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It is shown that in the theory of multipomeron exchange with ap(0) = (1 +A) > a,,> 1 (in the Froissaron 
theory), which leads to a Froissart growth of the cross section am-(', the problem of s- and tshannel 
unitarity is connected in radical fashion with the threshold behavior of the pomeron-pole trajectory rz,(t). 
We investigate the influence of this factor on the t-channel partial amplitude f(o,t), where o = j-1, 
and on the asymptotic s-channel profile function F((,b) = l-exp[2i8((,b)], where b is the impact 
parameter. It is shown that, subject to some limitations on the threshold singularity of ap(t), the 
amplitude f(o,t) does not contradict t-unitarity and, under the same condition at a ~ ~ c i e n t l y  value of 
the froissaron interaction constant g,,,,=A3/a ', the function F(4,b) is s-unitarity. 

PACS numbers: 11.60. +c 

INTRODUCTION For example, at C, = 1 this profile corresponds to scat- 

It was noted in a number of papers .(seec1' as  well tering by a black sphere of radius bo witha sharp edge, 

asCz-r~) that a pomeron theory with ap(0) = +A) > A and leads to a diffraction amplitude M = Mbo(k), where 

~ 0 . 1  agrees well with the experimental data on the Mb(k)  = ibZ[J , (kb) /2kb] .  
growth of the total cross section and of do/&. By opti- 
mal choice of the parameters it i s  possible to describe Actually, the scattering amplitude is connected with the 
simultaneously also a number of properties of particle profile function by the relation 
production processes. such as  the distributions in the 
Eapidities and in the ~ultiplicities.C6' M ( r , k z ) = T j ~ ( ~ , b ) J . ( k b ) b d b = j  i "  [ - d F ( T . b ) ] l b ( k ) d b  (3) 

a b  
The cited studies dealt in fact with a situation with a D 0 

"bare" value ap (0) > 0, = 1 + A,, where A , = ~  f2  /at, and 
I 

g12 is  the vertex of the three-pomeron interaction. In 
In the approximation (2) we have - 8 ~ / 8 b  = 6(bo - b), so 

this case it is impossible to carry out the usual program that the integration in (3) leads to Mbo(k). 
- - 

of reggeon field theory with three-pomeron intera~tion,"~ 
since all the multipomeron vertices become jumpwise 
significant at A> At ultrahigh energy, when 
[A'l, exchange of "jets" of n pomerons is of impor- 
tance (Fig. la), with n"e'A.c1"'21 

In the theory with A >  A, it is convenient to consider, 
besides the s-channel scattering amplitude M([, k2) 
(where ke =- t), the profile function 

2  bk 
F ( f ,  b)= T j ~ ( f ,  k') e'kbx = i-exp[2l6 (E, b) I ,  a b 

where b i s  the impact parameter and 6 i s  the scattering 
phase shift. The function F([, b) has the following char- 
acteristic features: it is almost real, close to unity 
(Fig. 2b) in a wide range of the impact parameter b 

O ~ b < b , = = a ~ { i + O ( ~ - '  In f ) ) ,  (1 

where a is a certain length (see below). At b > bo the 
value of F([, b) decreases exponentially over an inter- 
val Ab that does not depend on energy. On this basis, 
F([, b) was approximated in the literature (see, e. g.,"') 
with the aid of the 0 function: 

.- 
FIG. 1. a) Multipomeron exchange that determines the frois- 
saron, b) enhanced diagrams that include two multipomeron 
blocks (y, and bl are the rapidity in the lab system and the im- 
pact parameter a t  the vertex goo); C)  and d) different types of 
froissaron enhanced diagrams consisting of multipomeron 
blocks. 
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f (w, t) is properly chosen. 

FIG. 2 .  a) The quantity b ( E ,  b )  and b) the froissaron profile 
function Fo = 1- exp {- v (5, b)) as functions of the impact param- 
eter b; here b;w a O [ ,  be = at In (?tY *1/2). The dashed 
curves correspond to formula (13). 

The profile function in Fig. 2b leads to  a Froissart  
of the total cross  section utot=2.1ra2t2, and a t  

C, = 1 it leads to diffraction generation with a cross  sec- 
tion od""=2.1raAb. t, s o  that the corresponding scatter- 
ing amplitude will be dubbed a froissaron. 

As noted in the literature,c2p81 the approximation of the 
froissaron profile by Eq. (2) deviates strongly from the 
t-channel unitarity conditionc141- 

j ( o ,  t )  - f ( o ' ,  t )  = 2 i A , ( t - r 2 ) ~ + S ' Z j . ( m ,  t )  f  (o', t ) ,  (4) 

which should be satisfied in the interval (2x)'>t > n2 
= 4 C ( i ;  A, is a certain constant. We use f(w, t) to denote 
the partial t-channel amplitude (continued into the com- 
plex plane j = o + 1), which we shall also call the Green's 
function of the froissaron. It is known that f(w, t) is con- 
nected with the s-channel scattering amplitude by the re -  
lation 

At M =Mbo(k), b O = a t  this integral yields the well known 
Schwartz 

- 
d f a2/2 

f (o, t )  -t e-"E(aE) 21, ( a k f )  - = 
2akf (02+azks)  "I: ' 

0 

which certainly violates the condition (4) near the sin- 
gular points in the o plane, i. e. , at  w - * a fi . We shall 
show that this difficulty can be overcome if: a) we forgo 
the approximation (2) and take into account, when calcu- 
lating the integral in (3), the logarithmic term (1) a s  
well as of the contribution of the "tail" of the froissaron 
profile; b) we take into account the threshold singularity 
of the pomeron trajectory in the form 5(x2 - t)', where - 
c is a small parameter; c) take into account the contri- 
bution of the enhanced diagrams. 

- 

When these factors a re  taken into account, the form 
(6) of the amplitude f (w, t) is preserved only a t  I t 1 << n ', 
whereas a t  t =  n 2  the form of f (w, t) is entirely different; 
in particular, near the right-hand singular point w = a 6  
the singular part of f(w, t) tends to zero. This makes i t  
possible to satisfy the condition (4) if the regular part of 

The foregoing questions (with the exception of the en- 
hanced diagrams) a r e  considered mainly in Sec. I, which 
is devoted to  the calculation of froissaron profiles F,(& 
b) and the Green's function fo(w, t), with account taken of 
only the non-enhanced diagrams (the zeroth approxima- 
tion). 

The problem of the "enhanced" diagrams"51 of the 
type, b, c, and d in Fig. 1 is considered in the last sec- 
tion of the article. These diagrams contain chains of 
"jets" of pomerons, which are connected along the t 
channel by multipomeron vertices g, =g(n, m). As 5 - -, 
large n"m"eeA become important, s o  that the theory 
with ap(0)> a, is substantially different from the case 
ap (0) = a,, when only three-pomeron interactions a r e  
significant. 

