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A study is made of the effects of vacuum polarization, particle creation, and interaction of particles with a 
self-consistent gravitational field in an anisotropic Bianchi type I universe. An asymptotic expansion is 
obtained for the propagator of scalar particles which makes it possible to classify quantum effects. The 
radiative corrections are calculated in the logarithmic approximation and the energy-momentum tensor of 
real particles is calculated under the assumption of local thermodynamic equilibrium. All results are 
presented in co-variant form. Einstein's equations are written down with allowance for those quantum 
gravitational effects. These equations are then used to analyze the cosmological evolution of an anisotropic 
universe. It is found that the quantum gravitational effects change the nature of the cosmological 
singularity in such a way that the divergences of all physical quantities at the singular point are entirely 
due to conformal factors. The effect of the particle production is to isotropize the expanding universe at 
Planck times irrespective of the initial conditions specified during the contraction stage. A certain 
relationship is established between the parameters that characterize the geometry and the matter in an 
expanding universe. 

PACS numbers: 98.80.Dr, 95.30.Sf 

INTRODUCTION 

A strong anisotropic gravitational field leads to polar- 
ization of the physical vacuum, to creation of particles, 
and to a change in th$r dispersion properties. Zel'do- 
vich and S t a r ~ b i n s k i i ~ " ~ ~  drew attention to the first  two 
effects. It has now been established that the effect of 
vacuum polarization reduces to logarithmic radiative 
corrections whose Lagrangian i s  quadratic in the curva- 
ture.c'61 Besides the local radiative corrections, there 
a re  however also in the Einsteinequations, whenthey take 
into account quantum effects, certain nonlocal terms de- 
scribing the creation of real  particles. According toc2', 
particle production i s  a manifestation of viscosity of the 
vacuum when it is deformed by a gravitational field, and 
one of the tasks of theory is to calculate the correspond- 
ing dissipative energy -momentum tensor. Finally, the 
third effect-the influence of a variable anisotropic field 
on the dispersion properties of particles-leads to cor- 
rections in the macroscopic energy-momentum tensor 
that depend on both the particle density and the curvature 
of spacetime. We shall refer to this effect as the effect 
of the interaction of particles with the self-consistent 
gravitational field. 

The present paper i s  devoted to an analysis of these 
three quantum effects by a unified method and to eluci- 
dating their influence on the evolution of an anisotropic 
Universe. The basic ideas and the method of the theory 
devveloped here a re  due to Zel'dovich and Starobin- 
~ k i i . ~ " ~ '  The conclusions drawn concerning the effect 
of particle creation in cosmology agree with those drawn 
int2.S.71 

analyzed in Sec. 4 under the assumption of local thermo- 
dynamic equilibrium. The results of the calculations a 

made for this model of the gravitational field a r e  then 
represented in four-dimensional covariant form. The 
complete system of Einstein equations, taking into ac- 
count quantum effects, has the form (it is assumed that 
the particles a r e  ultrarelativistic, and we use a system 
of units with ti = c = 1) 

where @ is the tensor of shear deformations, 

is the coefficient of f i rs t  viscosity of the considered 
physical system; and A, B, p, X a r e  dimensionless nu- 
merical coefficients. For the particle density n we ob- 
tain the equation 

(nu') ,,=pCikr,C"'"'+ln"~D?DL1, 

in which the f i rs t  term on the right-hand side, which de- 
pends on the Weyl invariant tensor, describes sponta- 
neous particle creation by the gravitational field, while 
the second term is due to the induced effect. For scalar 

We have considered scalar particles in an anisotropic particles, we calculate the actual values of all the coef- 
Bianchi type I metric. Earlier, in the brief communi- ficients A, B, k, A. It should be noted that if the terms 
cationc8] we have shown that the effects of vacuum polar- containing B, p, and 1nA a r e  ignored, the above equa- 
ization and particle creation can be separated. This r e -  tions a r e  transformed into the Einstein equations whose 
sult, derived in Sec. 2, is the basis for the further cal- right-hand side is the energy-momentum tensor of an 
culations. Section 3 i s  devoted to the radiative correc- ultrarelativistic medium with coefficient of first  viscos- 
tions; the energy-momentum tensor of real  particles is ity 
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The reasons why viscous hydrodynamic terms appear in 
the equations when the induced effect of particle creation 
is considered a re  discussed in Sec. 5. An important dif- 
ference of the equations obtained here from the classical 
equations is in the terms with the coefficients B, p, and 
In A; the f i rs t  of these reflect the coupling between the 
macroscopic deformations of the system and the micro- 
scopic properties of the motion of particles, i. e., the 
effect of the interaction of the particles with the self- 
consistent field; the second and third kinds of terms de- 
rive from the spontaneous quantum effects of particle 
creation and vacuum polarization. 

