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A solution is obtained for the relativistic Thomas-Fermi equation for the electron cloud density near 
supercritical (22~1) nuclei. The cases of a vacuum ion (supercritical nucleus surrounded by a vacuum 
shell), neutral atom and positive ion are considered. The angular momentum distribution of the vacuum 
shell electrons is found. For Ze3<l (weak screening), the electron shell of the supercritical atom &ts 
of two parts which almost do not overlap. These are the vacuum shell with a radius ro-*/2 and the 
outer shell with a radius re- (Z ' I %  ')-I. "Fallin g to the center" is investigated in the relativistic Thomas- 
Fermi equation. The nature of the singularities of the equation solutions as -0 is determined by the 
renormalization group technique. A differential equation for the Gell-Mann-Low function BQ is 
obtained and its asymptotic value are found for p-10 and k+m. A numerical solution is obtained for all 
values of the effective coupling constant p. 

PACS numbers: 3 1.20.L~ 

1. INTRODUCTION 

The statistical Thomas-Fermi method is one of the 
most important methods of quantum-mechanical investi- 
gation of the many-body problem and is widely applied 
in atomic and molecular physics, astrophysics and so 
forth (see, for example, Refs. 1-3). The following 
Thomas-Fermi relativistic equation was obtained in Refs. 
4 and 5: 

1 
A ~ - 4 ~ e '  [n. ( r )  - - (va*2v)'] 

3na 

and the electron density distribution 

was found in the shell of a supercritical (Ze2 >> 1) ion. 
Here V(r) is  the self-consistent potential for the elec- 
tron (in units of mece), and takes into account the screen- 
ing action of the shell electrons, while n* (r) is  the proton 
density in the nucleus." The upper sign in Eqs. (1) and 
(2) refers to the vacuum shell, which the bare nucleus 
with charge Z>Z,=170 draws toward itself after spon- 
taneous creation of e*e' pairs and flight of the positrons 
to infinity; the lower sign corresponds to the neutral 
atoms, in which not only the vacuum shells but also the 
outer electron shells are  filled. 

We now make a note concerning our terminology. We 
call (1) the "relativistic Thomas-Fermi equation," since . 

it is a generalization of the Thomas-Fermi 
equation to the case in which the potential V(r) and the 
mean energy of the electrotis of the atomic shell are  
equal to (or greater than) the rest mass m,c2. It is 
obvious that Eq. (1) is  not relativistically invariant and 
refers to a selected system of coordinates in which the 
nucleus i s  at rest. A detailed derivation of Eq. (1) and 
a discussion of the exchange (Dirac type) and correlation 
corrections can be found in the Appendix to Ref. 5. 

Only the vacuum shell of the supercritical atom was 
considered in Ref. 5. In the present work, we have con- 
tinued the study of the relativistic Thomas-Fermi equa- 
tion and treated the following problems: 

1) The dependence of the "outer" charge of the ion Z1 
= Z  - N, on the nuclear charge Z is found and the angular 
momentum distribution of electrons is calculated. Here 
Ne is the total number of electrons of the vacuum shell: 

ra is its radius (V(ra) = - 2, see Ref. 5). 

2) The electron shell of a neutral atom and a positive 
ion are considered at .Ze2>> 1. At Ze3 S 1, the density of 
the electron gas n,(r) can be divided into two spatially 
separated parts: the vacuum shell, which is  localized # 
distances r "ti/me c = 1 from the nucleus, and the outer 
electron shells, for which r - 1 3 7 ~ " / ~ > >  1. 

3) The following results are  developed in Sec. 5 in 
the study of the mathematical structure of Eq. (1): the 
character of the singularities that arise in the solutions 
of this equation at r - 0 is described, and it is shown how 
the "falling to the center, " which is characteristic for 
solutions of the Dirac equation at 5 >j ++ , enters into 
the many-electron problem. 

In what follows, fi=c =me = 1, 5 =Ze8=Z/137, 5, 
=Z,2 is  the critical charge of the nucleus:) x =r,(j 
+$ ) for states with j = I  *$. At Ze2 >> 1, we can neglect 
the diffuseness of the edge of the nucleusc51; we there- 
fore set 

in (1); here R =ro~l l '  is  the radius of the nucleus, n, 
= Zno/A, no =O. 17 F" is  the density of nucleons in or- 
dinary heavy nuclei. 