To  calculate the contribution of the enhanced diagrams 
b-d of Fig. 1 a t  ap >a,, it is convenient to  sum f i rs t  the 
contributions of the pomerons in each of the "jets," i. e., 
to  form the zeroth-approximation "froissarons" Mobi ,  
k 3, and to consider next the diagrams (indicated on the 
right in Fig. 1) made up of froissaron lines. This is 
possible, since the contributions of the froissarons can 
be factored out as y - and their coupling vertices, 
a s  shown by ~ardy," '  a r e  equal to goo =g(O, 0) regardless 
of the number of incoming lines. The combined contri- 
bution of these diagrams determines the exact asymptotic 
scattering amplitude M(t, k '), which also has a profile 
close to  that shown by the solid line in Fig. 2, and which 
we shall call the exact froissaron. 

By considering enhanced diagrams of the type b-d of 
Fig. 1, ~ a r d ~ ~ "  reached the conclusion that as 5-- 
their contributions cancel each other in each order in 
g ,  . It was subsequently shown, however, that this con- 
clusion is utterly incorrectc1h121 and that the sum of all 
these diagrams fails to  violate s-unitarity only at small 
goo (see alsoCg1). 

We present below a more detailed analysis of this 
questionc121 on the basis of a previously derivedc1%"' 
equation for the combined contribution of all the enhanced 
diagrams. We investigate the convergence of the method 
of successive iterations of this equation when the frois- 
saron F,([, b) (Fig. l a )  is used as the zeroth approxima- 
tion. It i s  shown that the method indeed converges and 
leads to  an s-unitarity amplitude at a sufficiently small 
froissaron interaction constant g,  and a t  y >2, where y 
is a parameter that determines the threshold behavior 
of the pomeron trajectory. 

We consider only a moving Pomeranchuk pole with 
&(O) >O (in contrast, for example, to  the model of 
Chang and WU~~'"), which stems in natural fashionC1'' 
from multiperipheral intermediate states, i. e., dia- 
grams of the ladder type. The simple properties of 
these states, in combination with the group of reggeon 
diagram techniqueL151 and with the rules for "cutting" 
the  diagram^,'^^] leads to a connectiont6] between the 
scattering properties and the multiple-production pro- 
cesses. This connection cannot be  discerned in the mod- 
el with immobile pomeron,cs*41 the "anatomy" of which 
is unknown. 
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In papers by the CERN group,c'&"' the theory with 
cu,(O) > a, was investigated with the aid of the formalism 
of the reggeon field theory (RFT) with account taken of 
3 (and 4C221)-pomeron interactions on the basis of the lat- 
tice approximation. The main object of the analysis was 
the pomeron propagator, and the principal result was the 
conclusion that a phase transition takes place when ap(0) 
is increased, a t  the point ap(0) = CY, at  which the formu- 
las of the theory change jumpwise. Our results (see 
a h 0 c ~ ~ 2 ~  ) confirm this conclusion. They also show, 
however, that a t  ( ~ ~ ( 0 )  >a, neglect of the multipomeron 
interactions is  quite inadmissible, since it is precisely 
these interactions that cause the contribution of the pom- 
eron propagator to the asymptotic amplitude to cancel 
out exactly. As a result, the problem of the renormal- 
ization of a pomeron propagator is hardly of interest 
at all in the theory with ap(0) > a,. Questions connected 
with this fact a r e  considered at the end of the article. 

Another important property of the theory with A> A, 
is the good agreement with experiment: theory leads to 
a rapid growth of the total cross sections in the region 
of attainable energies (in contrast to the other ap- 
proachesc7"&2s3) and explains in natural fashion the ge- 
ometric scaling in this energy region, a s  well a s  the ag- 
gregate of all the data on the production of particles at 
low transverse momenta. 

I. THE GREEN'S FUNCTION OF THE FROISSARON 

Assume that the use of only the non-enhanced diagrams 
of Fig. l a  gives a "good" zeroth approximation of the 
asymptotic amplitude, and that the enhanced diagrams 
(Figs. lb-ld) yield a small correction. The verifica- 
tion of this hypothesis is the gist of the s-unitarity prob- 
lem, and is the subject of the next section of the article. 

The calculation of the contribution of the diagrams of 
Fig. l a  is easiest in the (5, b) representation,. in which, 
according to the Gribov rules,"5' 

where C, = N~N:/(N~N F)" a r e  dimensionless coefficients 
N $ ( N ~  =GA) are  the vertices for pomeron emission by 
particles, and v([, b) is the pomeron profile function. 

The coefficients C, a re  unknown and can only be esti- 
mated. To simplify the notation we consider the eikonal 
model C, = 1, in which 

As will be seen, the results do not depend on the form 
of the eikonalization, i. e., on the choice of the function 
Fo =E(v); it is necessary only to have E(v) << 1 at v>> 1 
and E(v) =v at v << 1. Another form can be, for example, 
C,, =n! , in which Fo = v/(l + v), or else from the class of 
Cardy's models,c81 where C, = C(n) is an analytic function 
of n, with C(n)/I'(n) - 0 a s  n - m. For this class we have 
~ ( v )  = C(0) at v >>l. 

To obtain the profile it is necessary to knowthepomer- 
on profile 

where 

M P ( g ,  k Z )  =iGZ exp { [ a p ( - - k ' )  - l ]  (E-inl2) -R2k2)  (10) 

is the pomeron amplitude, ap(t) is the pole trajectory, 
and R ' determines the dependence of the residue of the 
pomeron G ' exp(- R 'k ') on t = - k '. For simplicity we 
assume that G A  = G B  = G. The amplitude (10) in the j- 
plane corresponds to the simple pole [ j  - ap(t)]-l. 

1. Threshold singularity and profiles of the pomeron and 
of the froissaron 

We shall show that allowance for the threshold singu- 
larity of ap(t) is of decisive significance for the t- and 
s-unitarity of the theory. We assume that this is a 
power-law singularity, s o  that near t = x 2  ~ 4 ~ :  we have 

where E is the small coefficient and y is some non-inte- 
ger. 

