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The energy spectrum of excited molecules is considered. At an excitation energy higher than critical (E,) 
the integrals of motion that supplement the total energy are violated, and the trajectories become 
stochastic. In this case, the general picture of the behavior of the trajectories in phase space is the same 
as for the motion of particles that are scattered by arbitrary surfaces of negative curvature ("~inai billiard 
table"). Starting from the analogy between the motion of atoms and the motion of particles in ~ ina i  
billiard tabk, quantization rules that determine the statistical distribution of the levels in the region E > E, 
are obtained. Universal law is derivd for the probability of the distance AE between the nearest levels 
(as AEdO), namely bqv, where v-' is of the order of the growth rate of the instability of the 
trajectories on the Sinai billiard table. The appearance of a low-frequency "tail" in the vibrational spectra 
of nonradiative transitions of the dissociating molecule is predicted and its shape is determined. 

PACS numbers: 31.50. + w 

'1. INTRODUCTION nian that describes the stochastic motion of the system 

At sufficiently high excitation energy of heavy nuclei, 
the shell structure of the energy levels is distorted so 
strongly and irregularly that a statistical description of 
the energy spectrum becomes more suitable for the real 
situation. The authtrs of this idea, Wignerc" and Lan- 
dau and ~ m o r o d i n s k i i ~ ~ ~  have pointed out also one funda- 
mental singularity connected with the unusual interpreta- 
tion of energy as a random variable: for levels of one 
symmetry the probability P(AE) of observing two neigh- 
boring levels at a distance AE from each other should 
tend to zero as A E -  0 (the level "repulsion" principle). 
A statistical theory of level distribution was constructed 
by  son^^' on the basis of the hypothesis of the equiva- 

at E>E,. It should be noted that the first to formulate 
the problem of quantization of a system with violated in- 
tegrals of motion was   in stein,"] in connection with 
Poincarg's result that the three-body problem is non- 
integrable. In a particular case, the problem of the 
spectrum of electrons "glancing" along a non-ideal metal 
surface in a magnetic field was solved for E >  E, inc"]. 
A discussion of certain properties of the energy spec- 
trum at E>E, was presented by ~ercival ,~" '  and an ex- 
tensive numerical analysis of the levels of diatomic and 
triatomic molecules in the region where the integrals of 
motion a r e  violated was carried out by Rice and co- 
worker~!~' 

lence of the distribution of the levels and eigenvalues of It is seen from the foregoing that it has become neces- 
an ensemble of random matrices of definite symmetry. sary to examine from a different standpoint the struc- 

The present paper is devoted to further development 
of these ideas for the purpose of determining the energy 
spectrum of strongly excited molecules. In contrast to 
nuclei, we succeed here in deriving, from rather gener- 
al considerations, a certain universal level-distribution 
law characterized by a probability P(AE). There is no 
need to introduce any hypothesis, and the form of 1 (AE) 
is uniquely determined by the properties of the Hamilto- 
nian of the molecule. 

ture of the energy spectrum of complex systems, partic- 
ularly molecules. This is important not only from gen- 
eral physical considerations, but also in connection with 
different applications (for example, to the theory of dis- 
sociation of molecules and to the theory of the velocities 
of monomolecular reactionsc"'). Subject to limitations 
of quite general character, quantization rules a r e  de- 
rived in the region of stochastic violation of the integrals 
of motion, and the law of distribution of the distances 
between nearest levels is determined. 

If the molecule has M degrees of freedom, then in the 
fully-integrable case there a re  exactly M integrals of 2. QUANTIZATION RULES 
motion, to which M quantum numbers correspond. At an At sufficiently high molecule-excitation energies, we 
energy exceeding a certain critical value E,, some of can confine ourselves to the quasi-classical asymptotic the integrals of motion may be violated because of the approach. It is necessary in this connection to deter- nonlinearlity of the Hamiltonian. The classical trajec- mine the general picture of the behavior of classical tra- tories of the system become stochastic, whereas at E jectories of the system in phase space in the case of 
<E, these trajectories were conditionally periodic. The stochastic violation of the integrals of motion. It can be 
stochastic mechanism of violation of the integrals of mo- stated[4l that the motion of such systems is analogous in tion has by now been quite well studied (seecc5'). It their main to the motion of particles in the "Sinai bil- operates already in a two-particle system, as  was nu- liards tableJ' in which a particle is elastically scattered mericau~ demonstrated a nmber of workerscul for by convex surfaces. Enamples of such billiards are 
different types of interaction potentials. shown in Figs. 1 and 2. Their study in connection with 

The question arises of the quantization of the Hamilto- the problem of the formulation of statistical mechanics 
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FIG. 1. 

was initiated by ~ r ~ l o v ~ ' ~ '  and carried out in the most 
general form by ~ i n a r .  Under the conditionc131 

where a i s  the radius of the scattering region in Fig. 1 
and R i s  the characteristic distance between these re-  
gions, the trajectories of the particles a r e  a random 
process of the Markov type.[lS1 In the molecule, the 
quantity a determines the characteristic radius of the 
scattering potential of the atom, and R is a function of 
the molecule energy: R =R (E). 

