two solutions it turns out that the particle flux is direct- 
ed in the direction of larger energies (Sec. 2) while the 
total energy flux of electrons and photons i s  directed 
towards smaller energies (Sec. 3). The density of rel- 
ativistic electrons turns out to be proportional to the 
magnitude of the flux along the spectrum and it i s  thus 
necessary for the existence of power-law solutions that 
there exist sources (or sinks) which produce fluxes along 
the spectrum and which are  positioned with respect to 
the inertial range in accordance with the flux directions 
which are found, We note that the turbulent plasma by 
itself cannot produce such sources (see, however, Sec. 
4) and neither can the magnetic field; both occur in the 
PTR equations in the form of some statistically uniform 
and stationary external field that allows the basic inter- 
action process in the PTR, viz., the direct and the in- 
verse Compton scattering of an electron with the conver- 
sion of a plasmon into a photon (Fig. I), or  the synchro- 
tron process equivalent to it. 

The extraneous character of the source manifests it- 
self also in the fact that the power-law solutions of the 
PTR are, as is shown in Appendix I, in fact solutions 
of an inhomogeneous system which contains point 
sources (sinks). 

2. DIRECTION OF THE PARTICLE FLUX 

It is convenient to write the PTR Eqs. (1.3) and (1.4) 
in the form of continuity equations 

where the particle flux in energy space 

and the photon flux in frequency space 

are expressed in terms of the quantity S(w, E )  given by 
(1.2), where the remaining notation i s  also given. The 
existence of power-law solutions i s  connected with the 
symmetry of the system whereby the matrix element 

, 

given here depends on w/c2 only. For a power-law dis- 
tribution for the waves, 

N=A@-'", (2.3) 

which makes the equation homogeneous and makes the 
cancellation of induced and spontaneous processes pos- 
sible, ') and for a power-law particle distribution, 

the fluxes take the form - 
J,(~)=-~~~+'[SAB(~/,)+B(O)], B(\.) s I & z V u ( s ) > 0 ,  (2.5) 

From this it i s  clear that s = - 4 (y = 2) and 

correspond to a stationary solution of the set (2.1) with 
a constant, non-vanishing electron flux 

and a vanishing photon flux Jo(w) = 0. The constant terms 
in the definitions of the fluxes are chosen such that the 
fluxes vanish for equilibrium distributions (for details 
see Appendix I). At the same time the normalization 
constant in the photon distribution (2.3) guarantees the 
vanishing of the photon flux along the spectrum (i. e., 
the existence of a stationary solution of Eq. (2.4)) and is 
given unambiguously by (2.6); the electron distribution 
is according to (2.6') parametrized by the particle flux 
J ;. 

We show that i t  follows from (2.6') and a>  0 that J; 
> 0. To do that we consider the expression B(cY)B(@) 
- ~ ~ ( i ( a ,  + P) ) ,  a particular case of which i s  the factor in 
the normalization condition (2.6'). Using the definition 
of the moment (2.5) and symmetrizing we get 

. . 
1 (a-Et'& (=-El14 2 

- - j h d y  u ( x ) u ( y )  ( ~ y ) ' ~ ' " ~ ~  [($) - (f) ] 20. 
2 

whence it follows that J $ >  0, i. e., the flux is in the di- 
rection of larger electron energies. Indeed, 

a+B B ( n l ~ ( $ )  -BZ (T) =I dx d y  u ( z ) u  ( y )  [ ~ * y ~ - ( r y ) ( ~ + @ " '  1 
1 

= - 2 j & d y  u ( r ) u ( y )  [t"yE+bya-2(ry)'"+B'/'], 

which leads to (2.7). For the existence of the stationary 
distribution 

we need thus an electron source in the region of low 
(relativistic) energies and a sink at high energies. The 
latter can easily be realized due to the fact that high- 
energy electrons leave the trap. We discuss a possible 
realization of a source in Sec. 4. 