The integral (9) can also be written in the form 

v ( f ,  ~ ) = - ~ S M , ( E ,  k2)%d"(kb)kdk  
0 

% c2 ($)" j e ~ ~ { i k b + ~ [ ~ - a ~ k ~ - ~ ( k ~ + x ~ ) 1 ] } k ~ ~ ~  d k ,  (12) 
C 

s o  that 

The contour C is indicated on Fig. 3, where the hori- 
zontal thick line shows the cut corresponding to the Han- 
kel function zk" (kb). The right-hand formula in (12) 
is valid in the region x = kb >> 1 of interest to us, where 
%A" (x) = (2/inx)"' eir. The term Z(k ' + x2)' in the ex- 
ponential in (12) should be assumed arbitrarily to be of 
the same form a s  a t  k ' - - u '. Otherwise the integral 
(5) may diverge. By shifting the integration contour C 
upward on Fig. 3, we can calculate the integral (12) by 
the saddle-point method, s o  long a s  the saddle-point 
ko=ib/2a1[ lies below the singular point of the inte- 
grand, i. e., s o  long a s  Im k, < x or  at b < 2 a f  w 5. If we 
neglect in the integral of (12) the quantity E(k ' + u2)', 
then we obtain the known result 

v ( g ,  b )  = (Gz/a'E) exp [fA-b'l la'E1, b<2a1xE, (13) 

FIG. 3. Integration contour of the integral (12) in the k-plane. 
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which follows also directly from (9) and (10) a t  E -0. 
Allowance for the singular term at  b <20' x t  in (12) 
leads to a small shift of the saddle point k, and the small  
corrections in the argument of the exponential (A- A - - ~ ( n ~ ) " ,  cyf * at + y ~ ( n ~ ) ~ ' ) ,  which a r e  less significant 
the smaller E. 

In the region b > 2 a' n <, however, where Im ko > n , 
the role of the singular term changes radically. The 
contour C can be transformed here into C", which en- 
circles the cut drawn from the branch point k =i x (Fig. 
3) of the function ap(- k 2, to  k = im.  

If y > 1, then the main contribution to  the integral (12) 
is made by the region of small  I k -i xl-I/(. We can 
therefore expand exp[- 65(k + n2)'] in a ser ies  and con- 
fine ourselves to  the f i rs t  singular term. This yields 

where the function cp,(k) on the vertical cut takes the 
form 

while r = (k - i n)/i is the distance to  the singular point 
k =in ,  and the length 

will play an important role subsequently. 

The contour C" should be bent at the saddle point of 
the function exp[cp,(k)], i. e., a t  r =r, = ( ~ , / 2 a  ') - u , 
where h,, = b/<. At this point the function 

exp I(pb(k) -cpb(ix) I -exp {-E(I,-2a'x) '/4a') 

has a deep minimum, and therefore integration with re -  
spect to  the variable r = - ik - n can be terminated a t  r 
=rb (this result in an exponentially small  error). As a 
result we get 

where 

B=2GZen-'h(2x)'+"r( l + y ) ,  

If A> a ' n 2  (as is in fact the case) then, as seen from 
(15) and (14), there exists a'wide region 2a'  n < < b < a <  
in which v>> 1. Therefore the froissaron profile (8) is 
determined by the profile v(f,b) [ ~ q .  (15), but not (13)] 
in the fall-off region (Fig. 2) and in the "plateau" sec- 
tion. 

The next threshold singularities of the trajectory op(t) 
at t =t ,  = (n x ) ~  result in exponentially small corrections 
to (15) as 5 -a. In fact, the contribution of the n-th 
threshold comes into play only at b >2a'n U <  and is of 
the order of e x p ( 5 ~ + a ' n ~ n ~ [ - n x b ) .  At b>2a 'nx(  
and as < - this quantity is exponentially small  in com- 

parison with (15). 

In the transition region b = 2 a r x  < the arguments of the 
exponentials in (13) and (15) coincide and i t  can be shown 
that the condition (17) & >0 ensures positiveness of v(<,b) 
in this region, too. 

Thus, the froissaron profile Po([ ,  b) (81, (13), (15) has 
a b-dependence of the type shown in Fig. 2, with a pla- 
teau in the region b < bo (bo "at), where v(<, b) >>l, with 
a fall-off region where v(<, b)-1, and with a "tail" re-  
gion a t  b >bo, where v(<, b)=F,(t, b) <<l. The value b =bo 
will be obtained by equating the right-hand side of '(15) 
to unity. This yields 

where 

i s  a certain number, and the length a, =a - 2 a r x  =(A 
- cyfn2)/n is positive a t  A> (urn2. 

In the fall-off region of the curve of Fig. 2b at Ib - bol 
<<a<, the profile (15) can be represented in the simple 
form 

The condition bo>2a1n5 for the validity of the formula 
(15) in the r'fall-off" region of the curve of Fig. 2b de- 
termines that minimal value of the rapidity =to at which 
the profile F0(& b) is determined by formulas (8) and (15) 
(or by formula (19)): 

27+1 27+1 1 
6 0 2 -  In---hq. 2a-x 2a-x a-x 

At smaller 5, the froissaron profile Fo([, b) is deter- 
mined by formulas (8) and (13), which yield much small- 
e r  values of b, (see Fig. 2): 

Formulas (8) and (13) determine the F0(& b) in the (non- 
realistic) case A< a'x2, when at b=2a 'n<  formula (13) 
already yields v(t, b )  << 1. This means that the threshold 
singularity of cyp(t) manifests itself only in the far re-  
gion of the "tail," where F(<, b) << 1. It can be shown 
that at A <  a'x2 allowance for the enhanced diagram leads 
to  violation of s-unitarity. We shall dwell on this case 
briefly in Appendix I. It is seen (Fig. 2) that allowance 
for the threshold singularity at A> a'n2 greatly increases 
the radius of the froissaron profile, by an amount bo - bb 
=(a - 2 G ) t .  

2. Zeroth-approximation froissaron Green's function 

Let us find the total contribution of the diagrams of 
Fig. la  to the amplitude M0(& k2). To this end we sub- 
stitute F,(<, b) in the form (8) into the right-hand side of 
(3) and change over to  the integration variable v =v(& b). 
This yields 
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Dependence of b on v is obtained from (19): 

Substituting expression (20) with allowance for (21) into 
formula (5), we obtain the zeroth-approximation frois- 
saron Green's function f,(w, t): 

Let us calculate fo(w, t) in the region of interest-near 
the right-hand singular point in the w plane (i. e., at 

I w +iak I - 0) and a t  t #0, when an important role in the 
integral is played by large 5 - I w +iak I", and also by 
large kb -ak[. In this case we can use the asymptotic 
expansion for the Bessel function 

I ,  ( z )  =x-"{[e-*/(-2~)~]+[e'=/(2iz)~*]}, 

and take the logarithmic term in (21) into account only in 
the exponentials exp(rt ikb). We arrive at the result 

It is seen from (24) and (22) that f,(w, t) has no singu- 
larities in the t-plane at t =O. We therefore confine our- 
selves below to an analysis of this function only in the 
upper-half plane k ==. 