The influence of quantum effects on the evolution of an 
anisotropic universe is discussed in Sec. 6. It is shown 
that interaction of the particles with the anisotropic field 
changes the nature of the singularity in such a way that 
the divergences of all physical quantities a t  t = O  a re  en- 
tirely due to  conformal factors. This makes it possible 
to investigate the transition through the singular state by 
the method of conformal t r a n s f ~ r m a t i o n . ~ ~ ~ ' ~ '  It is shown 
that irrespective of the initial conditions specified during 
the stage of contraction the expanding universe i s  iso- . 
tropic at Planck times due to  the effect of particle crea- 
tion, and a definite relationship is established between 
the parameters characterizing the geometry and the mat- 
ter. 

$1. BASIC EQUATIONS 

We consider a system consisting of the gravitational 
field and scalar particles. By variation of the action 

we obtain the equations 

In (1.1)-(1.3), we use a system of units in which E=c =l. 
The ground state with respect to which the expectation 
value is taken in (1.2) i s  defined below. Equations (1.2) 
and (1.3) will be analyzed for an anisotropic Bianchi type 
I model. It i s  convenient to write the metric of the mod- 
'el in the form 

&'=? (T) (dr'-a2(~)d~2-bZ(~)dyz-c'(~) dzZ), a(%) b ( ~ )  c ( r )  =I. 

(1.4) 
Let us first  consider (1.3). Expanding the field operator 
in a Fourier series: 

we obtain for the Fourier components the equation 

where 

Operations with three-dimensional (Greek) indices a r e  
performed here and below with the metric yd =diag(a2(r), 
b2(r), c2(r)). 

For the transition from (1.5) to the equation for the 
propagator, i t  is necessary to decompose the field oper- 
ator X ,  into positive- and negative-frequency parts. It 
is well knownc"' that in curved spacetime this operation 
is not unique. Here, we use the decomposition 

with an additional condition for the operators or, and 
or:, : 

Note that in the case (1.6)-(1.7) the canonical Hamilto- 
nian of the scalar field considered here i s  diagonal a t  any 
instant of time. For T = - m, when the metric i s  isotro- 
pic, ol', and or, a r e  operators of creation and annihilation 
of free particles with the usual Bose commutation rela- 
tion 

Here, we can also define the vacuum state 10) with re- 
spect to which the expectation value will be taken in what 
follows. From (1.5)-(1.71, we obtain the equations 

, &-,+=Whah exp -21 oh dr , 

Wk=or/2~*, 

( j (1.9) 

in accordance with which the commutation relation (1.8) 
holds a t  any time. The system of equations determining 
the propagator n,(r) = ( 0  I C Y ~  CY, 10) follows from (1.8) and 
(1.9). It has the form 

A system of the type (1.10) was obtained for the first  
time inc2'. We write out a third-order equation equiva- 
lent to (1.10): 

In a number of cases it may be convenient to use the in- 
tegral equation corresponding to (1.11): 

where nk(- a) is the number of "seed" particles. We 
shall assume n,(- m) #O since the universe is then iso- 
tropic a s  T - - m and the operators oi, and or, have the 

1042 Sov. Phyr JETP 46(6), Dec. 1977 Vereshkov et a/. 1042 



meaning given above. FV oh Wk U,. oh W: 
~ ~ - ( 2 2 + - - 3 7 ~ )  N ~ + [ - - + - -  +2- 

The equations for the propagator must be considered WA 0, WA Wh o h  Wk2 

together with the Einstein equations ( 1 . 2 ) .  These can be +40h'-4W~+3~h+3yhP-2 ( 2 . 3 )  
conveniently written in the form 