2. VACUUM SHELL OF THE SUPERCRITICAL ION 

The characteristic parameter in (1) is Ze3=Z/1600: 
at .Ze3 2 1, the screening of the Coulomb potential of the 
nucleus by electrons becomes important. The vacuum- 
shell electron density was foundc5] analytically in the 
limiting case ze3 << 1 and Zes >> 1, and numerically in the 
trsnsition region Ze3 " 1. We denote by Z1 = Z - Ne the 
charge of the supercritical ion for an external (r >ra) 

1071 Sov. Phyr JETP 46(6), Dec. 1977 003&5646/77/4606- 1071 $02.40 O 1978 American Institute of Physics 1071 



observer; at  r > r a ,  the density of the vacuum shell i s  
equal to zero and the potential i s  V(Y) = - 2, ee/7. Ac- 
count of screening in the region ZeS << 1 is carried out by 
perturbation theory,c51 which yields 

(numerically, cl = - 1.38). In order to find Z1 at arbi- 
trary values of the parameter ZeS, it is necessary to 
solve Eq. (1) with the boundary conditions 

The joining of the inner and outer solutions at the edge 
of the nucleus determines the quantities Z1, ra = Zl ee/2, 
and V(0). The results of the calculation of Z1 a re  given 
in Fig. 1. The perturbation-theory formula (5) is appli- 
cable at ZeS <0.5; in this region, the total charge of the 
vacuum shell i s  small in comparison with the charge of 
the nucleus. 

In the opposite case 2eS >> 1 (supercritical n u ~ l e i ~ ~ * ' ~ ~ ) ,  
the quantity Zl at a fixed radius of the nucleus R takes on 
the limiting value 3, =zl@), which depends on R (see 
Fig. 2). In the region of values of R that a r e  character- 
istic for heavy nuclei, the quantity K e s  is of the order 
of unity. The reason why the external charge of the ion 
remains bounded as 2-ar is connected with "falling to 
the center" and is discussed in Sec. 5. At ZeS2 1, the 
larger part of the electrons of the neutral atom belongs 
to the vacuum shell. 

We now consider the angular-momentum distribution 
of the vacuum-shell electrons. The spatial density of 
electrons with angular momentum j =1 x 1 - $ is of the 
formt5] 

The maximum angular momentum of the electrons of the 
vacuum shell w ,, first increases in proportion to 2; 
then this growth is slowed, K, , - z~ '~  in the region zeS 
>> 1: 

t -R, Z e J a l  
x, - max r (P+2V)"  - 

O < 7 C I a  

I t I * I0 20 .?D 
z c  ' 

FIG. 1. The outer charge of the supercritical atom Zi =Z -N, 
as a function of the nuclear charge Z. Curve 1 corresponds to 
a nucleus with density (4) and constant radius R = 0.03 = 11.6 F, 
curve 2  i s  the usual dependence R = r&ln (vO = 1.1 F , A = 22). 
As 2- w, curve 1 goes over to the limiting value, equal to 
Z1eS= 0.88. 

I/ FIG. 2.  Dependence of Z,e3 on 
the radius of the nucleus ithe 
values of R are given in units of 
ti/rn,c = 386 F); 

where c = (3/4) (91r/4)"~ = 1.44. 

At ZeS << 1, we can neglect the distortion of the poten- 
tial of the nucleus due to screening, and assumes' 

Hence 

where p = I u l/g (O<p< 1), x =r/R, and ro and 7, a r e  the 
quasiclassical turning points: ro=Rxo(p), where x0(p) is 
the root of the equation xf (x) = p, 7, = ( 6  - n2)/2 b = g(1 - p8)/2. Integrating (10) over d3r, we find the angular- 
momentum distribution of the electrons: 

where q=R/vl =2R/g(l -p2) and the function h(p) depends 
on the cutoff model: 

h (p)  = ( I -pz)  -'" [y (x )  - p ' ~ - ~ ] ' "  dz. 
d o )  

Figure 3 shows (curve 1) the distribution (11) normal- 
ized by the condition 

here n(p) differs from n, only by the normalization con- 
stant. The density distribution nb) is practically inde- 