At t = - k # x2 substitution of (24) and (25) into the in- 
tegral (22) yields the following expression for the singu- 
lar part of f,(w, t) near the singular point w = -iak in the 
w plane: 

f o ( o ,  t )  =F( l+ ik /x )cp (o ,  k ) .  (26) 

This expression is valid at I w +iak I< lak I .  If we have 
under this condition also k - 0 (i. e., if (w +iak) is of 
higher order of smallness than ak), then (26) coincides 
with the Schwartz form (6). 

The pole of the r function in (25) is due to the diver- 
gence of the integral (23) in the [- 0 region at $ + (ik/x) 
x (y + f )  =O. At small 5, however, the asymptotic form 
(20), (21) used above for the amplitude is incorrect. 
Therefore the lower limit in the integral (23) must be 
replaced by a certain value 5,. This leads to the follow- 
ing change in the (25): 

where 

is the incomplete I' function, with x =% + (y+$)ik/x, 
while y = (w + iak) 5,. Near the singular point w - - iak 
this substitution leads to the appearance of a number of 
regular terms in (25). The substitution (27) is impor- 

tant only at x-0, 1x1 < ly I .  

As k - i H ,  the pole of the r function in (26) is due to 
the divergence of the integral (22) in the region of small 
v. This means that fo(w, t) is determined a s  t -  xe main- 
ly by the "tail" of the profile of Fo(C;, b). In this region, 
however, the condition for the applicability of formulas 
(19) and (21), I b - bo I<< a[, may be violated, and then the 
result (26) turns out to  be incorrect. To calculate fo(w, 
t) as t - x 2  it is therefore necessary to use the exact 
formula (15), -and it suffices to confine oneself to the 
contribution M([, k2) to the integral (3) only in the re -  
gion b > b, - x" lng ( E  << 1 is a certain fixed number). In 
this region we have F,([, b) =v([, b) (15), and we arrive 
at the integral 

where x=(x+ik)(b -2a1%[), and xo is the value of x at 
b = bo - x" lnb. When Go([, k ') is substituted in the inte- 
gral  (5) we obtain in the limiting cases the following re- 
sults: 

TGZe(2x) ~ ( ~ + i a k )  - ' I - ( t k / x N l + ' ! t )  

sing f, ( o ,  t )  = 
(a-2a'x)  '+' (x+ ik )  

' l+ iklx  (29) 
if l x l . 1 .  

where singf,(w, t) denotes the principal singular part of 
f,(w, t) with respect to both arguments w +iak and x+ik.  

We note that formula (29) follows from (26) in the lim- 
it as Il+ik/wl-0, as i t  should. 

It follows from (28) and (29) that at the point k = in  the 
singularity of f,(w, t) with respect to  the variable w at 
w = - iak = a  fi is "soft" if y >2. It should be noted that 
the condition y =$ + a(x2)  obtained by Gribov and Pomer- 
anchuk"" in the theory with ap(0) = 1 is not obligakory in 
the case ap(0)>l. In fact, in the derivation of this con- 
dition from t-unitarily it was assumed inca4' that all the 
f(w, t) terms except the pole term a re  small as w- a(t) 
and t -  x2. This assumption, however, i s  incorrect if 
the singularity of the pole term is cancelled out by the 
sum of the remaining terms of the eikonal series, as 
is the case when cup (0) > 1. As will be shown below, we 
reconcile the ap(0) >1 theory with the t- and s-unitarity 
conditions i t  is necessary to have y >2. 

Carrying out a transformation inverse to (3) and (5), 
we obtain 

and, transforming the integration contour C into C1' 
(Fig. 3), we can reproduce the froissaron profile (a), 
(15) in the region of the "tail." All that matters here is 
the part of f(w, t) which is singular in the two arguments 
w +iak and x+ik, whereby (28) accounts for Fo([, b) in 
the region b >>a[, and (29) in the region a [ >> (b - bo) >>a. 

The t-unitarity condition (4) near the threshold t = x 2  
is best discussed after investigating the enhanced dia- 
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grams. The point is that besides the principal singulari- 
ty in the w plane (i. e., a t  w = - iak), the Green's func- 
tion (22), (23) has at the point w =iak a singularity that is  
obtained when account is taken of the terms -exp(ikb) in 
the asymptotic formula for the Bessel function. In con- 
trast to (28) and (291, the singularity at the point w =iak 
is not "soft" at k = i n ,  and takes the form 

For the theory to be compatible with the t-unitary prin- 
ciple it is  therefore necessary that the enhanced dia- 
grams alter f(w, t) radically (in comparison with fo(w, t)) 
as w - iak. On the other hand, for the theory to be com- 
patible with the s-unitarity principle it is desirable that 
the enhanced diagrams yield small corrections Af(w, t) 
to the function fo(w, t) near the principal singularity o 
=-iak as k - in ,  since the form of f(w,t) as w--iak 
and k-ix governs the behavior of the "tail" of the func- 
tion of the profile F(5, b), which is  s-unitary in the 
zeroth approximation. 

We proceed thus to the investigation of the enhanced 
diagrams. 

II. FROISSARON DIAGRAMS AND S-UNITARITY 

The investigation of this question is  facilitated by the 
fact that the summation of the pomeron diagrams can be 
reduced to summation of the froissaron diagrams indi- 
cated in the right-hand side of Fig. 1. The point is that 
each block of the complex diagrams contains in turn 
the complete (or almost complete) set of pomeron dia- 
grams that make up the froissaron. It is therefore pos- 
sible to obtain an equation for the amplitude of the exact 
froissaron. 

1. Integral equation for the exact froissaron 

A s  we have shown earlierclol (see the sum 
of all the pomeron diagrams, i. e., the exact froissaron 
F(5, b), is the solution of the equation represented graph- 
ically in Figs. 4 and 5. Figure 5 shows that F(5, b) takes 
the form of a series of the type (7) in powers of the pro- 
file V([, b)-the contribution of the totality of all the ir- 
reducible diagrams: 

and in the eikonal model we have F([, b) = 1 - exp[- V(5, 
b)]. Diagrams are defined as irreducible (relative to 
eikonalization) if they cannot be divided in the s-channel 
(i. e., by a vertical bar) without crossing or cutting even 
a single pomeron line or a multipomeron vertex. 

A s  shown inc1'', 

FIG. 4. Summary contribution (V(l; ,  b )  of diagrams that are 
irreducible with respect to eikonalization. 

6 P 
F V I E ,  6 )  v Z  v S  

FIG. 5. Equation for the value F([, b )  of the exact froissaron. 

