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The quantum scattering of a charged particle from an excited hydrogenlike atom or ion is treated, using 
the dipole approximation for the intemction and neglecting transitions involving change of the principal 
quantum number n .  The scattering wave functions thus found are used to calculate the collisional 
broadening of the spectnun lines of atoms or ions in the b i i  approximation. The use of a specific 
additional symmetry in the dipole approximation made it possible to obtain compact expressions for the 
scattaing amplitude with mixing of the degenerate states of the atom and for the line contour for the case 
of arbitrary n ,  and also to trace the transition to various limiting cases (especially to the cases of 
quasiclassical and classical motion of the incident particle and to the adiabatic limit). 

PACS numbus: 03.65.Nk, 34.10. +k, 32.7052 

1. INTRODUCTION comes necessary if  the particle is light, or if its energy 

The scattering of a charged particle from an excited 
hydrogenlike atom or ion leads to inelastic transitions 
and also to broadening of the spectrum lines emitted by 
the atom. These two processes are  related to one an- 

interest, and have 

An interesting feature of the problem from the theo- 
retical point of view is the presence of additional degen- 
eracy of the energy levels of the hydrogenlike system in 
the nonrelativistic approximation. As a result of this, 
on the one hand, transitions between the 2 degenerate 
states of the atom (n is the principal quantum number) 
change not only the direction of the orbital angular mo- 
mentum of the atomic electron, but also its magnitude. 
0x1 the other hand, the possibility of the atom's having 
a constant dipole moment (i. e., of the linear Stark ef- 
fect) is associated, as is well known, with the degener- 
acy of states of opposite parity. The potential for the 
interaction of the atom with a distant charged particle 
therefore falls off in inverse proportion to the square of 

.the distance and depends on the state of the atom. Be- 
cause the potential falls off so slowly, the contributions 
from large distances, i. e., from distant collisions or 
large angular momenta, become especially important in 
the scattering and line-broadening problems. In this 
case one uses the dipole approximation for the interac- 
tion potentialC1l, writing 

Here R and r are  the radius vectors of the incident par- 
ticle B (with charge Z .) and the atomic electron, re- 
spectively (atomic units are  used throughout). 

The classical approximation for the motion of the in- 
cident particle and the dipole approximation for the in- 
teraction have previously been used to treat the scatter- 
ing problemt8'41 and the line broadening problem.c5*61 
Atomic transitions involving change in the principal quan- 
tum number n were neglected in these studies. A quan- 
tum treatment of the motion of the incident partiale be- 

i s  low. Such a treatment has been given for the scatter- 
ing problem by seaton,'" ~Zlitis and  amb bur^,"^ and 
Burke and ~acelc,~' '  and very recently, for the line 
broadening problem, by Tran Minh, Feaurtier, and Van 
~ e ~ e m o r t e r ' ~ @ ' ~ ~  (also see Ref. 11). We note that be- 
cause of the above mentioned strong dependence of the 
interaction potential on the state of the atom and the 
necessity of taking interference effects into account, the 
calculation of the differential cross sections requires the 
use of the quasiclassical approximation,c"l even in the 
case of the collision of a heavy particle with a hydrogen 
atom. 

Using the classical description of the motion of the 
colliding particles, a general solution for the case of 
arbitrary n has been obtainedch5' on the basis of the 
hidden symmetry properties of the Coulomb problem 
and, in particular, the manifestation of these proper- 
ties when a hydrogenlike system is placed in crossed 
electric and magnetic  field^.''^' 

No use has been made up to now of the symmetry 
properties in the quantum description, so the latter has 
been limited to the simplest particular case, n = 2.'"'01 

Some approximate symmetry properties of the elec- 
tron-electron interaction operator in the dipole approxi- 
mation have recently been investigated by ~errick,"'' 
but his results a r e  not applicable to the case of large 
values of the total angular momentum L, which is just 
the case that is important in the scattering and line- 
broadening problems. S. I. Nikitin and the present 
a ~ t h o r " ~ * ~ ~ '  have investigated both exact and approximate 
symmetry properties that manifest themselves in addi- 
tion to other symmetry properties in the limit of large L. 