FIG. 3. Angular momentum distribution of the electrons of 
the vacuum shell (p = I xl h-). Curves 1 and 2 correspond to 
the two limiting cases z:<< 1 and z:>> 1; the dashed line shows 
the angular momentum distribution of the electrons ( p  =l/l ,)  
in the nonrelativistic Thomas-Fermi model. 
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pendent of the cutoff model (the curves for models I and 
I1 are  identical within the limits of accuracy of the draw- 
ing). To explain this fact, we note that at x not very 
close to x,, we have q<< 1 and the formula (11) can be 
rewritten in the form 

The principal term in (ll'), which contains the large 
logarithm In(t;/R) >> 1, comes from the external region 
r>R,  in which a purely Coulomb field is acting. The 
function hl(p), which is  numerically small, depends on 
the specific form of the cutoff. Thus, the value 

is equal to - 0.31 and 2.7 x lo", respectively, for the 
cutoff models I and II. 

In the case zeS >> 1, the potential inside the nucleus 
takes on a constant ~alue"*~': V(r) = - (3ne?4)'/' at  r <R. 
Neglecting the diffuseness of the boundary, we find 

8 
11(p)=, [ (~-p')'~-p arccos p] (12) 

-see the curve 2 in Fig. 3. The dashed curve in this 
same drawing shows the distribution of n(p) in the shell 
of the neutral atom for the non-relativistic Thomas-Fer- 
mi model.'" A comparison of it with curves 1 and 2 
shows that' in the vacuum shell of a supercritical atom, 
the fraction of electrons with angular momenta I x I 
<< x,, increases significantly. 

The expressions (1)-(3) and the subsequent formulas 
are based on the quasiclassical approximation. The con- 
dition of their applicability to the Coulomb field in the 
relativistic case is's*'11 (t;' - K ')'la >> 1, or  1 - p>> gwa. 
The condition of qWiclassicality is violated only in a 
narrow range of angular momenta, near x,, . Because 
of the specific nature of the Coulomb field, the results 
obtained above have excellent accuracy, not only at 6 
>> 1, but even for small values of 1;. Thus, the quasi- 
classical formula (3) is in excellent agreement with the 
numerical calculations of Ne in comparison with the 
Dirac equation,'"' beginning even at t; =2. 

3. THE NEUTRAL ATOM AT Ze2s 1 

We now consider a neutral atom in which, in addition 
to the vacuum shell, the outer electron shells are  filled 
(the corresponding levels have energies c, in the region 
of the discrete spectrum: - 1 <&, < 1). Since the radius 
of the vacuum shell is ra"2e: and the mean radius of 
the atom in the nonrelativistic Thomas-Fermi model is 
re- (2lJS e8)", we have 

Therefore, in the case of weak screening (2eS << I), to 
which we limit ourselves, these two shells (vacuum and 
outer) are localized in different regions of space and al- 
most do not overlap. While the electrons of the vacuum 

shell are  completely relativistic, the outer shell con- 
sists mainly of nonrelativistic electrons (their mean en- 
ergy is Zn " m ( ~ e ' ) ~ l '  << m). This simplifies the problem 
and enables us to obtain a solution in analytic form. 

The self-consistent potential for the neutral atom is 
described by Eq. (1) with a minus sign. Outside the 
nucleus, 

The presence of the small parameter ee allows us'to 
seek a solution by means of perturbation theory, which 
yields 

where x=2r/r;; a, and a, are constants of integration, 

Inside the nucleus, Eq. (1) is solved with the boundary 
condition V'(0) =0, which assures re-ity at the zero, 
The joining of the inner (r <R) solution with (14) on the 
edge of the nucleus gives the relations 

(17) 
(here x ' =x/R, and f ( X I )  i s  the cutoff function introduced 
in (9)). 