(Fig. 4), where v(5, b) is the pomeron profile, and C and 
D a re  expressed in terms of the froissaron Green's func- 
tion in accordance with the Gribov diagram-technique 
rules.E161 

We recall that the class C (aggregate of chains) in- 
cludes the irreducible pomeron diagrams that can be di- 
vided in the t-channel (i. e., by a horizontal line) without 
crossing pomeron lines (only multipomeron vertices are 
crossed). Any diagram of this class contains not less 
than two links, so that 

where go, is the Cardy ~ e r t e x , ~ "  and z(w, t )  and c(w, t )  
are  the Green's function of one link and of the sum of 
all chains, respectively. Obviously, the link includes 
all the pomeron diagrams with the exception of c (to 
avoid duplication), i. e. , z(w, t) = f (w, t) - c(w, t). Substi- 
tuting this relation in (34) we arrive at an algebraic equa- 
tion with respect to c(w, t), whose solution i s  

where f(w, t) is the froissaron Green's function with 
allowance for all the enhanced diagrams. 

Relation (35) means that class C can be set in corre- 
spondence with the aggregate of diagrams shown in the 
central part of Fig. 4. The lines correspond to exact 
froissarons and the vertices to the Cardy constants 
(-goo). 

Diagrams of class D (Fig. 4) satisfy the following 
conditions: 1) It is impossible to divide the diagram 
in either the s channel or the t channel (by either verti- 
cal or a horizontal line) without crossing or cutting a 
single froissaron line; 2) not less than three lines con- 
verge on each vertex; 3) there is  not a single fragment 
of the diagram (with the exception of the froissaron line) 

'that has less than three common vertices in the remain- 
ing part. 

The property (3) means that if we replace in the dia- 
gram of class D the froissaron line by some more com- 
plicated fragment, then we obtain a diagram whose con- 
tribution has already been taken into account in the ini- 
tial diagram and needs not be accounted for again. For 
example, it i s  not necessary to take into account the con- 
tribution of the diagram shown in Fig. 6, since it con- , 

FIG. 6. Example of diagram of class D, 
goo which need not be taken into account. 
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tains a fragment connected with the remainder by verti- 
ces  a and b. 

Thus, if we express C(f, b) and D(5, b) in terms of 
F(5, b) in accordance with the Gribov diagram-technique 
rules,ci51 then (32) and (33) can be regarded as an inte- 
gra l  equation for the froissaron amplitude. 

The main problem in the investigation of this equation 
is whether F(5, b) (32) can be represented as a ser ies  in the 
small  quantity g,, i. e., whether Fo(5, b) =E(v, 5, b) is a 
"good" zeroth approximation (at all b). For this purpose 
it is obviously sufficient to have 

which means in practice 

Thus, the s-unitarily problem reduces to an investiga- 
tion of these inequalities, which will be carried out be- 
low. 

2. Diagrams of class C 

At goo>O, besides the diagrams of class C, which have 
a negative coupling constant (-goo), we shall consider 
an aggregate of diagrams with positive coupling constant 
g,. The corresponding Green's function Z(w, t) is 

Since ~ ( 5 ,  b) >- I C(5, b) I, it suffices to stipulate satisfac- 
tion of the inequality (37) for c(5, b)." 

We have investigated inClo' the diagrams C and in 
approximation (2) for the froissaron profile to which the 
Green's function (6) corresponds. Substitution of (6) in 
(39) yields (at C, = 1) 

As shown inclol, the Green's function (40) corresponds to  
the profile 

while the Green's function (35) (with (6) taken into ac- 
count) corresponds to the profile 

Comparing (41), (42), and (15) we arr ive  a t  the conclu- 
sion that the condition (37) must inevitably be  violated a t  (r- b/a) " tA, where A <  1. A more consistent analysis of 
C(5, b), however, eliminates this difficulty. As shown 
in Appendix 11, formulas (41) and (42) a r e  valid only if 
the constant g is small  enough and (a 5 - b)/a 5 >>g2'9/ 

(ax)', while at larger b it is necessary to use the explic- 
it form (25), (26) of the froissaron Green's function 
fo(w, t )  (with allowance for the substitution (27)). This 

question is analyzed briefly in Appendix 11 for small  val- 
ues of g. The analysis yields the following result: in 
the region 

we have 

so  that when (15) i s  taken into account we get 

i. e., the condition c(5, b) < v(4, b) is satisfied. 

It is interesting to note that relation (45) remains valid 
if exp[x (bo - b)] >> 1 (i. e., almost up to  the boundary of 
the plateau region of the froissaron). 

We must now consider the condition I C(5, b) I< v([, b) 
in the region b > bo. As already mentioned in Sec. I, the 
behavior of the profile a t  b > bo is determined by the sin- 
gular part  of the Green's function with respect to the two 
variables w +iak and x +ik. 

The singular part  of fo(w, t) (28), (29) tends to zero  if 
y>2. There is also a regular part  of f(w, t), which re -  
mains finite as (w +iak)- 0 and ( x  +ik) - 0, and which i s  
determined by the behavior of the froissaron profile a t  
finite 5. Thus, when fo(w, t)  is substituted in (35) (in 
place of f (w, t)) the principal singular part of C(w, t)  is 
obtained in the form (28), (29) with a small  coefficient 
if goo is small  enough. Obviously, if the same coeffi- 
cient i s  used, the profile C(5, b) remains proportional 
to F(5, b) a v(5, b) at b > bo (i. e., in the region of frois- 
saron "tail," Fig. 2b). Consequently, the inequality (37) 
is satisfied and the chain does not violate s-unitarity a t  
b > bo. 

We point out an important consequence of the foregoing 
reasoning: the profile of a chain of n links Cn([, b) is de- 
termined by a configuration such that almost the entire 
rapidity is carried by one link, and each of the remain- 
ing links carr ies  a finite value of the rapidity. 

In fact, were we to substitute in the Green's function 

only the singular part of fo(w, t) (28), (29), then we would 
arrive at the conclusion that cn(w, t)  is of higher order of 
smallness than fo(w, t), and consequently Cn(5, b) << Fo([, 
b) at b > bo. However, allowance for the regular part  of 
f(w, t) in formula (46) alters the situation radically: 
Cn([, b) "Fo(5, b) (at b >> bo), with a proportionality coef- 
ficient that depends on the regular part  of fo(w, t), which 
in turn is determined by the behavior of Fo([, b) at finite 
5, when the froissaron profile no longer has the form of 
Fig. 2b. 