3. DIRECTION OF THE ENERGY FLUX 

We now write the PTR equations in the form of conti- 
nuity equations for the energy: 
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1 a 1 a 
€ti,+--Jl(e)-0, md,+- -J , (o )=O,  

eZ ae o2 (10 
(3.1) 

where we have introduced the energy fluxes along the 
spectrum 

For the power-law distributions (2.3) and (2.4) these 
fluxes are equal to 

It i s  clear from (3.3) and (3.3') that a solution with con- 
stant, non-vanishing energy fluxes J1(c)- J! and Jl(w) - J: is possible when 

In that case the dependence of the fluxes on & or w van- 
ishes, on the one hand, and, on the other hand, the nu- 
merators in (3.3) and (3.3') vanish at the same time as 
the denominator (s + 5). Such behavior i s  quite typical 
of power-law distributions (first-order zero in the col- 
lision integral of the kinetic equation'"l) and has a sim- 
ple physical cause: the necessary presence of a point 
source (sink) at small energies (frequencies) for solu- 
tions with fluxes along the spectrum (see Appendix I). 

Resolving the indefiniteness in (3.3), (3.3') we see 
easily that for the solution (3.4) the normalization con- 
stant of the electron distribution can be expressed in 
terms of the total flux along the spectrum J1 = J ;  + 4:: 

J ,  B' (0 )  B (I/,) -B (0 )  R' ('I2) -= 
dB (v) , B' (v) =S -- 

a 2 B ( 1 / l )  dv ' 
(3.5) 

Since a >  0, J1 has the same sign as the enumerator in 
(3.5). We show that the latter i s  always negative. To 
do this we consider the expression B'(~)B([ + a )  - ~ ( 5 )  
X B ' ( ~  + a). Using the definition (2.5) of ~ ( v )  we get 

Hence it  follows that 

sgn [ B ' ( i ) B ( f + a )  -B(Z)B'(E+a) ]=-w x.  (3.6) 

In our case 5 =0, a =%, i. e., J1 < 0: the total energy 
flux along the spectrum is in the direction of lower en- 
ergies, 

At the same time the partial fluxes J; and J :  may have 
different signs, provided only that J! + J: < 0. 

4. THE PROBLEM OF THE SOURCES 

The general energy sink must thus for the realization 
of the solution with s = - 5 (y = 3) be at low energies (fre- 

I Source ,. ( r - 2 )  I ~ n k ( ~ - 2 )  

' I r=2 

+' 7-3 i' 
Sink (r  -3) Source ( r -3 )  

FIG. 2. Schematic picture of the inertial ranges and the re- 
gions where the source and the sink play a role in a PTR. 

quencies) and the source at high energies. Between 
them there i s  an "inertial range" with a power-law dis- 
tribution y = 3 and in the region of energies which are  
larger than the energy of the source a power-law distri- 
bution with a particle flux (y = 2) may leave the system, 
see Fig. 2. It i s  immediately clear from (2.5) and (3.3) 
that the solution (2.8) with a constant flux of electrons 
corresponds to non-vanishing energy fluxes both for the 
electrons and for the photons. Similarly, for the solu- 
tion (3.7) the electron and photon fluxes vanish while the 
energy fluxes along the spectrum are constant. The 
power-law distributions are  thus single-flux distribu- 
tions and for their realization it is completely necessary 
that there are  (energy or particle) sources and sinks 
(which correspond to one another) which have a distance 
between them in energy space. 

It seems to us that the problem of the sources which 
produce fluxes becomes the main physical problem in 
PTR theory which has not yet been discussed in the lit- 
erature. Usually, it is naturally assumed that the ener- 
gy source is plasma (Langmuir) turbulence. We note, 
however, that the plasma in the PTR theory does not 
appear as a dynamic system, but plays the role of some 
external field guaranteeing the possibility of bremsstrah- 
lung. In the main order in w,/w and mc2/& (see Appen- 
dix 11) which corresponds to Eqs. (1.2) to (1.4) the total 
energy of the electron-photon system 8 can change only 
due to extraneous sources producing an energy flux. 
Indeed, 

0 0 

or, using the kinetic Eqs. (1.3), (1.4) 