" 1 The integral equation equivalent to ( 2 . 3 )  has the form ' (3?- - ,Q)=  R o o - - R s -  
2 rZ r Z 2  

K(T,o+T&,,), 

1 
( 1 . 1 3 )  Wh 3 %  3 ~ l  

N . = ~ w . ( T )  ~ d r ' ( 4 ; - ~ ~ - - j - ~  , Q )  - -i ( P ~ ~ ~ ) ' = % ( T = ~ + T : ( . . ) ) .  4 

7kwk 1 T h h k  3 
where rt =diag(d/a, d./b, &c), +-f--) o r W ~  2 W h o ;  a p  ( - I  ( T b + 2 i o k )  d l )  N ~ ( T ' ) + C . C .  ( 2 . 4 )  

1 d3k k,P+m2F Q dJk nk 
T,O= -I -- nk- -I - The functions yk(r )  and Nk(r)  introduced in accordance 

~ " ( 2 ~ ) ~  12r' ( 2 n ) ~ Z '  ( 1 . 1 4 )  with ( 2 . 1 ) - ( 2 . 4 )  have a number of properties that enable 

one to separate the virtual, nk( ,,,, and real, nk, ,,,,, 
particles in the solution for the propagator ah(?): 

1 d J-- d3k rSB rik 

6r' d.r (2n)' oh (nk+-) 2Wh n k ( ~ )  =nr(r..r)+nk(p.i), ( 2 . 5 )  

is the energy-momentum tensor of the real  and virtual 
particles; 

is the energy-momentum tensor of the vacuum deformed 
by the gravitational field. 

The program of the remainder of this paper is a s  fol- 
lows: 1 )  finding of a solution for nk in the form of a func- 
tional of the spacetime metric; 2 )  separation in this solu- 
tion of the effects of vacuum polarization and creation of 
real  particles; 3 )  regularization of the divergences in the 
polarization and vacuum parts of the energy-momentum 

The initial condition for the propagator is specified a t  
r = - m: Nk(- .o) = nk(- w). We therefore consider an ex- 
pansion of the solutions of Eqs. (2 .2 ) - (2 .3 )  with respect 
to the parameter 5 = W : / W ~ <  1, i. e., with respect to  the 
spacetime curvature. In this case, the function in ( 2 . 6 )  
can be conveniently represented in the form 

- - 
-c4 

tensor and the derivation-of an explicit expression for the 
radiative corrections; 4 )  calculation of the energy-mo- where Ck i s  a complex constant. From ( 2 . 3 ) ,  we obtain 
mentum tensor of real  particles. The equations which for & the equation 
a re  then obtained can be used to  analyze the cosmologi- - 
cal model. 

82. ASYMPTOTIC EXPANSION FOR THE PROPAGATOR -- 3  3 W i A Y ~ + ~ Y ~ - ( ~ + ~ ~  ) ~ k .  ( 2 . 9 )  
The system of singularly perturbed equations (1 .10)  is 

of the degenerate and for i t  there exists a unique whose solution can also be found in the form of an asymp- 
method of constructing a solution in the form of asymp- totic series. 
totic series. Namely, a solution of Eq. (1 .11)  can be 
sought in the form Thus, the problem has been reduced to finding particu- 

lar  solutions of Eqs. ( 2 . 2 )  and ( 2 . 9 ) .  The first  terms in 
the expansion of the functions yk and pk can be readily 

1 
n - = ( N  ( 7 )  + - e x  yhd.r, i ( 2 . 1 )  found by the method of successive approximation: 

2 2 
-m 

' W : ) + l d & [ W k ~ + I w A ~ + i W k ~ 7 r ~ - ~ k ~ h  
2 d r  orL 4 d7 o, 2 

where the exponential itself is a particular solution of or  

(1 .11)  which can be represented as an asymptotic series " 5 on2 ... 01 + w : ( ? - ~ ~ ) ] +  lBdl;;; W?Wk-gWkWb- in a small parameter. Substituting (2 .1 )  ipto (1 .  l l ) ,  we o h  