3. Diagrams of class D 

Let us consider some properties of diagrams of class 
D. Assume that some diagram of this class has vertices 
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FIG. 7. Diagrams containing cancellation lines. 

that a r e  not interconnected by a froissaron line. When 
any pair of such vertices is connected by a froissaron 
line, we obtain again a diagram of class D (Figs. 7a and 
7b).2' We shall refer to the resultant diagram as supple- 
mentary with respect to  the initial one, and call the op- 
eration itself supplementation. Obviously, the signs of 
the supplementary and initial diagrams a r e  opposite, 
and their contributions cancel out completely if the 0- 
function approximation is used for the froissaron profile 
(the Cardy cancellationc81). In a real  case the cancella- 
tion takes place a t  b <at;. On this basis, the summation 
of the initial and supplementary diagrams will be called 
a cancellation operation with respect to  those vertices 
between which a froissaron line is drawn in the supple- 
mentation operation. We represent the cancellation op- 
eration graphically by a dashed line (which we call the 
cancellation line) joining the corresponding vertices (Fig. 
7f, g, h). 

We shall call a diagram of class D non-simplifiable if 
it is impossible to discard from it  even a single frois- 
saron line and obtain thereby a diagram that still belongs 
to class D. Obviously, all  the diagrams of class D can 
be obtained from non-simplifiable ones by performing 
in them, in succession, the supplementation operation. 
Therefore any diagram of class D can be represented as 
an aggregate of non-simplifiable diagrams in which can- 
cellation lines a re  drawn (Fig. 7). It must only be rec- 
ognized that the same supplementary diagram can be ob- 
tained from different initial diagrams. It can be veri- 
fied nevertheless that in all the non-simplifiable dia- 
grams of order higher than the second it is possible to 
draw cancellation lines in such a way that the supplemen- 
tary diagrams a re  not taken into account again (see, 
e. g., Fig. 7). Therefore a Cardy cancellation takes 
place at b < bo (the plateau region of the froissaron) and 
the condition (38) is satisfied. 

We investigate now the condition (38) a t  b>.bo (the re-  
gion of the froissaron "tai19'j and a t  b=bo. 

In the region b > bo, the profile of any diagram is de- 

FIG. 8. Summary contributions of all D dia- 
grams at  b > b o .  

I I - 
Jo Jo 

FIG. 9. Inequality of contributions of diagrams of class D at-. 
b FJ bo. 

termined by the singularities of the Green's function in 
the k plane. The position of the singularities of the D 
diagram is determined by the equality k =imw , where m 
is the number of froissarons that can be cut by a horizon- 
tal line. Obviously, in this diagram m can assume sev- 
e ra l  values, and some values of m can be repeated when 
different cuts a r e  drawn. If y>2,  then the asymptotic 
form of the profile of a given diagram a t  (b - bo) >> a is 
determined by the sum of the contributions of such con- 
figurations that the cut froissaron take on practically the , 
entire rapidity t;, while the remaining lines take on a 
finite value of the rapidity. 

Thus, a t  b > bo the sum of all the D diagrams can be  
represented by the diagram shown in Fig. 8, where the 
shaded vertices constitute diagrams with finite values of 
the rapidity. We arr ive  at the conclusion that condition 
(38) reduces to  the problem of the convergence of the 
froissaron diagrams at finite rapidity. It is natural t o  
assume that the answer to this question is in the affirma- 
tive and condition (38) is then satisfied. 

Finally, let us dwell briefly on the region bebo .  It 
can be shown that owing to the presence of a logarithmic 
term in formula (18) at 

the principal contribution to  D(t, b) is made by the sim- 
plest diagrams Do (Fig. 9), which contain a minimum 
number of links along the t channel. The upper bound of 
the sum of these diagram? (in absolute value) can be rep- 
resented by the diagram Do (Fig. 9). At 

the contribution of 5, is of the order of 5 i, where the 
pomeron profile is - t;**1/2. Thus, at y> 5/2 the condi- 
tion (38) is satisfied. With further decrease of b, the 
inequality (38) becomes stronger. 

. 4. Discussion of the t-unitarity problem. 

The reggeon diagram technique is in- 
tended to calculate the asymptotic form of the scattering 
amplitude in the s channel a t  k = - t > 0 (or of the asymp- 
totic profile function in the s channel), which is deter- 
mined by the singular part  of the t-channel partial ampli- 
tude. This part of the amplitude need not, generally 
speaking, satisfy the t-unitarity condition (4), but it must 
be such that the condition (4) can be satisfied given a 
suitable regular part  of f (o, t). It is very important here 
to  continue f (w, t) accurately into the region t > x 2, where 
the condition (4) is valid. Thus, for example, failure to 
understand that the Schwartz formula (6) is valid only in 
the region lak 1 << 1 has led to  the incorrect conclu- 
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~ion" '~ '  that the Froissart growth of the cross section 
contradicts t-unitarity. Actually, as we have shown, the 
behavior of f (w, t )  as t - x e  is determined by the "tail" 
part of the froissaron profile. As a result, the condi- 
tion (4) can be satisfied near the singularity w =iak - - a x  where the zeroth-approximation Green's function 
is of the form (31). 

We substitute in the eikonal series (32) expressions 
(33) and (35) and change over to the (w, k) representa- 
tion. The only term in the right-hand side, which has a 
threshold singularity at k = i n ,  w - iak, is obviously 
C(W, t), i. e., 

where the function 9(w, t) has no threshold singularity a t  
t = x 2, w - iak. From (35) and (47) we obtain 

This expression satisfies the condition (4) if the part of 
the vertex gm(c) with the threshold singularity is equal 
to  Ao(k + x2)ws'2. 

No such reasoning can be used near w = - iak - a x ,  for 
if we go to the (w, k) representation in the right-hand side 
of (32), then not only c(w, t) but also the pomeron term 
has a threshold singularity a t  t = x2. 

Near the singularity w = - iak - a x ,  the t-unitarity con- 
dition can be satisfied by taking into account the back- 
ground part of f (w,  t), which makes no contribution to 
the integral (30). For example, if the background part 
of f(w, t) is of the form 

at 1(1 +ik/x)/(w +iak) !<<I, and at the same time y =% 
+m + a(x2)  in the singular part (28) of f(w, t), then the 
condition (4) can be satisfied in the lowest orcters in 
x2 +k 2. This condition can always be satisfied in the 
higher orders, since we a re  free to choose singular 
terms of f(w, t) of higher order of smallness and due to 
the subsequent singular corrections to the pomeron tra- 
jectory. 

CONCLUSION 

As already noted, interest in the theory with ~ ( 0 )  
> a,>1 is due primarily to the possibility of successfully 
describing with its aid all the presently known experi- 
mental data for the region of high energy and small p, . 
We deem it  therefore very important to ascertain whether 
the theory satisfies such fundamental requirements as s- 
and t-unitarily as 5 - m. Our principal result is the con- 
clusion that an affirmative answer to this question can 
indeed be obtained if the threshold behavior in the t- 
channel of the pomeron trajectory is correctly taken into 
account. 