For distributions which decrease rapidly enough at the 
origin and at infinity, for which we can in (4.1) change 
the order of integration over & and w ,  while the inte- 
grated term which arises when we integrate by parts 
vanishes, it follows from (4.1) that the total energy i s  
conserved: 

However, the more general distributions which are of 
interest to us with non-vanishing fluxes along the spec- 
trum do not possess these properties at all. For them 
there follows from (4.1) and the equations of continuity 
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(3.1) and (3.2) a general expression for the energy con- 
servation law in a system which is open along the spec- 
trum 

~ - - [ J ~ ( E ) + J ~ ( o )  1 (4.2) 

-the change of the total energy is determined by the 
difference of the fluxes leaving and entering the system. 
Hence i t  follows at once that stationary power-law solu- 
tions of the PTR equations with constant particle fluxes 
(2.8) and energy fluxes (3.7) lead to 9. = 0, by virtue of 
Jl(0) = J ~ ( W ) .  Similarly, the conservation of the total 
number of particles 

requires that the particle flux leaving and entering "the 
spectrum" a re  equal, 

Thus energy (and particles) flow into the PTR system 
of waves and particles from the turbulent plasma, and 
the fluxes a re  determined by extraneous sources. 

The role of the turbulent plasma may, however, be 
important and must therefore be included explicitly in 
the system. As a source one might, for instance, in- 
voke the collapse['21 of Langmuir waves (cf. Ref. 7) 
leading to statistically uniform acceleration of the par- 
ticles in the plasma, o r  other acceleration mechanisms 
caused by plasma turbulence, while a source may be a 
mechanism of collisions with the basic plasma particles 
at low energies or  the departure of particles from the 
reactor at high energies. The power of the source will 
then be determined by the power dissipated by the plas- 
ma turbulence. In turn, the plasma must be excited by 
an extraneous mechanism, for instance, a o r  
convection, and so on. However, this way of transfer- 
ring energy from plasma turbulence to the PTR requires 
a separate detailed discussion and at the present mo- 
ment constitutes a patent difficulty in the PTR theory, 
in particular for the apparently quite suitable (see Ref. 
7) spectrum with y = 3 for which a source at high ener- 
gies is necessary. At the same time it  does not contra- 
dict present-day ideas about the structure of cosmic 
sources. L3s61 

The discussion of the analogy with Kolmogorov turbu- 
lence may, apparantly, be of wider interest than the 
particular PTR problem. This character manifests it- 
self also in other astrophysical systems with power-law 
 distribution^^'^^ and, possibly, can lead to an answer to 
the question whether there a re  rather general reasons 
for the formation of such universal, essentially non- 
equilibrium distribution~ as a re  the power-law distribu- 
tions in the universe. 

The authors express their gratitude to S. Ya. Braude 
and S. A. Kaplan for stimulating discussions. 

APPENDIX I 

POINT SOURCE IN  THE KINETIC EQUATIONS AND 
POWER-LAW SOLUTIONS 

The stationary solutions (2.8), (3.7) lead to a 6-func- 
tion-like singularity (point source (sink) of particles o r  

of energy) on the right-hand side of the kinetic equa- - 
tion, 5 '  i. e., they a re  solutions of an inhomogeneous 
equation, if we consider i t  not only inside the inertial 
range, but also along the whole axis. We use an elec- 
trostatic analogyL141 and write the kinetic equation (for 
the sake of simplicity we consider one equation) with a 
source D 

.Tp=Icoll {.Vp} +D (I. 1) 

in the form of a continuity equation in p-space 

(I. 2) 

where 

d i v E ( p ) = - I , , l l  (A',), 4 a p ( p )  -D (1. 3) 

(the explicit form of I,,,, is here unimportant; i t  is only 
important that is conserves the particle number). The 
quantity E(p) has the meaning of a particle flux density 
in p-space, and p(p) that of a particle source density. 
In the stationary case (I. 2) takes the form of the Poisson 
equation 

div E ( p )  ='tap (p! . (I. 4) 