can readily obtain equations for yk(r)  and Nk(r):  ... 
+wkwk 

1 ;, 21 w 
yh=4wka + - I P k z ~ 3 ~ k ~ k y +  W: (2 .  l o )  2 o h  
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(w'IV) =d4w/dr4). As can be seen from (2. lo), the 
terms of the asymptotic series for y, can be expressed 
in terms of total derivatives. Therefore, the second 
term in (2.5), nk(,l, (2.7), is local; it depends only on 
the metric a t  the given instant of time and i t  musfbe iden- 
tified, as we already noted, with virtual particles, i. e., 
with vacuum polarization. But the first  term in (2.5), 
nk(,,a, (2.6), is a function of the distribution of the real  
particles. The integral term in the expression (2.8) for 
Nk(r) describes the creation of real  particles-a process 
which depends on the entire evolution of spacetime. The 
exponential factor in (2.6) must be interpreted as a cor- 
rection to the distribution function due to the interaction 
of real  particles with the self-consistent gravitational 
field. The constant C, in (2.8) can be found as follows. 
Consider the expression for the number of particles 
created during the entire time of evolution of the universe 
T =  (- 03, m). Since yk is a total derivative, and a t  r = f m  

the universe is isotropic, 

and then in accordance with (2.5) and (2.8), 

1 
" 

Wk 
N k ( - - )  +-) d r -  

2 ..- ( ~ + B A ) "  
(2.12) 

For the same quantity, we obtain directly from the inte- 
gral  equation (2.4) after integration by parts, 

where 

We restrict ourselves to the first  term in the asymptotic 
expansion for Nk(-) - Nk(-m). From (2.12) and (2.13), 
respectively 

Comparing the resulting expressions, we find 

c:"= f d r W k  erp ( -21 wbdr)  . 
-- 

and also 

N:' ( m )  = N h ( - m )  + ( 2 N b ( - m )  + I )  Ic:') 1'. 

Similarly, one can obtain the expression for C, in any 
order of perturbation theory. 

03. RADIATIVE CORRECTIONS TO EINSTEIN'S 
EQUATIONS 

The separation (2.5) of the effects of the vacuum polar- 
ization and the creation of real  pairs in the solution for 
the propagator makes it possible to  separate in the en- 
ergy-momentum tensor (1.14) a part  T :(,,, that depends 
on nk(,,, and consider on the right-hand side of the Ein- 
stein equations (1.13) the terms that a r e  not related to 
the real  particles. They have the form 

The tensor IJ: = - x(T  :(,1, + T :(,,,) depends only on the 
spacetime curvature, and i t  must therefore be identified 
with the radiative corrections to the Einstein equations." 

The expressions (3.1) and (3.2) contain power and 
logarithmic ultraviolet divergences, and therefore the 
calculation of the radiative corrections must include a 
renormalization procedure. For this, it i s  natural to 
subtract from (3.1) and (3.2) the energy-momentum 
tensor of the undeformed vacuum T ::!&, (T :{q',, is ob- 
tained from (1.15) under the condition a = 6 = c = O), but, 
as it turns out, this is inadequate to eliminate all  the 
power divergences. The desired aim can be achieved 
by introducing into T :I:&, additional counter terms and 
letting these tend to zero after the divergent integrals 
have been calculated. Namely, the regularization is 
performed by subtracting from (3.1) and (3.2) the ex- 
pressions 

Since T :(,,,, - T :I:&) as 6 - 0, the renormalization, .- 
which reduces to  replacing Ti(,1, + T :(,, by ti(,l, 
= T + T $Tm, - T :(reg, in the Einstein equations, pre- 
serves the meaning given above. 

Note that the counter terms introduced do not violate 
the conservation condition: T = 0, and therefore 
t :(,,,;, 90 a s  well. The law according to which 6 - 0 is 
chosen in such a way that t:(,l, does not contain power- 
law divergences. The logarithmic terms in T :(,,, 
+ T :(,,, a r e  not renormalized by the procedure we de- 
scribed and must be regularized by the introduction of a 
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limiting momentum p, " x-'I2. It should be emphasized 
that after substitution of the expansion (2.10) in (3.1) 
and (3.2), integration with respect to the momenta, and 
regularization of the power-law divergences for the ra- 
diative corrections II : = -n t $,,,, an asymptotic ser ies  
is obtained in which the logarithmic terms a r e  the prin- 
cipal terms. 