Yet one can ra ise  the question of what form the theory 
of the pomeron itself assumes in the froissaron-exchange 
scheme developed here. Consider the renormalization 
of the bare pomeron propagator S(w, k), defined by the 
usual relation 

FIG. 10. Diagrams for the self-energy part of the pomeron 
(a), for the vertex of the coupling of the pomeron with the 
particles (b), and for the chain cr (w,  k) (c). 

S- ' (o ,  k) = a - o o ( k )  -X(o ,  k ) ,  (49) 

where 

where the self-energy part C(w, k) is determined in the 
theory with a(0)'> a, by the contribution of chains of the 
type of Fig. 10a, as well as by the contribution of the 
vertex for the transition of the pomeron into a pomeson 
glt = [g(n, m)],,,, in the form 

x ( @ ,  k) =goLlZo(o, k)/[ i-goOZO(o, k) l+gll. (50) 

We use next the factorization relation 

g~og,,=g,,Z, (61) 

and assume that gol =goo G, gl, =goo G ', where GA = G B  = G. 
These greatly simplify the calculations without changing 
the fundamental results. Then formula (50) can be re-  
written in the form 

Z ( o ,  k)  =gi,/I l-gooZ~(o,  k) I .  (52) 

Obviously, Zo(w, k) is connected with the link z (w, k) of 
the chain C (34) by the relation 

since the pole term enters in the link z(w, k) but must not 
enter, by definition, in the link Z,(w, k). Substituting 
(52) and (53) in (49), we arrive a t  the expression 
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We see that the renormalization has led to an appreciable 
deformation of the pomeron propagator. 

To calculate the contribution of the renormalized pom- 
eron to the scattering amplitude it is necessary to take 
into account also the renormalization of the vertex for the 
emission of a pomeron by particles. As seen from Fig. 
lob, the renormalized vertex G,(w, k) is of the form 

Therefore the contribution of the renormalized pomeron 
to the t-channel partial waves is 

Thus, the renormalization of the contribution of the 
pomeron leads to a shift of the pole to the left, by an 
amount 

It must be recognized, however, that the complete set 
of the irreducible (with respect to eikonalization) dia- 
grams contains also the chains C ', whose links contain 
no single-pomeron exchanges a t  all (Fig. 10c). The 
sum cl(w, k) of the contribution of these diagrams also 
has a pomeron pole: 

In the sum with f iO) = G S this reconstructs exactly the 
pomeron contribution G 2/[ w - wo(k)] in the sum with the 
contribution c(w, k) of the previously investigated chain 
(34): 

G' 
f p ( ~ , k ) - f : ' + c ' = - + c ( ~ ,  k ) ,  

6 3 - 0 0  
(58) 

where c(o, k) =g,z 2(w, k)/[l -g,z(w, k)] is the quantity 
(34) which has no pomeron pole; its singular point in the 
w plane are located to the left of w =oo(k) (see Sec. 11). 

This result shows that the answer does not depend on 
the order of the summation of the diagrams (therefore, 
in particular, it remains valid also when relation (51) 
between the pomeron vertices is violated). It also 
eliminates the confusion concerning this question in the 
l i t e r a t ~ r e , ~ " ' ~ ~ ~  namely, in the contribution f<pO'(w, k) (56) 
of the pomeron the pole is  s h i e d  to the left, while in 
the complete set of all the irreducible (with respect to 
eikonaliiation) diagrams it turns out to coincide with the 
bare pomeron. 

It was impossible to present in a single article a com- 
plete analysis of all the questions touched upon in the 
text, especially the s-unitarity problem. We have there- 
fore relegated an appreciable part of the calculations to 
the Appendices. It was impossible, for example, to 
present even a brief analysis of the conditions I C(5, b) 1 
< v(5, b) and I D(5, b) I< v(5, b) in the important region b 
=bo of the decrease of the profile on Fig. 2. Therefore 

only the final results were presented. In addition, we 
did not touch upon the problem of the exact determina- 
tion of the right-hand side of the inequality goo<Ao ~' /cr ' ,  
which imposes a restriction on the Cardy vertex on the 
basis of the s-unitarity req~irement .~ '~]  This question 
will be dealt with in a separate article. 

APPENDIX I 

In this case the condition v(6, bo) = 1, which determines 
the boundary of the froissaron plateau, is  satisfied at 
b0 <2cu'x5, and the froissaron profile in its principal part 
is determined by substituting (13) in (8) (Fig. 2b, dashed 
line). 

We present without proof an expression for the princi- 
pal singular term of the Green's function in the frois- 
saron in the case A < [Y' x 2  at k ' < 0: 

here 

@ ( o ,  t )  = 2 a ' ~ n - " I ' ( ' / ~ + i k ~ ~ )  . 
(a' /G')fkdaq(-4ik~aT) -Yz ( o + 2 i k v x ~ )  - % - ~ f a T  (1. 2) 

Thus, in the region 0 <Im k < d w  summation of the 
eikonal series yields in the w plane a singularity that has 
a trajectory a o f i  (where a, = 2 ), even though the 
terms of the series have singularities at w =w, =nA 
+ cult/n. In the region 

) ' m < ~ m  k<2Ib/a' 

the single-pole term of the eikonal series is separated, 
and the sum of the remaining terms has a singularity on 
the trajectory w = a o 6 ,  so that 

f a ( @ ,  t )  =I ' ( i+ ik la ' l~ )  ~ ( o ,  t )  
+GZ/(o-A+a'#) at Wa1<1rn k < 2 m  (1. 3) 

(if $ + i k m  =O, then it is necessary to carry out in 
the expression (I. 2) for G(w, t) (I. 2) a replacement of the 
I' function, similar to (27)). In the region 

the single-pomeron and two-pomeron terms a r e  sepa- 
rated from the eikonal series, and so on. 

The separation of the one-pomeron term at t > A/& 
,was indicated in Cardy7s paper,c81 where an erroneous 
hypothesis was advanced, that the point t =A/& i s  singu- 
lar for fo(w, t). It can be shown by an accurate analysis 
that the behavior of f,(w, t) near t =A/ot is determined 
by the expression 

(I. 4) 

We can therefore conclude that the one-pomeron singu- 
larity (pole) goes over at t = A/@ 1 from the second sheet 
of the w plane to the first. 