For determination of the constant al, we consider the 
region r >> r, , in which x >> 1, I V(r) I<< 1 and Eq. (13) 
goes over into the nonrelativistic Thomas-Fermi equa- 
tion for the function ~ ( y ) :  

In the region ra << r <<re, we have y << 1; theref~re,~ '*~'  
~ ( y )  =1- yy + (4/3)ysJe +. . . , where y= l .  588; on tlie 
other hand, x>> 1 and in (14) we can use the asymptotic 
form of F(x) as X- w. The joining of these solutions de- 
termines a,: 

which completes the solution of the problem. - 
4. POSITIVE ION 

Like ordinary ( ~ e '  << 1) atoms, the supercritical atom 
can be in an ionized state if the outer shell is partially 
filled. Such a state is stable for the isolated atom. Let 
q = (2 - N)/Z be the degree of ionization: a neutral atom 
corresponds to q = 0, and the nucleus with the vacuum 
shell to q =ij 5 (2  - Ne)/Z. The Z(2) dependence is shown 
in Fig. 4. This quantity represents the limiting degree 
of ionization of a free atom with nuclear charge 2, when 
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FIG. 4. Limiting degree of 
ionization of a .  atom with nu- 
clear charge Z (radius of the 
nucleus R = r o ~ l n ,  yo= 1.1 F, 
Z / A = O . 5 ) .  

--> 
the outer electron shell is completely absent. An atom 
with nucleus Z and q>q(Z) is unstable, and after spon- 
taneous emission of several positrons, transforms into 
a stable ion with a filled vacuum shell (the degree of ion- 
ization decreases then to ?j(Z)). 

The relativistic Thomas-Fermi equation for the posi- 
tive ion is solved by the method given in the previous 
section. Setting 

where zeS << 1, 0 S q SG, ro(q) is the radius of the 
positive ion, we have the same equation (1) for V&) but 
with other boundary conditions: 

The formula (14) is preserved for V,(r), and a, has its 
previous value, while the constant a, is expressed by 
Eq. (191, in which it is necessary to replace y = y (0) by 
y (9). The dependence of y (q) = - X'  (0) on the degree of 
ionization q is well known from the nonrelativistic Thom- 
as-Fermi model.'"" The value of y(q) also increases 
with increase in.q. 

At  ZeS << 1, the division of the electron density n,(r) 
into two practically nonoverlapping parts (the vacuum 
and outer shells of the atom) is preserved also for the 
positive ions. 

5. THE THOMAS-FERMI EQUATION AT SMALL 
DISTANCES. CALCULATION OF THE GELL-MANN- 
LOW FUNCTION IN\ ELECTRODYNAMICS WITH 
STRONG COUPL~NG p e 3 5  1) 

"~al l ing to the center" arises in the Dirac equation 
with the potential V(r) = - t/r at t; = 1. To set up the 
problem correctly at t > 1, we must introduce a cutoff 
of the Coulomb potential at small distances, which cor- 
responds physically to account for the finite dimensions 
of the nucleus.'" Let us consider how this phenomenon 
appears in the many-body problem of the electron shell 
of the supercritical atom. 

A t  small distances from the nucleus, the contribution 
of the vacuum shell predominates in n,(r). If we denote 
its share in the electron density by v, then 

Therefore, it suffices to consider the case of the vacuum 
ion. Setting 

we obtain the relativistic Thomas-Fermi equation in the 
form 

where 

It can be shown that the function p(x) increases mono- 
tonically with decrease in x and becomes infinite at 
some point x=x,,(p) (see the Appendix). It follows from 
(23) that this singularity is a pole: 

For the determination of the dependence of xo on the 
parameter p, Eq. (23) has been solved numerically with 
the boundary conditions (24). The results are  shown in 
Fig. 5, in which the continuous curve denotes the quanti- 
ty xo(p) exp(l/8 p). 

We now consider the properties of the solutions of Eq. 
(23) at small distances. The presence in (23) of the 
small parameter p allows us to apply perturbation the- 
ory. Here it turns out that the real parameter of the ex- 
pansion is not p but p lnu: 

(see the formula (A. 7) in the Appendix). At x << 1, Eq. 
(1) simplifies to xeq" =qS and becomes invariant rela- 
tive to the group of scale transformations: 

cp+h"cp, p-ch-lp, I (27) 

which leave the combination pq8 unchanged. It is con- 
venient to transform to the variables t = - lnx and ( 
= f  pqe. The quantity [ plays the role of an invariant 
charge: 

We consider a region of r that is much greater than the 
,distances " exp(- 311/2e a) at which the problem of zero 

FIG. 5. Exponemtial cofactorDb)=xOb) exp (1/8p) in Eq. (37); 
the continuous curve shows the results of numerical calculation, 
the dashed curve is the asymptote D(M) =D$'~. 