We demonstrate the calculations for the examples of 
II;. Restricting ourselves to logarithmic terms, we ob- 
tain from (3.1) and (2.10) after very lengthy integrations 
with respect to the momenta: 

where 

Strictly speaking, the argument of the logarithm contains 
an indeterminacy which cannot be eliminated in the 
framework of our approach. 

A simple calculation for T :(,,, gives 

We now set  6 = - s 2/30r2, taking s - 0 such that s p  - .o 

a s  p -  -. This enables us to make the change of vari- 
ables p = p ' / s  in the last integral in (3.4), which leads 
to coincidence of the power-law divergences in (3.3) and ' 

(3.4). ForII:=-x(T: (,,, +T:(,,,-T! (,,, ) in the loga-  
rithmic approximation, we obtain 

Similar calculations for II: lead to the result 

It is noteworthy that (3.5) and (3.6) do not contain terms 
of the type ~ r n ~ Q r ' ~ I n A ,  which have canceled in the cal- 
culation. Note also that the operation of normal ordering 
has not been used anywhere. 

After separation of the radiative corrections, the Ein- 
stein equations (1.13) can be written in the form 

where on the right-hand side we have the energy-momen- 
tum tensor of the real  particles, this being obtained 
from (1.14) by the replacement of % by n,(,,,, (2.6). 
Without question, there should exist in the four-dimen- 
sional form a universal expression relating the local ra- 
diative corrections TI: to the curvature tensor. And in- 
deed, (3.5) and (3.6) a r e  identical to the following four- 
dimensional expression (1, = u " ~  = 1 0 ' ~ ~  cm): 

The introduction of the radiative corrections (3.8) in the 
Einstein equations (3.7) can be achieved by modifying 
the Einstein Lagrangian. There a r e  two equivalent ex- 
pressions for the modified Lagrangian-in terms of the 
Ricci tensor: 

or  in terms of the Weyl tensor: 

Allowance for the vacuum polarization of other conformal 
particles reduces to  changing the common coefficient in 
(3.8)-(3. lo), i. e., to  redefining In A. Namely, by InA 
one must understand the expression 

where the number c ,  and the curvature function A, a r e  
determined by the species of particle. 

$4. ENERGY-MOMENTUM TENSOR OF THE REAL 
PARTICLES 

The energy-momentum tensor T;,,,, of the real par- 
ticles is obtained by replacing n, by nk(,,,, in (1.14). 
The distribution function of the real  particles is given in 
the form (2.6). We write down an explicit expression 
for T :(,a, in terms of N,(T): 

The next task is to calculate the integrals with respect 
to the momenta in (4.1) and (4.2). It can be shown, how- 
ever, that because the distribution function i s  nonlocal 
this operation can be performed only for known time de- 
pendence of the metric. One of the methods of analytic 
investigation of T f,,,,, can be based on the method of 
successive approximation: One f i rs t  finds a cosmologi- 
cal solution without allowance for particle creation, one 
then calculates T f(,,,, on the given cosmological back- 
ground, and s o  forth. In connection with this program, 
we should point out that it ignores relaxation processes 
in the system of real  particles. 

To analyze the effect of particle creation in cosmology, 
i t  is more justified from the physical point of view to 
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consider a different limiting case-the case of local ther- 
modynamic equilibrium. We therefore assume that re-  
laxation processes take place in the system and that the 
relaxation time is much shorter than the characteristic 
times of variation of the metric and the particle number. 
Under these conditions, equilibrium is maintained a t  
every time, and the effect of particle creation reduces 
to increasing the entropy and temperature of the system. 
Note that near the singularity, where the spacetime met- 
r i c  changes very rapidly, relaxation may occur as a re-  
sult of a gravitational exchange i n t e r a ~ t i o n . " ~ ~  

Mathematically, the assumption of local thermody- 
namic equilibrium reduces to averaging T :(,,, over a 
statistical ensemble that i s  redetermined at each instant 
of time. This operation ( T  !(,,,) =?$'fr,a,, reduces for- 
mally to the replacement of N, by xk in the expressions 
(4.1) and (4.2). In accordance with the definition (2.6), 
N,(T) is the distribution function of the particles without 
allowance for their interaction with the self-consistent 
gravitational field, and therefore 7, represents the 
Bose-Einstein distribution: 

where w : ( ~ ,  = k,, k ' +m2re, K(O, is the chemical potential 
of an ideal Bose gas, and 0 is the parameter related to 
the temperature through the relation T = O/r. 