Thus, the equation 

R (E,) =a 

makes it possible to determine the critical molecule 
excitation energy above which the classical trajectories 
become randomized. The foregoing arguments can be 
easily understood by recognizing that R usually increases 
with increasing E. Then at R/a < 1 the potential wells 
become closely packed and the motion of eachatoml' 
takes place in a certain self-consistent field (in analogy 
with the model of independent particles in the nucleus). 
The system of energy levels has in this case a regular 
form. To the contrary, under the condition (2.1) the 
molecule becomes friable and, as will be seen below, 
it is precisely in this region that the level distribution 
has a random character. 

To determine the energy eigenvalues E, we use the 
expression for the response function 

where G(qU, q', E) is the Green's function and q i s  the 
aggregate of the coordinates. In the quasiclassical ap- 
proximation G takes the form 

G(qV, q', E )  =A exp i [S(qn, q', E)lf t+lp] ,  (2.4) 

where the action is 

and A and J ,  are  the pre-exponential factor and the phase, 

which can be determined. Since A and z,h necessitate ' 

small corrections to the quantization rules, they will 
henceforth be disregarded, and we confine ourselves to 
the result that is valid as A-0. 

We examine first the quantization rules that are  ob- 
tained in the presence of a complete set of integrals of 
motion, i. e., at E < Ec . We make use next of Gutz- 
willer's idea[lB1 and represent g in the form of a sum 
over all  the periodic paths of the classical particle. The 
expressions for g(E) i s  determined by the extremum of 
the function G, meaning that 

at q ' , '=q;=qi,  (i=1,2, ..., M), wherepi andpi' a r e r e -  
spective momenta at the initial and final points of the 
trajectory. The condition (2.6) means that at the saddle 
point the action S(q, q, E) which determines in accord 
with (2.3) and (2.4) the function G(q, q, E), i s  taken along 
a closed trajectory. In the stable case (E < Ec) such tra- 
jectories consist of periodic trajectories and S(q, q, E)  
=S(E), i. e., i s  independent of q. 

It is next necessary to use the fact that the expression 

is not only an invariant, but at E < Ec also a total dif- 
ferential. Therefore expression (2.5) for S does not de- 
pend on the form of the integration contour. Taking into 
account the foregoing and taking G(q, q, E)  in (2.3) out- 
side the integral sign at the extremum point, we obtain 

where Sn(E) i s  the action (2.5) taken along an arbitrary 
contour Il that is closed in phase space, and the con- 
stant is a function that depends weakly on E. 

At E <Ec the system moves along an M-dimensional 
torus and there exist M different closed trajectories 
C, (k = 1,. . . ,M) that cannot be contracted into a single 
point (in the sense in which they were defied by Ein- 
steincg1). Therefore expression (2.7) can be written in 
the form 

For example, at  M = 2 the term in (2.8), for which m, 
= m, = 1, corresponds to the phase-space trajectory 
shown in Fig. 3. _ _  
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The arbitrary term at M = 2 correspond to m, large 
loops and m, small loops in any sequence. Expression 
(2.8) is identically transformed into 

i. e., the poles g(E), which determine the eigenvalues 
of E, consist of the poles g,(E). From (2.9) follows the 
equation 

g~(E)=I+exp[iS~(E)lfilg,(E), 

whence 

At energies E > Ec but near the limit E,, the periodic 
trajectories change into random ones. Therefore the 
form of the trajectories in this transition region is quite 
complicated.['71 With increasing difference E - Ec (i. e., 
with increasing K in accordance with (2. I)), however, 
the degree of mixing of the trajectories in phase space 
becomes ever stronger, and the system distribution func- 
tions becomes ever more homogeneous. In this case 
the contours Cm(Ap) are equivalent in a statistical sense, 
independently of m, i. e., regardless of the number of 
the return of the system to the region Ap. By virtue of 
the foregoing, the properties of the set of values of 
s'"'(E) coincide for all m (as well as  in the statistical 
sense). It follows directly therefore that (2.12) can be 
rewritten in the form 

where s") (E) is the action exerted on the trajectory 
C(Ap) by the first return to the region Ap. From (2.14) 
we get 

g,(E) = (l-e~p[iS~(E)lh])-~. (2.10) and the poles g(E) a re  obtained from the equation 