1074 Sov. Phys JETP 46(6), Dec. 1977 V. L. ~letskii and V. S. P o p  1074 



charge in quantum electrodynamics arises.c101 For such 
r, we can neglect the vacuum polarization.c6v101 In the 
consideration of the effect of screening, it is sufficient FIG. 6. The Gell- Mann-Low 
to take into account the density of free charges present function for the problem of 

in the vacuum, p(r) = - en&), which is  determined by screening of the nuclear charge 

the electrons of the vacuum shell. by the vacuum shell. 

For the invariant charge, we have the equation I , , , , I  
? 

The boundary condition for it is the solution (26) obtained 
from perturbation theory: t(t, p) = p(l+8pt  +. . . ). Since 
the coefficients in (29) do not depend on t, the solution 
has the form: ((t, p) =F(t + @(p)). The normalization 
condition ((0, p) = p gives the relation F =W1, and we 
finally obtain 

Thus, the solution of the relativistic Thomas-Fermi 
equation at small (r <<r,) distances has the form that is 
characteristic for the renormalized and pos- 
sesses the property of renormalizability. 

For the Gell-Mann-Low function, 

we get from (29) 

This equation is transformed to much simpler form if 
we transform to the variables g and $(g): 

Here we get 

A s  g- 0, the functions +(g) and B(p) can be represented 
in the form of series of perturbation theory: 

where ~ ~ = 2 ' ~ l a ~ .  AS k - a ,  the coefficients a, and c, 
increase factorially : 

(see Eqs. (A. 14), (A. 15)). This shows that the series 
(34) have zero radius of convergence and are  asymptotic. 
The Gell-Mann-Low function B(p) = p1''$(2p)1'e was 
found by numerical integration of Eq. (33). A s  is seen 
from Fig. 6, it is monotonically increasing and does 
not have positive zeros. We write out its asymptotic 
forms: 

Thus, for the given example, the case of zero charge is  
realized.[15' 

Using the above results, we can find the location of 
the pole xo(p) analytically in the solution of the problem . 

(23) and (24) at small p: 

so (p) =D (p) e-""; D (p) =DP' (cL-cO), (37) 

where D= 1.86 is a constant found by numerical integra- 
tion (see Item 3 of the Appendix). We call attention to 
the nonanalytic character of xo(p) in the variable p at 
the point p =O. The asymptotic form of (37) is shown in 
Fig. 5 by the dashed line. 

From the physical sense of the problem, the electron 
density n,(r) and the self-consistent potential V(r) can- 
not become infinite. This leads to a condition on the ra- 
dius of the nucleus R: 

here C is a numerical factor. At fixed value of the outer 
charge Z,, the radius of the nucleus R cannot be arbi- 
trarily small-at R <R, , Eq. (1) does not have a bounded 
solution. This is how "falling to the center" manifests 
itself in the relativistic Thomas-Fermi equation. 

We note that the dependence Zl(R) shown in Fig. 2 is 
a function inverse to the function R, =R,(Z,). 

The "critical" value of the radius R lies at exponen- 
tially small distances, exceeding by many orders of mag- 
nitude the characteristic radius row exp(- 31r/2e8) at 
which growth in the polarization of the vacuum takes place 
and the problem of zero charge arises inquantum electro- 
dynamicsc'0*151 (R,/ro" exp{3n(l- 1/4~')/2e'}). At the 
same time, the value of R;is much smaller than the 
radii of superheavy nuclei (R 20.03); therefore, in the 
real problem of the vacuum shell of the supercritical 
.atom, the pole xo(p) of the solution of Eq. (1) does not 
appear. However, account of the density of vacuum elec- 
trons a s  r - 0 can be important in the consideration of 
the problem of zero charge in quantum electrodynamics. 

6. FINAL REMARKS 

1. The correct description of the vacuum shell of the 
supercritical nucleus was first given in Ref. 9 (in the 
single-particle approximation, i. e., the interaction 
a z$. between electrons and the nucleus was taken into 
account exactly, and the interaction a e2 between elec- 
trons and positrons was neglected). Similar results were 
subsequently obtained in Ref. 16. The numerical calcu- 
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lationscl" of the charge distribution of the vacuum shell, 
its metin radius, and other quantities confirm the con- 
clusion of Ref. 9. 