It is noteworthy that, in contrast to the case when the 
particles a re  free (do not relax) the assumption of local 
thermodynamic equilibrium makes it possible to  obtain 
an asymptotic expansion for IT:(,,,, in the form of a func- 
tional of the spacetime metric. This possibility arises 
because in equilibrium the momentum distribution func- 
tion at every instant of time is given by the expression 
(4.3), whereas it is determined by the time dependence 
of the metric in the case of free particles. 

We shall calculate T :,,,,, for an ultrarelativistic gas: 
0>> mere. Restricting ourselves to the f i rs t  terms of the 
asymptotic expansion, we obtain the expressions .. 

(4.5) 
where A = n '/30, B = 2/45. Note that the expressions 
(4.4) and (4.5) for the energy-momentum tensor of real  
particles, like the original expressions (4.1) and (4.2), 
satisfy the conservation condition ~ ~ ( , , , ,  ); ,= 0 identically. 

To the energy-momentum tensor (4.4)-(4.5) we must 
. add the equation for the temperature O of the gas. In 

the ultrarelativistic limit, the temperature @, the parti- 
cle density n, and the entropy density u a r e  related by 
the simple equations 

so that the equation to whose derivation we now turn is 

one of the concrete formulations of the law of increase 
of entropy. 

We consider first the expression for the number of 
particles g(a) created during the whole time of evolu- 
tion of the universe. In accordance with (2.13), 

Using the solutions obtained in Sec. 2 for the functions 
fl,($and Y,(T), we can obtain an asymptotic expansion 
for N ( m ) .  Representing the integrand in (4.7) by an 
asymptotic ser ies  and integrating directly the first  time 
of this series,  we obtain for the spontaneous effect 

For the induced effect of particle creation, we restrict  
ourselves to calculating the first  term of the asyinptotic 
expansion: 

-- 

Thus, Eq. (4.7) can be written in the form 

where 

(4.9) 

+ 4 ~ ~ ~ ~ = = 2 p  (f:k; +Ap) + m. 3 

In (4.9), we have used the relation (6.9). Note that (4.8) 
satisfies all the requirements imposed on the law of en- 
tropy increase under conditions of local thermodynamic 
equilibrium: D(r),  which is proportional to the deriva- 
tive ds/dar, is positive definite and depends only on the 
state of the system at the given time. 

We now formulate the law of entropy increase in dif- 
ferential form: 

In principle, we already have everything we need-the 
radiative corrections (3.5) and (3.6), the energy-mo- 
mentum tensor (4.4)-(4.5) of the real  particles, and Eq. 
(4.10) for the gas temperature-to formulate the Ein- 
stein equations with quantum corrections and analyze the 
evolution of the anisotropic universe. However, we 
shall defer this investigation until Sec. 6. 
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$5. PHYSICAL INTERPRETATION AND COVARIANT 
EXPRESSIONS FOR THE ENERGY-MOMENTUM 
TENSOR AND THE LAW OF ENTROPY INCREASE 

gravitational field. 

It i s  remarkable that the effect of the interaction of the 
particles with the self-consistent field leads to the ap- 
pearance in the energy-momentum tensor of non-Pas- 
cal terms despite the isotropy of the distribution func- 
tion (4.5). The interpretation of this result is based on 
the fact that in a self-consistent gravitational field the 
dispersion properties of the particles become anisotropic 
and depend on the time, so  that there is a superadiabatic 
influence of the anisotropic field on the process of mo- 
mentum transport by the particles whose frequency is 
comparable with the reciprocal time of variation of the 
field. We see  that the effect i s  due to the wave proper- 
ties of the particles. 