The eigenvalues are thus obtained from the equations 1 i -z ~ X P [ ~ S ( ~ J ( E ) ]  = I .  (2.15) 
pAPc,ApJ 

SA (E) =2nnAh, (k=i, 2, . . . , M), (2.11) 
Expression (2.15) represents the new quantization rules 

where nh>O are arbitrary integers. The quantization in the case of stochastic violation of the integrals of mo- 
rules (2. l l )  coincide exactly with those proposed by tion. The left-hand side is a sum of random quantities, 
  in stein.^" and therefore the roots E, of Eq. (2.15) are random. 

We determine below the character of their distribution. The approach described above will now be extended to 
the case E > Ec , when the trajectories are  stochastic. 
It is meaningless in this case to speak of closed trajec- 3. DISTRIBUTION OF THE LEVEL SPACINGS 
tories, since their measure is very small. We note that We confine ourselves to a qualitative investigation of 
the condition (2.6) is approximate. It is possible to in- the behavior of roots of (2. 15), in analogy with the troduce in its stead a small momentum region AP and 

procedure o ~ l ~ ~ .  We need for this purpose a more de- 
that go Out Of the point (9, P '1 and tall& picture of the behavior of the trajectories in sys- 

return to the point ( 9 , ~  "1 with I P "  - P ' I< AP. we can tems of the tgpe of scattering billiard balk. A sufli- 
'then write in lieu of (2.7) ciently strong excitation of the molecule means a param- 

where 2 differs from g by the constant factor of (2.7), 
Cm(Ap) denotes a trajectory in phase space between its 
(m - 1)st and m-th return to the region Ap ( see Fig. 4), 
and s'"'(E) is the action on this trajectory 

eter K>> 1. In this case the colliding atoms are scat- 
tered mainly through small angles. The relaxation to the 
equilibrium state has two strongly differing time 
scalesC4l: fast mixing in terms of some variable 9 such 
as  a phase (or coordinate), and slow diffusion in the ac- 
tion S. If is the initial small phase-space region 
from which the trajectories emerge, then after N colli- 
sions of the atoms these trajectories will cover in phase 
space a region with 

The time No within which AgNO reaches a value on the 
(2.13) order of unity and the initial volume spreads out 

completely can be obtained from (3.1): 

In addition, we have introduced in (2.12) the normaliza- ln (i/A€+.,) 
tion factor pAp, which is equal to the product of the N, - 

1nK ' (3.2) 

smearing region Ap by the trajectory density p in p 
space. where M, according to (3.1) is the growth rate of the 
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instability that leads to  an exponential speedup of the 
trajectories in phase space. 

We shall assume the dimensions of the system to be 
large enough s o  that many scatterings take place during 
the average time of one return of the trajectory. In this 
case the distribution of the action s"' (E) in (2.15) has a 
sharp maximum corresponding to some value S(E). The 
random deviations of the positions of the levels from 
those determined from (2.15) with the aid of S(E) yield 
the ensemble of energy levels. Let Eo be a certain en- 
ergy level, i. e., a solution of (2.15). We can then indi- 
cate a trajectory for which the action is 

i. e., at E = Eo the distribution of the actions has a sharp 
maximum at s"' = Wo. If Eo + AE i s  the level closest to 
Eo, we have analogously 

where In; -no 1-1 at  sufficiently small A E. In other 
words, the action on the extremal trajectories corre- 
sponding to  two neighboring eigenvalues of the energy 
differ by a finite amount -2vE. Let us explain how to 
perturb, a s  AE - 0, the trajectory So(Eo) such as to 
change its action by an amount independent of A E. 

Perturbation of a trajectory with energy Eo by an 
amount AE alters the initial value of the variable 9 by 
an amount 

with (3.5) independent of the nature of 9 and determined 
from (3.1) with N = 1. The characteristic time (number 
of collisions) No after which the perturbation of Eo by an 
amount AE leads to a mixing of the phases 9 is, accord- 
ing to (3.2) and (3.5), 

Thus, after No scatterings, the phases 9, which deter- 
mine also the change of S due to scattering, become ran- 
dom and diffusion with respect to action sets in. This 
means that after N> No collision the action can take on 
any value, including (3.4). In the opposite case, when 
less than No collisions a r e  realized on the trajectbry, 
stability obtains with respect to a small perturbation A E 
and the deviation AS is also small (ASa AE). 