In these works, the case was considered of compara- 
tively small Z (namely, f - f, << t, = 1.25), when even 
fewer electrons are in the vacuum shell. In the present 
work, the inverse case Z>> 2, was investigated, when 
N, >> 1 and statistical description of the vacuum shell 
becomes possible. 

2. At Z>Z,, it is  impossible to neglect the interac- 
tion between the electrons. Equation (1) takes into ac- 
count the Coulomb interaction between the electron 
shells. Since the electrons are relativistic, the question 
arises of account of retardation. It can be shown that 
the Breit terms in the interaction Hamiltonian Hht 
= ea(l - 0, a*)/ I r, - r, 1, which are velocity dependent, 
vanish in summation over the closed subshell (- j M j) 
with fixed value of the angular momentum j. As is shown 
in Ref. 5, the exchange and correlation effects at g->> 1 
give small corrections to Eq. (1). This serves a s  the 
basis for the applicability of the relativistic Thorms- 
Fermi equation to the static problem at Zea>> 1. 

3. In recent years, A. B. Migdal and co-workers 
developed the theory of pion condensation4 and showed 
that nuclear matter, beginning with some "critical" 
density no, becomes unstable to the creation of bound 
pions. As a consequence, a phase transition of the nu- 
cleus to a state with a pion condensate appears. The 
energy gain associated with the formation of the n con- 
densate points to a possibility of the existence of anom- 
alous nuclei with density several times the normal densi- 
ty no, and also of neutron (N>> Z and ZL loS) and super- 
charged (ZeS 2 1) n~clei.~'" Theoretical calculations are 
very sensitive to. the parameters of the NN- and I~N-in- 
teractions in nuclear matter, which are not yet known 
with sufficient accuracy. The investigation of the prop- 
erties of the electron shell of supercritical nuclei that 
we have carried out can turn out to be useful for the 
search for anomalous nuclei, which is  very important 
at the present time (see, for example Refs. 19 and 20). 

4. Equation (1) is  based on the quasiclassical approxi- 
mation, the condition of applicability of which to the 
Coulomb field at 2>137 has the form (fa  - l)'">> l.'5*a11 
Actually, the region of applicability of the quasiclgssical 
treatment extends to ( fS-  1)"8-1 (thus, the error in the 
quasiclassical formulas for g-, isCa1' several percent 
even in the case of the 1s level, when f, = 1.25; similar- 
ly, the total number of levels that are  dropped to the 
lower continuum is well describedc"' by Eq. (3) at b>2). 
This gives assurance that the distribution of the electron 
density in the shell of the supercritical atom can be ob- 
tained from the Thomas-Fermi equation with excellent 
accuracy, beginning with f =l.5-2. InRef. 22, the 
values of the critical charge of the nucleus are calcu- 
lated with the help of Eq. (1) for the excited levels 
(2pl 2slIa, and so  on) with account of the correction 
for screening of the Coulomb field of the nucleus by the 
vacuum shell. 

5. We note an analogy between the properties of the 
relativistic Thomas-Fermi equation as r - 0 and some 

equations of quantum field theory. In particular, the 
series (34) is  similar to the series of perturbation the- 
ory for the Gell-Mann-Low function in scalar field the- 
ory with the interaction Hht =g I cp4/4! d "x. According 
to ~ i ~ a t o v , ~ ' ~ '  in this case, 

where A = (2n)-'laE(4)= 1.1 and a = (16na)". A compari- 
son of Eqs. (39) and (35) shows that the asymptotic forms 
of the higher orders of perturbation theory in these two 
theories have identical structure and differ only in the 
values of the constants A and a. This analogy seems of 
interest to us and merits further study. 

APPENDIX 

We consider in more detail the properties of the solu- 
tion of the relativistic Thomas-Fermi equation. 

1. It is seen directly from (23) that cp"(x)>O at x < l .  
With account of the boundary conditions (24), we have 

Therefore, ~ ( x )  is a monotonically decreasing function 
and cp(x) >cpo(x), where cp,(x) =2 - x is the solution of the 
problem (23), (24) at p '0. It then follows that the 
function cp(x)/x increases without limit upon decrease in 
x and becomes infinite at some point x = xO(p). 