The purpose of the present work is to apply these re- 
sults to the scattering (Secs. 2 and 3) and line-broaden- 
ing (Sec. 4) problems for arbitrary n. In both cases one 
must know the continuum wave functions (Sec. 2). How- 
ever, the scattering is entirely determined by the asymp- 

. totic behavior of the wave functions in coordinate space 
(or by the scattering angle in the case of classical me- 
chanics), whereas for the line-broadening problem one 
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requires the wave function, generally speaking, through- 
out all of space (or the entire trajectory in the classical 
case). We shall first derive exact formulas (within the 
limitation of the dipole approximation) for the quantities 
of interest (i. e., for the scattering amplitude, Eq. 
(2. l l ) ,  and for the line contour, Eq. (4.2)) and discuss 
their properties. Then we consider the case of distant 
collisions, i. e., of large L, in which the formulas can 
be written in explicit form (Eqs. (3.6) and (4.5)) be- 
cause of the possibility of using a quasiclassical descrip- 
tion of the angular correlations between the incident par- 
ticle and the atomic e l e c t r ~ n . ~ ' ~ ~ ' ~ ~  Here a quantum- 
mechanical treatment of the radial motion of the scat- 
tered particle may still be used, or  one may use the 
quasiclassical approximation (Eqs. (3.9) and (4.10)). 
The difference between hydrogenlike atoms and ions be- 
comes important when the deviations of the trajectories 
from straight lines i s  to be taken into account. In the 
case of an ion it is sufficient to assume a Coulomb tra- 
jectory as the simplest approximation (see Eq. (3.14)), 
whereas in the case of an atom there i s  no unique trajec- 
tory since the interaction depends on the state of the 
atomic electron (see Eqs. (3.9)-(3.11) and the discus- 
sion in Sec. 4). 

Still another important parameter is the ratio of the 
splitting of the adiabatic terms of the quasimolecule con- 
sisting of the atom and the stationary charge (AE-32 ,n/ 
2ZAR 2, to the frequency characterizing the rate of change 
of the interaction (v"v/p, where p i s  the impact parame- 
ter and v is the collision velocity). If u/A E -~ZAL/  
3ZBAn << 1 ( A  i s  the reduced mass), the system will 
develop adiabatically during the collision and there will 
be no transitions between the terms. In the opposite 
limit the passage is rapid and perturbation theory can 
be used to treat the scattering (Sec. 3). 

2. SCATTERING IN  THE DIPOLE APPROXIMATION 

In the dipole approximation, the Hamiltonian for the 
system takes the form 

where the radius vector R of the incident particle i s  mea- 
sured from the center of mass of the atom, the radius 
vector r of the electron i s  measured from the atomic nu- 
cleus, whose charge and mass a re  ZA and MA, respec- 
tively, MB is the mass of the incident particle, 

The factor g= (MA + ZB)/(MA + 1) arises in the separation 
of the motion of the common center of mass and is usu- 
ally close to unity. 

We introduce the projection operator Q, onto the sub- 
set of states of the atomic electron with the fixed princi- 
pal quantum number n. The assumption that the atom 
remains always in a state with a given n i s  equivalent to 
the substitution of the operator a, = Q, ZQ, for the Ham- 
iltonian operator %. Using the fact that the operator r 
is equivalent on the n shell to the Runge-Lenz vector 
A,C191 we obtain (also see Refs. 12 and 14) 

(2.2) 
The operator A that occurs here, which is given by 

(Il i s  the angular momentum of the relative motion of the 
particle and the atom), acts only on the angular coor- 
dinates of the incident particle and those of the atomic 
electron. As was emphasized in Ref. 12, A is an addi- 
tional integral of motion, and by diagonalizing it one can 
separate the scattering channels and classify them (also 
see Ref. 14). 

Since the total angular momentum L=I1+& of the sys- 
tem (& is the angular momentum of the atomic electron) 
is also an integral of motion and commutes with A, it is 
convenient in dealing with A to use basis functions hav- 
ing definite values of L and its projection M: 

where I nl, me) a re  hydrogenlike atomic wave functions, 
li and m, are the orbital angular momentum and its pro- 
jection for the particle B (i = 1) and the electron (i =2), 
and the ~ ~ , , , , ,  are Clebsch-Gordan coefficients. Since 
the orbital angular momenta ll and & a re  not fixed (0 
G I,< n - 1), there is still a number of the functions (2.4) 
for fixed L and M (there are  ne of them when L 3 n - 1). 