We use Eq. (4.10) to transform the energy-momen- 
turn tensor (4.4144.5). We separate from T ';,,,,, the 
dissipative part: 

The tensor T ' ; ~ ~ ,  has the form 

We obtain the expressions for the dissipative part of the 
energy-momentum tensor with allowance for (4.6)- 
(4.10): 

In the special model we consider, a l l  the effects are 
due to the anisotropic homogeneous gravitational field. 
This circumstance was taken into account in their inter- 
pretation. One can, however, &tempt to obtain results 
that have a more general nature by generalizing the ex- 
pressions (5.1)-(5.3) and Eqs. (4.10) and (5.4) to an 
arbitrary Riemannian metric. 

where 
In solving this problem, we see  that not all quantities 

occurring in the expressions obtained above have a geo- 
metrical origin. For example, in (5.2) there must be a 
connection between the components of the two four-ten- 
so r s  although rt cannot be associated with any tensor of 
a geometrical nature. Note that Q too cannot be  ex- 
pressed linearly in terms of the Riemann tens&. For 
covariant expression of Q and rt it  is therefore neces- 
sary to  have recourse to  an entity characterizing the 
shear deformations of the medium-the shear tensor 

The representation of the energy-momentum tensor 
in the form (5.1)-(5.2) makes it possible to  interpret the 
various terms readily. The conservation condition now 
gives an equation for the entropy: 

fromwhichit follows that 17 is the viscosity of the physi- 
cal  system under consideration. Equations (5.4) and 
(4.10) are, of course, equivalent; to the first  two terms 
in the viscosity coefficient (5.3) there correspond the 
spontaneous and induced particle creation effects in 
(4.10). 

It i s  readily noted that in the metric (1.4) 

The medium is characterized by not only D:  but also by 
the four velocity u, =r( l ,  O,0, 0) itself, the particle densi- 
ty n, and the entropy o (see (4.8)). One can introduce 
one further scalar-the temperature T = 8/r.  Among 
the geometrical entities of interest to us, we mention the 
second invariant of the Weyl tensor: 

We now turn to the tensor T :,,. It is readily noted 
that each component of T :,,, consists of terms of two 
types: 

where 

Using (4.6), (5.5), and (5.6), we can find covariant ex- 
pressions for the energy-momentum tensor (5. 1)-(5.2)a): 

a re  the energy and pressure of the ideal ultrarelativistic 
gas, 

a re  the corrections to the energy and the s t ress  tensor 
of the medium due to the interaction of the particles with 
the self-consistent gravitational field. There is an anal- 
ogous correction in the dissipative tensor (5.2) a s  well. 
The order of magnitude of all  the corrections compared 
with the main terms can be estimated by the parameter 
4 = (wT)", where w -O  is the characteristic frequency of 
the particles and T "Q-"~ is the time of variation of the 

where 
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The expression (5.9) is obviously a covariant generaliza- 
tion of (5.3). The equations for the particle number 
(4.13) and the equivalent equation for the entropy (5.4) 
can now be written in the form 

(nu') ,,=pCi,,,C"fm+hn"~D~D)I(, (5.10) 

Turning to the interpretation of the results (5.7)-(5.1 I), 
we note first  that T :(,,,, = T :(,,, + T &,,,, i s  the post-hy- 
drodynamic approximation to the energy -momentum ten- 
sor of the ultrarelativistic system. Indeed, the expan- 
sion with respect to the tensor of shear deformations 
means that we take into account terms of order ( l /L  )', 
where 1 and L are, respectively, the scales of the mi- 
croscopic motions of the particles and the macroscopic 
motions of the medium. These corrections derive a s  
before from the influence of the macroscopic medium on 
the dispersion properties of the particles. It is obvious 
that in the general case such an influence arises a s  a 
result of Doppler shift of the frequencies, which is dif- 
ferent at  different points of the deformed medium. 

The conception based on analysis of the dispersion 
properties of the particles in the medium also enables 
one to understand why the terms in (5.10) and (5.11) that 
describe the induced particle creation do not explicitly 
contain quantities characterizing the gravitational field. 
It must here be borne in mind that the vacuum state 
corresponds to the absence of particles with dispersion 
relation w2 = k  +m2, while the state of particles that 
move with the medium is parametrized by a relation with 
allowance for the Doppler effect. The difference in the 
dispersion properties leads to a "friction of matter on 
the vacuum"-a process which results in particle pro- 
duction and a slowing down of the velocity of the macro- 
scopic mot i~n .~ '  

Equation (5.11) has the standard form for nonequi- 
librium thermodynamics. Note that for known physics of 
the process the equivalent equation (5.10) can be derived 
solely on the basis of dimensional analysis and confor- 
mal invariance. It can be assumed that Eqs. (5.7)-(5.11 
a re  not changed when allowance is made for other con- 
formal Bose particles. In fact, by direct calculation one 
can establish only the values of the constants. For the 
scalar field, 

In the general case, the values of A, B, p, X must dif- 
fer from (5.12) by factors of the order of the number of 
particle species. 