2. We now find the location of the pole x , ( ~ )  explicitly 
in the case of weak coupling 1- 0 (i. e., ZeS << 1). Equa- 
tion (23) at x << l takes the form 

z21p"=pIp3. (A. 1) 

Since p - 0, it is  natural to solve this equation by per- 
turbation theory: 

(A. 2) 

After transition to the variable t = - lnx, we obtain an 
equation with constant coefficients 

which can be satisfied by the series (A. 2) by setting 

cp,(x) =A,tn+B.tn-1+~(tn-2),  t -W. (A. 4) 

Substituting this expansion in (A. 3), y e  obtain the re- 
currence relations 

3 A ,  B -  A A A .  A m = -  
n-l  

i+I+k-"-1 f+>+k-n-I 

The initial coefficients A, and B1 are  determined from 
expansions of the functions cpo(x)/x and cpl(x)/x obtained 

' 

in Ref. 5: 

The chain of equations for A, is  easily solved in general 
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form: p " = p ( p z - ~ ) " .  (A. 10) 

An=2"+'(2n) ! ( n ! )  -5 (A. 5) 

The equations for B, a re  more cumbersome; however, 
we can determine the asymptotic coefficients for large 
n. In this case, 

Summation of the leading terms of the expansion (A. 2) 
gives 

p ( x ,  p)=~(l-t . ) -"+~~p(~)-~k~(l-~)+.  . . , (A. 7) 

where r=  - 8p  lnx. This function has a singularity at r 
=1, i.e., at  x=exp(-1/8p). 

Thus, an exponential dependence of xO(p) on the cou- 
pling constant p is obtained in the case p - 0. A com- 
parison with (25) and (37), however, shows that the 
method of summation of the leading logarithmic terms 
does not give the correct form of the singularity of cp(x) 
as  x-x, (and also the correct factors of the exponential 
in the expression for xO(p)). The reason for this is made 
clear from the expansion (A. 7): the correction terms, 
"B , f  ', and also cp,(x) lead to a second term in (A. 7), 
which contains an extra power of the small parameter p, 
but, on the other hand, a more singular function a s  r - 1. It is clear from this example that the solution near 
the singularity has nothing in common with the result of 
summation of the leading logarithmic terms. This is 
instructive, in view of the fact that the method of summa- 
tion of the leading terms of the perturbation theory se- 
ries is  frequently employed in quantum field theory (see, 
for example, Ref. 10). 

The expression (A. 7) i s  valid in the region r << 1, 
where it gives the formula (26). 

3. The exact asymptotic form of xo(p) a s  p-0 is  
conveniently obtained by using the property of the re- 
normalizability of the solution of Eq. (A. 1) at small 
distances: 

(A. 8) 

Substituting the expansion (36) for the Gell-Mam-Low 
function, we find 

t , - t=1/8t-VZ In :+b,+b,t+.  . . , 
(A. 9) 

The general form of the solution of Eq. (29) is obtained 
in this way in the region of application of perturbation 
theory ([ << 1). On the other hand, for the vacuum shell 
we have [ ( t ,  p) = p(l+8p(t + ln2 - 11/3) +. . . ), see Sec. 4 
in Ref. 5. Substituting this expression in (A. 9), we get 
Eq. (37) for xo(p), and the constant in the pre-exponen- 
tial factor i s  equal to D = exp (- bo + 2 In2 1 11/3) = 1.86. . . . 

4. In the opposite case of large p we have xo(p)-1, 
so that Eq. (23) can be simplified: 

This equation is easily integrated in quadratures; the 
pole xo(p) corresponds to rp =m, whence 

(A. 11) 

In the integral over cp, the principal contribution is  made 
5y the region near rp = 1, where 

Substituting this expression in (A. 11) and calculating the 
integral over cp, we find 

xo ( p )  =l-bp-a's+. . . , p-m, (A. 12) 

where b =24/55-315~(2/5, 1/10) =3.435 (this asymptotic 
form is  achieved only at very large values of p). 