Let us suppose that we have diagonalized A on the sub- 
space spanned by the functions Inl,l, LM): 

Here the new quantum number y labels the eigenvalues 
&(L) and eigenvectors I nyLM) of A, and the matrix UL 
transforms the initial representation using the quantum 
numbers ll and le to the A representation using the quan- 
tum number y. The eigenfunction of Z, can be expressed 
in the form (E i s  the collision energy) 

where f,@) is a solution of the radial wave equation 

Here we haye introduced the effective orbital angular 
momentum 1: f(i+ 1) = & . 

Thus, the radial motion of the colliding particles has 
been separated: it i s  described by Eq. (2.8), whose 
well-known solutions we shall not write down here. We 
note only that the positive-energy (E>O) wave functions 
have the following asymptotic behavior for large R: 
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There may exist negative-energy solutions correspond- 
ing to bound states that become quasistationary when n- 
subshell mixing is taken into account. They can be used 
to describe doubly excited autoionization states of the 
atom and the corresponding scattering  resonance^.^^^^^' 
We also note that when L is large enough we have X, 
> - 1/4, i. e., we may ignore the possibility of a " 1 / ~  
fall off the potential at the originc1" (actually such a fall 
does not occur because of the difference at small R be- 
tween the actual interaction and its dipole approxima- 
tion). 

It should be emphasized that the representation of the 
eigenfunctions of A introduced above is not the same as 
the proper representation of the scattering matrix S that 
is frequently used in various problems in collision the- 
ory (see, e. g., Ref. 20). Actually, the amplitude of the 
$:tgoing wave is obtained by the action of the operat2r 
SPR on the amplitude of the incoming wave, where PR is 
the operator that inverts the collision coordinate R.~"' 
The incoming and outgoing waves in solution (2.9) have 
the same amplitude, whizh is therefore an eigenfunction 
of 8&, but not of PR or S separately. Thus, the S ma- 
trix and A are  determined by the same functions, but 
they do not commute. The reason why they do not com- 
mute is that A, while it commutes with the projected 
Hamiltonian I,, does not commute with 8 b 0 ' ,  which 
represents the projected Hamiltonian with the inter- 
action responsible for the scattering turned off and is 
obtained by setting Z B  =0 in the expression for 1,. At 
the same time, the scattering matrix can be expressed in 
terms of the product of wave operators defined by the 
limiting processes[e11 

lim exp(iaESiaESt)esp(-iaES.'"' t ) .  
:-*- 

The situation here is quite analogous to that which ob- 
tained in a potential scattering problem that admits sep- 
aration of variables in spheroidal coordinates (Abramov 
and KornaroP1). 

In view of Eq. (2.9) we define the proper phases in the 
A representation as follows: 

Then after some calculation we obtain the following ex- 
pression for the amplitude for inelastic scattering with 
transition of the atom from the state Inlomo) to the 
state Inlm): 

Here No and N are unit vectors in the direction of the in- 
cident and scattered particle, respectively, and for defi- 
niteness the quantization axis for the angular momenta 
has been taken parallel to No. In view of the above dis- 
cussion, formula (2.12) may be compared as regards 
structure with the general expressions for scattering 
amplitudes for noncentral potentials.ct48e1 

3. LARGE ANGULAR MOMENTA 

A s  was noted in Sec. 1, the case of large L is espe- 
cially important because of the long range of the interac- 
tion. In the limit of large L, the operator A has an addi- 
tional approximate ~ ~ m m e t r ~ ~ ' ~ " ~ '  that makes it conve- 
nient to replace the quantum number y by two quantum 
numbers n' and n" which range independently from - j 
to + j  in integral steps ( j  = (n - 1)/2). The following ap- 
proximate expressions for the eigenvalues X, and the 
matrices UL are ~ a l i d ~ ' ~ * ' ~ ~ :  

and 

c,l*L-llD"w, UL(nrn"ll,lz) = ,id,, (0, $, O)D.!%. (0, -$, O ) ,  (3.2) 
>,,. 