The probability P(AE) of the appearance of a level at 
a distance AE from E, can be defined a s  the probability 
that more than No scatterings occur on the trajectory 
and instability sets in. On the other hand, a t  the value 
of So in (3.3) the distribution of the number of collisions 
on the trajectory has a sharp maximum near a certain 
value Ns that depends only on Eo. As A E - 0 we get, 
according to (3.6), NO - as well as the inequality 

The condition (3.7) means that a probability of more 

than No collisions during the time of one return .is the 
probability of a very r a r e  fluctuations. It is known that 
the order of magnitude of such a probability is 

where the constant is of the order of unity. Substitution 
of (3.6) in (3.8) yields 

Formula (3.9) shows that a s  A E - 0 the probability of 
the appearance of a neighboring level at a distance A E 
in the region of the energy E tends to zero (repulsion) in 
power-law fashion. The critical exponent is of the order 
of l/lnK, which according t o  (3.1) is the time of develop- 
ment of instability of the trajectories in phase space. 
The expression for the constant in (3.9) as well a s  the 
pre-exponential factor were obtained for glancing elec- 
trons in''o1. A similar method is suitable also for other 
problems. We, however, will not stop to calculate these 
quantities, but will emphasize in turn some general 
character of formula (3.9). 

As already mentioned in Sec. 2, an increase of the 
molecule energy E causes an increase of the character- 
istic parameter R, and hence of the value of K. This 
leads to a decrease of the critical exponent in (3.9), and 
the dependence of P on A E becomes weaker. This means 
that the distribution of the levels at large E becomes 
more uniform. 

4. CONCLUSION 

The main result obtained above is that at sufficiently 
strong molecule excitations the energy spectrum be- 
comes restructured and stochastic and a s  A E-  0 the 
probability P(A E) tends to zero in power-law fashion. 
In contrast to Dyson's theory, the exponent is  deter- 
mined directly from the properties of the Hamiltonian 
of the system and is due to the stochastic instability of 
the trajectories. 

It i s  of interest to compare the distribution of the dis- 
tances between the levels for two cases: a disordered 
system and a system with violated integrals of motion of 
the considered type. 

The value of P(A E) for a one-dimyensional disordered 
system was calculated by ~okrovski i .~ '~ '  It follows from 
his results that P(A E)  does not follow a power law in 
this case and the level repulsion has an exponential char- 
acter, This result remains in force apparently also in 
the non-one-dimensional case, since the trajectory in- 
stability develops more slowly in disordered systems 
than in the case of stochastic violation of the integrals 
of motion. 

The universal character of the obtained expression 
(3.9) allows us to apply it to a large class of physical 
systems. In particular, the law (3.9) should hold for 
the oscillation frequencies of plates and resonators with 
boundary shapes such as shown in Fig. 2. 

We ascertain now how a strongly excited molecule 
should radiate in the course of dissociation. If the dis- 
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sociation proceeds stepwise, i. e., the molecule executes 
in succession transitions to  the nearest levels, then its 
emission spectrum has the following character: Owing 
to the random distribution of the level, a broad band of 
low frequencies that correspond to small A E appears. 
Assuming tio = A E, we can obtain from (3.9) the intensity 
I (o )  for the low-frequency "tail" of the spectrum: 

It should be noted that since no publication contained a 
clear-cut picture of the behavior of the levels of excited 
molecules, there was no idea of what information should 
be sought concerning the spectrum. The results (2.15), 
(3.9), and (4.1) can serve as a first step towards filling 
this gap. One cannot exclude the possibility that the very 
broad low-frequency band observed in the fluorescence 
spectrum of pentacene (C,H,,) moleculesC191 is due to 
randomization of the molecule levels. 

The author has recently learned of a new study by 
~ u t z w i l l e r , ~ ~ ~  where a correspondence i s  established 
between the anisotropic Kepler problem (which arises 
when the motion of an electron in the field of an impurity 
ion is considered) and the motion on a billiard table with 
walls of negative curvature. This result means that in 
the case of sufficiently strong anisotropy in the Kepler 
problem the distribution of the energy levels of the bound 
states should be random and possess the properties de- 
scribed above. 
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