5. For the calculation of the coeffi~ients of the per- 
turbation theory series, we start out from Eq. (33), 
which we rewrite in the form cpq'=g3 - cp. Substituting 
the expansion (34) here, we obtain the recurrence rela- 
tions 

(A. 13) 

whence a, = 3, a, = 24, a, = 285, a, = 4284, a, = 75978, . . . . 
These coefficients increase rapidly. We seek the 
asymptotic value of a, as  k - m in the form 

a,=Ar ( k a + i )  akkP. (A. 14) 

Substituting this expression in (A. 13), and recognizing 
that the principal contribution to the sum Zap, is  made 
by terms with the maximum value of l i - j I ,  we find 
the parameters a, a, and /3. It is not possible to find 
the constant A by this method. It was calculated from 
a comparison of the asymptotic form (A. 14), with ac- 
curate values of the coefficients a, calculated on a high 
speed computer from the recurrence relations (A. 13) up 
to k =ZOO. The final result is 

a = l ,  a-2, B='/1, A=0.04551 .. . (A. 15) 

The asymptotic coefficients ck of the Gell-Mann-Low 
function B(p) have the same form as (A. 14) except for 
the values of the parameters A, a, and j3. 

" ~ t  2e2 > 1, the point-charge approximation is inapplicable,Ce31 
and it is necessary to take into account the finite dimensions 
of the nucleus. As will be shown below (see Sec. 5), 
Eq. (1) does not have bounded solutions in the limit as R - 0 ,  
where R is  the radius of the nucleus. 

2)The quantity Z,depends on the quantum numbers n and n. 
The sign of HI together with the energy e ,  the angular momen- 
tum j , and its projections, is  an integral of the motion in an 
arbitrary central field. c'O1 The values of &for the first 
levels of the discrete spectrum were calculated in Refs. 7 
and 8: Z,= 169, 181, 232 and 255 for the levels is Isilz, 2pll2, 
2stl2, 3piI2 (at yo = 1.1 F, and A = 2.6 Z). A numerical cal- 
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culation of 2, for a large number of states of the discrete 
spectrum has appeared recently. clll 

 he function f(r/R), which cuts off the growth of V(r) at r <  R, 
is determined by the distribution of protons inside the nucleus. 
The following models of cutoff are  used most frequently: I) 
fi) = 1 at 0 < x  < 1; II) f(x) = (3 - x2)/2, which corresponds to 
constant density of protons of form (3). According to the 
terminology used in Refs. 8, 9, and 11, these models are  
hown as model I and model II, respectively. 

 he idea of the possibility of formation of a u-condensate in 
nuclei was expressed in Ref. 12. Detailed references to sub- 
sequent works and a discussion of the present status of the 
theory of the *-condensate can be found in Ref. 18. 
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Parity nonconservation effects in two-photon transitions in 
hydrogen atoms 

E. G. Drukarev and A. N. Moskalev 
B. P. Konstantinov Leningmd Nuclear Physics Institute 
(Submitted July 25. 1977) 
Zh. Eksp. Teor. Fiz. 73, 2060-2066 @ecember 1977) 

Parity non-tion effects in two-photon transitions 1 ~ ~ ~ ~ ~ + ~ ~ ( ~ ~ ~ )  and 2 ~ ( ~ / ~ ) + 2 ~ ~ / ~ )  in a hydrogen atom 
arising if the neutral weak currents do not conserve pnrity are considered. The magnitude of the effects in 
the general case. is 10-L10-~. However, in the caw of absorption of photons with equal energies and 
parallel or aotiparallel momenta in the transition 1~( , ,~ )+2p( ,~~)  the magnitude of these effects increases and 
attains values of 10-'-lo-'. 

PACS n u m b  32.80.Kf 

The discovery in 1073 of weak neutral currentsc481 
opened up new possibilities for the study of weak inter- 
action by means of looking for the effects brought about 
by this interaction of nonconservation of parity in atomic 
transitions. One can expect particularly large effects in 
transitions which in the absence of weak interactions 
are for some reason suppressed. There is available a 
large number of theoretical papers in which the effect 
of weak interaction on one-photon transitions in atoms 
is discussed (cf., the review  article^^^*^'). 

Also of interest are effects of parity nonconservation 
in two-photon atomic transitions. Experiments on in- 
duced two-photon transitions in an atom have received 
wide application recently due to progress in laser tech- 
nology. The study of such transitions occurring as a 
result of a simultaneous absorption of two photons whose 
total energy is  equal to the energy of the transition has 
a number of advantages compared to the study of the usu- 
al one-photon transitions. Among them are, for exam- 
ple, the extension of the range of energies of transitions 
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