where 

and the DZ. (a, /3, y) are Wigner functions. To calculate 
the scattering phase shifts we can use the following ap- 
proximate expression for i: 

In the weak-interaction limit ( Z B 1  - 0 with ZA = 1) we 
have 

exp (2i6 .....( L, E) -inL) =e'"'n't""-L' (i  +O (Zn2dz)  ) . (3.4) 

For large L, the first two terms in the expansion of 
UL(n'nt' Ill 4) in powers of the small quantity Z B 1  can 
be calculated with the aid of the differentiation formulas 
for Wigner functions and can then be transformed with 
the aid of the recursion relations for the Clebsch-Gor- 
dan coefficientsCe3' so as to give the expansion in the 
form 

It is not difficult to see, with the aid of Eqs. (3.4) and 
(3.5), that the first linear term in the expansion of the 
scattering amplitude (2.11) arises solely from the cor- 
responding term in the expansion of the matrix UL. In 
this approximation the amplitude calculated with the aid 
of Eq. (3.5) is identical with the amplitude as calculated 
in the first Born approximation for large angular mo- 
mentum (we omit the details of the calculations). 

Now let us consider the quasiclassical case. To make 
the transition to the quasiclassical case in expression 
(2.11) for the scattering amplitude we assume that L 
>> n - 121, lo, drop the term representing the unscat- 
tered wave, and make use of the asymptotic behavior of 
the spherical functionsta3' at LO>> 1 (the angles 6 and 
iP define the direction of the vector N in a spherical co- 
ordinate system with its axis along No); this yields 
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Fntem-mtm(0)= . tk (2n sin 0 )  " 
L 

When L and l1 a re  both much larger than m' and m, 
the expression for b;:"' is actually independent of m' 
and can be transformed, with the aid of the asymptotic 
behavior of the Clebsch-Gordan coefficientsc293 and the 
approximate formula (3.2), to the form 

b;$" (L, 0 )  =Z c,.,;;? D:':,,. (0 .  + 0) (0. p. 0 )  
llf, 

Finally, if we replace the summation over L in (3.6) 
by an integration, perform the integration by the method 
of stationary phase, and proceed in the usual manner,c1g1 
we obtain 

"'I" 
xb="(L .,..,, n).b,.  (L" *".., -0)  j. (3.9) 

The first summation here is taken over those values for 
which there exists a solution to the equation 

d 
2 -6,.,,.* (L,  E)  +0=0, 

dL 

which also serves to determine the functional relation- 
ship L,,, .. (9) in this  sum. The second sum is related 
in just the same way to the equation 

d 
2-6,,,,, (L,  E )  4 x 0 .  

dL 
(3.11) 

For example, for scattering from a neutral atom (ZA 
= 1) in the absence of orbiting in the potential " - (n' 
+n")db/R2, the first sum encompasses the terms with 
(n ' +n ") < 0, and the second sum, those with (n ' +n ") 
>O. With the aid of Eq. (3.8), one can show that in this 
case Eq. (3.9) agrees, except for an unimportant com- 
mon phase factor, with a result obtained elsewherecB1 
in a different manner." 

Then one may neglect the dependence on the quantum 
numbers n' and n " in Eqs. (3.10) and (3.11) and give 
these equations the unified form 

d 
2-&(L, E )  -e0=O, 6,(L, E) = arg l'(L+l+iq), 

d L  
(3.12) 

where tic is the scattering phase shii for the purely , 

Coulomb potential V c @ )  and E =sign((Z, - l)Z,). The 
resulting dependence Lc(9) = I q l cot(6/2) should be used 
in Eq. (3.9), where the dependence on n' and n" re- 
mains in the phas? 6, ., .. . Expanding the latter in the 
small difference 1 - L and making use of Eq. (3.3), we 
obtain 

Q(n'+nU) n-e0 
8.,,.- (L,  E) -6, (L, E) + 

L+*/, 2 (3.13) 

With allowance for the explicit dependence of LC on 9, 
this result is equivalent to that obtained in Ref. 4. 