Since we can impose on the flux density an additional 
condition curl E = 0, the electrostatic analogy is clear. 
It is necessary for the existence of a stationary solution 
of Eq. (I. 1) that there be consistency between the source 
and the sink, which because of particle conservation, 

reduces to the equation 

This enables us  to consider a singularity (localized 
source o r  sink) at the origin only. In the f a r  zone (in- 
ertial range) 

(I. 5) 

The flux J per unit solid angle through the surface of a 
sphere of radius p (or, what is the same, the flux in 
modulo-p o r  energy space) is by Gauss's theorem simply 
the charge, i. e., the power of the source 

(I. 6) 

We state now that we a re  looking for a solution of the 
kinetic equation in power-law form with an unknown 
power. The singularity at the origin is then a power- 
law function (we use here the fact that the collision inte- 
gral is homogeneous) 

d i r E = e f ( n ) l p n  (1. 7) 

and the flux takes the form 
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(I. 8) 

Constancy of the flux (I. 8) corresponds to n = 3. How- 
ever, there then arises in (I. 8) a pole because the de- 
nominator vanishes. In order that J be finite the func- 
tion f (n) must have the form f(n) = (3 -n)q(n), where 
q(3) = 1 in accordance with (I. 6). The singularity de- 
scribed by a 6-function arises thus a s  the limit of a ho- 
mogeneous power-law expression 

3-n 
b ( p ) =  lim -. 

"-3-0 4 ~ p "  (I. 9) 

The appearance of the indeterminate form 0 : 0 in the 
flux (I. 8) and the first-order zero in Z,,,, (cf. Ref, 11) 
in the power-law representation of the solution are, 
according to (I. 3) and (I. 7), connected just with the 
point singularity (I. 9) at the origin.["' The expansion 
of the indeterminate factor in (I. 8) leads to a relation 
between the flux and the derivative with respect to the 
index of the collision integral which was obtained by 
~ ~ ~ Y [ l l l  

which is in a number of cases convenient both to deter- 
mine the exponents and to normalize the spectra. We 
note that the limiting transition is accomplished for the 
class of functions which is integrable at the origin (n 
c 3). 

The whole discussion differs for the energy flux by the 
presence of a factor q which is included both in Id, and 
in the source density. The solution with a constant par- 
ticle flux is thus a stationary solution of the inhomoge- 
neous PTR equations with a point source of particles 

1 = 
d o  S+4xJOe6 ( p )  , St = - j de S ,  

w3 0 

(I. 10) 

while the solution with a constant energy flux is a sta- 
tionary solution of the equations 

wLyt = I d e  S+4xJ,p6 (li). 
w2 

(I. 11) 

The fluxes J f  and J :  do not directly determine the pa- 
rameters of the distribution, but a re  connected with the 
quantity 

1' 1 d 
L=B - - ( S A ) I . - ~ ~ .  

( 2  I d s  
(I. 12) 

B ' ( 0 )  - 

whence follows (3.5) and the condition J :  + J :  < 0. 

We note that the choice of the integration limit in Eqs. 
(3.2) for the energy fluxes is determined by the nature 
of the limiting transition in (I. 9) and corresponds to such 

a choice of constant in the definition of the flux that i t  
equals the power of the source. Correspondingly, the 
lower limits in (3.2) must be zero (s + 5 - + 0) and the 
limit in (2.2') be equal to infinity which then leads to 
Eqs. (3.3) and (3.3') for the energy f l u e s  (s - 5) and 
(2.5) and (2.5') for the particle fluxes (s < - 3). 