In addition, it has not been noted inCB1 that with in- 
creasing t the singularity of f o ( ~ ,  t) becomes "softer" at 
the point w = a o c  (I. 2). 
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It can be shown that in the case A <  a , x 2  allowance for 
the enhanced diagrams leads to violation of s-unitarity. 

APPENDIX II 

SUPPLEMENT TO THE ANALYSIS OF THE DIAGRAMS 
OF CLASS C 

We shall show first  that even a t  sufficiently small 
Cardy constant formula (41) is valid only at (at - b)/at 
>>g2'3/(ax)e. We calculate C(4, b) accurate to a pre- 
exponential factor. We can then write down a formula 
similar to (12): 

- 
C ( t ,  b)  - j eikb+-'k'L dk, 

-- (II. 1) 

where oo(k) is the position of the right-hand pole of E(o, 
k). From (40) we obtain 

0,. ( k )  -(g"a-dk') ". (II. 2) 

The integral (II. 1) is calculated by the saddle-point 
method. The position of the saddle point is found to be 

and we arrive at the argument of the exponential in (41). 

Formulas (6) and (40) a r e  valid a t  I k I<< x , (w +iak)" 
> to (19'). It is clear that I w +iak l-X/t, where is the 
average multiplicity of the links in the chain (40). By 
the standard method we can obtain 3 = ig1I35. There- 
fore formulas (II. 2), (II. 3), (40)-(42) a r e  valid at g113 
< l/tO, (at - b)/at >>g2I3/(a w ) ~ ,  and to calculate Z(t; ,b) 
at larger b i t  i s  necessary to  substitute the Green's 
function (25), (26) in formula (39). 

In particular, it turns out that at 0 < (at - b)/a[ 5ge13/ 
(a x)e the behavior of c((, b) is determined by the values 
of Z(w, k) in the region of small x, where , 

z ( k )  =Y2+i(y+'h) klx.  (II. 4) 

In the region I x I<< 1 the argument of the r function in 
(25) is small, s o  that it i s  necessary to  make the substi- 
tution (27). When account is taken of this substitution 
and of the expansion (27'), we arrive at the following ex- 
pression for the froissaron Green's function (25), (26), 
in the region (II. 4) of small x: 

here 

When @. 5) is substituted in (39), the function Z(w, k) 
acquires a pole at the point w = oo(k), where 

We substitute the value wo(k) (II. 7) in formula (II. 1) 
and calculate the integral in (II. 1) by the saddle-point 
method. The position of the saddle point ko is deter- 
mined by the following condition: 

where xo =x(ko). It can be  verified by a simple analysis 
that this condition is satisfied at xo < 0, I xo I<< 1, which 
corresponds, according to (I[. 4), to the position of the 
saddle point ko=i3x(2y+l). In addition, it can be con- 
cluded from (2.9) that 

(It. 10) 

If we substitute in the integral (II. 1) the valve wo (XI. 7) 
at the saddle point ko=i3 x /(2 y + l), and also take the in- 
equality (It. 10) into account, then we arr ive  at formula 
(44). 

We note that the presented analysis is valid at suffi- 
ciently smallg.  The point is that in expression (11.5) 
we have neglected a certain constant f O that results 
from the contribution of the region of finite values of 5 
to  f(o, t). In order for this term to be inessential when 
f(w, t) is substituted in formula (39), it is necessary to 
satisfy the condition gfo< 1. 

"we note that when the conditions (37) and (38) are  satisfied 
it is possible to substitute in formulas (35) and (39), in the 
zeroth approximation, the Green's function fo(w, t) obtained 
with only non-enhanced diagrams taken into account. 

recall that it is not permissible to join only vertices that 
are connected with particlesA and B ,  for this joining results 
in a reducible diagram. 
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It is shown that even in its ground-state, muonium (hydrogen, mu-nucleonic atom) has a quadrupole 
moment which is comparable in magnitude to nuclear quackupole moments. This leads to a pronounced 
dfect of inhomogeneous intracrystalline fields on the spin precession and relaxation of p+ mesons and may 
serve as a basis for carrying out experiments with muonium (mu-nucleonic atoms) which are analogous to 
quadrupole resonance and relaxation. 

PACS numbers: 36.10.Dr 

It is well known that the principal quantum character- 
istic of muonium is its magnetic moment. It is  specifi- 
cally the existence of this magnetic moment that gave 
rise to the meson method for studying properties of mat- 
ter, a distinctive analogue of NMR and EPR, and to its 
intensive development in recent times (cf., the review 
articlec1'). It will be shown below that muonium in its 
ground state has yet another quantum characteristic-a 
quadrupole moment. The existence of a quadrupole 
moment in muonium opens up new possibilities in the 
meson method associated with the investigation of quad- 
rupole splitting of muonium levels and of the mechanism 
of its quadrupole relaxation in matter. In this sense the 
meson method becomes similar to nuclear quadrupole 
resonance and can be utilized to study not only magnetic 
but also inhomogeneous intracrystalline electric fields. 

At first sight the assertion made above contradicts the 
well-known circumstance that a s  a result of spherical 
symmetry of the Coulomb interaction the ground 1s-state 
of muonium (of a hydrogen atom, and of other hydrogen- 
like systems) is described by a spherically symmetric 
wave function. A s  a consequence of this the aforemen- 
tioned systems should not have any electric multipole 
moments. However, it is necessary to note that a viola- 
tion of central symmetry, although insignificant at first 
sight, arises a s  a result of the hyperfine interaction be- 
tween the spins of the electron and of the k* meson in 

muonium (g meson and the nucleus in a mesic atom, 
etc. ). A s  a result of this the ground state does not have 
spherical symmetry and the appearance becomes possible 
of a quadrupole momentce1 comparable, as it turns out, 
in order of magnitude with nuclear quadrupole moments. 
Indeed, the energy of the hyperfine interaction, for ex- 
ample, in the system $e' can be written in the formcs1 

where 

V, (r) =-11/3np,p1S (r), VZ(r) =-p,pdlJ, n-r/r, 

. cr are  the Pauli matrices, e = 4 q, i = & ue, p1 is the mag- 
netic moment of e', is the magnetic moment of $. 

In the usual analysis of the hyperfine splitting of levels 
of atoms which are in the ground 1s state the second term 
in (1) is not taken into account since on averaging over a 
spherically symmetric state it is equal to zero.LS1 How- 
ever, the interaction proportional to V, can admix to the 
triplet state of muonium, far example, the sDl state. As 
a result of this, without practically altering the energy 
of the triplet level the small admixture to it of the D 
state will lead to a qualitatively new result: to the ap- 
pearance in the system of a quadrupole moment QLal 
(cf., with the analogous mechanism for the appearance 
of a quadrupole moment in a deuteronc4]; we also note 
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