Finally, if we neglect the curvature of the trajectories 
we should use an amplitude that depends on the impact 
parameter p = L/k and set  9 = 0 under the summation sign: 

where is an unimportant phase shift. For n =2, this 
result corresponds to that obtained by ~ h i b i s o v ~ l  and by 
Gurevich et al.csl 

In the adiabatic case (see Sec. 1) it is not difficult to 
show, using the limiting expressionscia1 for U,, that the 
scattering amplitude corresponds to the development of 
the system in accordance with the adiabatic terms of the 
quasimolecule that a re  specified by the parabolic quan- 
tum numbers nl and % in a coordinate system with its 
axis along R. Then on different terms the system ac- 
quires different phases 

and this leads to a change in the orbital angular momen- 
tum of the atomic electron. An analogous description is 
possible in the general nonadiabatic case within the 
framework of dynamic terms; this has been thoroughly 
discussed The condition for the applica- 
bility of the adiabatic approximation (Sec. 1) is violated 
at sufficiently large impact parameters, i. e., for small- 
angle scattering. With further decrease in the scatter- 
ing angle the quasiclassical approximation becomes ap- 
plicable and one should use the eikonal approximation or  
perturbation theory. 

In a collision with an ion one may assume that the mo- The conditions for the applicability of the approxima- 
tion of the colliding particles i s  determined mainly by tions used in the present work have been thoroughly dis- 
the Coulomb interaction VC@) = (2, - ~)z,/R and neglect cussed before (see, e. g., Refs. 1, 4, and 12). Here we 
the interaction of the charge Z, with the dipole induced merely emphasize that the calculation of the total Cross 
in the atom in connection with the linear Stark effect. eections requires, generally speaking, that the relativis- 
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tic s p l i t t i  of the energy level with a given principal 
quantum number be taken into Since the 
scattering amplitude contains several interference terms, 
in the quasiclassical region the differential cross sections 
oscillate as functions of the scattering angle. Even though 
the quadrupole interaction is negligibly small as com- 
pared with the dipole interaction, it can still make an ap- 
preciable contribution to the phase of these oscillations 
(this was brought to the author's attention by E. E. Niki- 
tin). This effect is small if the condition 

is satisfied (D is the quadrupole moment of the atom), 
and this leads to a significant limitation on the collision 
energy E. If condition (3.16) is not satisfied, the oscil- 
lations remain but turn out to be shifted. 

4. LINE BROADENING 

In the binary approximation, the quantum mechanical 
part of the line broadening problem reduces to the cal- 
culation of the quantity (cf. Refs. 9, 10, and 25, for ex- 
ample) 

Here the states I k, y, La Ma) describe the scattering of 
the perturbing particle B with the kinetic energy k 8 , / 2 ~  
of relative motion from the atom in the upper level a of 
energy E, , while the state I k, y, L, M,) describes the 
scattering of particle B of energy k : / 2 ~  from the atom 
in the lower level b of energy E,. For brevity we omit 
the principal quantum numbers n, and n, of the atomic 
levels. The quantity A w = wd - w is the difference be- 
tween the frequency w,, = E, - E, of the unperturbed spec- 
trum line and the observed frequency w. Because of en- 
ergy conservation, we have A w = (k : - k 9/2 1. The sum- 
mation on x is taken over the components of the radius 
vector r of the atomic electron. The shape of the spec- 

is the radial overlap matrix element between the initial- 
and final-state wave functions of the perturbing particle. 

Assuming that the main contribution to the lime broad- 
ening comes from distant collisions, we use the asymp- 
totic formulaE3' 

which is  valid when La, L, ,I, >> la,, ha, to reduce Eq. 
(4.2) to the form 

Here the Inn'n") are  dynamic states of the hydrogen- 
like atom between which no transitions take place during 
the passage of a classical charged particle with orbital 
angular momentum ll. These states can be expressed 
in terms of the ordinary spherical-basis atomic wave 
functions Inlm) with the aid of the matrix introduced 
above: 

The states Inn'n ") were introduced earlier in solving 
the scattering problemc4] and the line-broadening prob- 
lemcsl for the case in which the motion of the incident 
particle is assumed to be classical. Formula (4.5) 
shows that these states have a somewhat more general 
significance, since the radial motion of the charged 
parkicle, which determines the matrix elements 
(k, la l k, I,), can be treated quantum mechanically. When 
using exact dipole-approximation wave functions, these 
matrix elements can be calculated analytically in terms 
of the hypergeometric function of one or two variables 
(for the case of the broadening of the spectrum lines of 
an atom,cg1 or of an ion, respectively). 