APPENDIX II 

DERIVATION OF THE PTR EQUATIONS BY MEANS 
OF THE QUANTAL KINETIC EQUATION 

We consider for the sake of argument the processes 
of the direct and inverse Compton scattering of elec- 
trons with the conversion of a plasmon into a photon 
(Fig. I). The quantum analogy enables us to write down 
immediately the kinetic equation for the photon distribu- 
tion in the form 

where the probability for the process is 

and ft is a combination of the distribution functions 
which for n,<c 1 and N:, >> 1 (AT:. is the plasmon spectral 
density) has the form 

Using the fact that k', k <<pt, p and introducing Ak = k  
-kt we integrate with respect to p' and expand the quan- 
tities U and n in terms of Ak: 

where 

The kinetic equation for n, takes into account the cancel- 
lation of the process corresponding to Fig. 1 and the one 
obtained from it by the substitution p # p' and hence, 
contains two terms: 

where 

Because of the principle of detailed balancing W$ l I Y ,  

= w:!,,~. and the main term in the expansion in Ak van- 
ishes. After integration over p' the equation has the 
form 

rip = j dk'h':. j d k [ 0  ( p + A k .  p) -cD ( p .  p - A k )  1, 

where 

9 (p ' .  p ) = u ~ f , ~ l t , [ n , ~ + ~ t ' ( n p ~ - ~ ~ , )  I .  
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Expanding in Ak we get 

Equations (II. 4) and (11.8) form the se t  which describes 
an anisotropic PTR. An additional symmetry ar ises  for 
isotropic distributions in the physically interesting case 
of<< w'. As before it is then necessary to retain w' in 
the matrix element and the conservation law (II. 51, lead- 
ing to (I. I) ,  but we can omit i t  in the operators 

Thanks to this the same matrix element, averaged over 
the angles occurs in both kinetic equations: 

and we have split off a factor 

where (2n)'wf is the total energy of the plasma turbu- 
lence (or of the random magnetic field in a synchrotron 
reactor). As a result the se t  of PTR equations takes the 
symmetric form: 

Finally, the representation of w in the form 

(n. lo) 

(which changes (II. 10) to the form (1.2) to (1.4)['] after 
the change to the variables w/wo and &/mc2 and to the 
functions N(w)- ~ r ( w / w ~ ) ,  n ( ~ )  - ~ ' ~ n ( c / r n c ~ ) ,  =mc2/wo) 
is determined by the relativistic invariance proper- 
ties. [15*61 

"such a system, which has received the name turbulent reactor 
o r  plasma turbulent reactor (PTR) has been considered in de- 
tail by Kaplan and ~sytovich[" and by Norman and te r  Haar. 16] 
The equations describing it in the form suggested in Ref. 6 
and which explicitly use the symmetry of the system will be 
written down below. We note that the turbulence occurring in 
the name PTR refers to a plasma and not to the radiation or 
the electrons and does not have a direct relation to the analogy 
with Kolmogorov turbulence which i s  discussed below. 

"see Ref. 7 for a detailed reference to the literature on PTR. 
We note that the basic PTR equations in this review (Ref. 7) 
a re  given with an unfortunate mistake (the factor c2 in (1.2) is 
omitted). 

3 ) I n  Ref. 6 the constancy of the electron energy flux along the 
spectrum was assumed, but an attempt to prove it was based 
upon an integral conservation law which was inadequate for 

the problem (cf. Sec. 4). We note that under the PTR condi- 
tions a and y a r e  not yet connected through the relation 2u 
=y-1.  

''The functional simplicity of the stationary Kolmogorov (power- 
law) spectra a r e  in an essential way connected with the sym- 
metry of the system. In hydrodynamic and plasma systems 
this is  the absence of distinguished scales (self-similarity) 
leading to the homogeneity of the equations. The possibility 
to study such systems analytically was first noted by Zakha- 
rovtB1 and is  connected with this homogeneity which enables 
us to find solutions of the kinetic equations of weak turbulence 
(see Refs. 9, 10). The symmetry of the PTR equations man- 
ifests itself in the w/c2 -dependence of u . The spectrum (2.3) 
when the electron distribution i s  (2.4) leads to the fact that 
S(w, E )  also depends on w only in the combination w/c2 and 
this leads to the homogeneity of the PTR equations required 
for the existence of power-law solutions, a s  first noted by 
Norman and te r  Haar. 

5)0f course, the source is a point source from the point of view 
of the "far zone9'-the inertial range in which the solution 
with arbitrary sources goes over into its (power-law) asymp- 
totic behavior. 
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