trum line is determined by averaging (4.1) over the-en- Passing from Eq. (4.5) to the limit in which the mo- 
ergy distribution of the particles. Neglecting transitions tion of the perturbing particle is treated classically in- 
'in which n changes in scattering, as we are doing, is volves replacing the summation over ll by an integration 
frequently referred to in line-broadening theory as ne- over the impact paramet_er and passing to the limit for 
glecting the damping. the matrix elements (k, la I k, i,). The classical limit 

corresponding to rectilinear trajectories for the per- 
In the dipole approximation for the scattering of a turbing particle that is broadening the lines of an atom 

charged pertvrbing (line-broadening) paltlc* One ha been treated by TrM M m  et ol>*l on the basis of use Eqs. (2.6) and (2.7) to put formula (4.1) into the an analytic expression for the matrix element. Having 
form in mind the more general case of curved trajectories 

(e. g., for broadening of the limes of an ion) we shall 
@(Am) = z z (ZL, + 1) (2Lb 1) l (kJa  I kbtb) 1' briefly describe how such a transformation is to be car- 

?aYb hL.& ried through in the integral (4.3) itself, which assumes * 13. l t b  1 

x I Us (ye 1 1.13 U, (yb l l l%b)  ( L b  La l j  (1% [ I-. I I.,) ', (4.2) the following form when the simplest qwiclassical  wave 
l d t b  I functions are used in the region of classically allowed 

motion: where (l, II r2 II h,) is the reduced matrix element for - 
the atomic electron, while (k . l . 1ks t '~>i~41  ~ R ( ~ . ( R ) P ~ ( R ) ) - ~ ~ .  

R. 

R 

x sin ( J  pa(^') .R* - 
n. 
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where R ,  is the classical turning point. Replacing the 
product of trigonometric functions by the appropriate 
sum and dropping the rapidly oscillating term, we ob- 
tain 

Further simplification i s  possible if we can assume that 
the emission of a photon by the atom has little effect on 
the momentum of the particle, i. e., that pa@) %fib@) 
zp(R). Then the difference pa@) -pb(R) is negligibly 
small, although this cannot be said of the integral of 
this difference over the trajectory. Under the integral 
sign we keep the next term in the expansion of p, -pb 
for pa =pa and then transform to an integration over the 
time t : p = -ndr/dt (cf. Ref. 25); this gives 

Thus, both before and after the emission of the photon, 
the particle moves in a single classical trajectory with 
the angular coordinate ~ ( t )  measured in the collision 
plane from the position of closest approach. In the case 
of a rectilinear trajectory, .the expression for the line 
contour with (4.10) and (3.3) taken into account agrees 
with the result of an earlier calculation in the theory of 
line broadening by a classical particleL51 in which the 
integral (4.10) was calculated in terms of a Bateman 
function. However, the assumption that p,(R)=p,(R), 
which may be called the generalized Franck-Condon 
principle,c261 makes it possible to treat  curved trajec- 
tories too. In calculating the broadening of the lines of 
an ion it is natural to use the Coulomb trajectory 

For an atom one may adopt s_ome average of the-effec- 
tive centrifugal potentials " (Ia + 1/2) ' /~  and - ( lb  + 1/2)2/ 
R 2  of the initial and final states (cf., Ref. 26). Thus, 
each pair I na n : 12 ) and ltzbtz ; I Z  ;' ) of initial and final 
dynamic states (4.6) in (4.5) will have its own potential. 

The states Inn ' n  ") reduce in the adiabatic limit to 
states of the hydrogen atom with definite parabolic quan- 
tum numbers. In the more general case there is a pe- 
culiar separation of the effects of the adiabatic mixing of 
the states from the character of the radial motion, where 
they-manifest themselves only through the single parame- 
ter  I. Thus, many results of the adiabatic theoryCe6' can 
be carried over to the general case. 

"1t must be borne in mind that the Wigner functions were used 
in Ref. 12 a s  defined in Ref. 24, whereas they were used in 

the present work a s  defined in Ref. 23, and that the two 
groups of Wigner functions differ by phase factors; the rela- 
tion between the two definitions is given in Ref. 23. 
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