The covariant equations corresponding to (6.1) and (6.2) 
a r e  given in the Introduction. 

The system of equations (6.1)-(6.2) can be transformed 
to the simpler form 

2ri 8 ~ a ~ + - r a p = ~ { ~ [ 2 i i a f l - j  rZ+BxeZ rZ+Bxe2 960n (~I- .~Q-L@Q)]  

41',B88 -- B 

Q ( A ~ ' + ~ Q ) ) .  (6.5) 

To (6.3)-(6.5), we must add the equation for the gas 
temperature: 

3 (0.122) 'he2e=2p  (0.122) -=11(rv*r,v+z13p) +4he?~.  (6.6) 

The system of equations (6.3)-(6.6) has the exact inte- 
gral 

r . p = ~ a e ~ " ,  (6.7) 

where C$ is a constant diagonal tensor satisfying the 
relations 

In accordance with (6.7) and (6.8), 

Using this result, we can reduce (6.3), (6.4), and (6.6) 
to three equations for the functions r (T), Q(T), and 0 ( ~ ) .  
We introduce 2 = k 2 ,  and write these equation in a form 
convenient for investigation: 

rdr  

P6. INFLUENCE OF QUANTUM GRAVITATIONAL * t =  Jm. 
0 

EFFECTS ON THE EVoLUTlON OF AN ANISoTRoPIC In (6.10)-(6.12), the prime denotes the derivative with 
UNIVERSE respect to Y ,  and t in (6.13) is  the physical time related 

Summarizing the results obtained in Secs. 3 and 4, to the coordinate T by dt = r d ~ .   he symbols * in (6.12) 
we write down the Einstein equations with allowance for and (6.13) refer, respectively, to the stages of expan- 
the quantum effects of interaction of the particles with sion and contraction. Because of the monotonic increase 
the anisotropic field, the vacuum polarization, and the in the temperature 0, the evolution of the universe is 
particle production: asymmetric with respect to time reversal, so that for 

1048 Sov. Phys. JETP 46(6), Dec. 1977 Vereshkov et a/. 1048 



2, Q, and 0 in (6.10)-(6.12) i t  is necessary to specify 
in which of these stages their dependence on the scale 
factor r is being considered: Z(,, (r), Q,, (r), 0,,, (r). 

An important property of Eqs. (6.10)-(6.12) is that 
the point r = 0 (t = 0) is a regular point for them. To 
prove this assertion, we assume the opposite and con- 
sider the expanding stage of the universe. We need to  
reconcile the hypothesis of a singularity of Q with the 
fact Q and 0 are  by definition positive and, in addition, 
6 > 0  by virtue of (6.12). Suppose that Q in the limit 
r - 0 diverges in accordance with the law 

Equations (6.10)-(6.12) enable us to find in accordance 
with (6.14) the asymptotic behaviors of the other physi- 
cal quantities. Namely, by simple transformations one 
can obtain the expressions 

and two equations for the numbers (Y and 8. The solution 
of these equations gives for a two values: 2 < ai < 4 and 
q > 4. However, with every value of cu i t  is necessary to 
associate a solution p< 0 (i. e., 0<0);  this is because, 
in accordance with (6.12), the following condition must 
be satisfied automatically: 

Thus, we see  that the hypothesis of singularity of Q is 
incompatible with the physical requirements of positivity 
of the entropy and the ra te  of i ts  increase. We arrive a t  
, a  similar conclusion as well when we consider the case 
O<(Y<2. 

A physically noncontradictory solution of Eqs. (6.10)- 
(6.12) near r = O  can be represented by expanding the 
functions Q, 2, and 0 in Taylor series: 

For the coefficients cu and 8 of the expansion, we obtain 
the expressions 

The calculation of the following terms in the ser ies  does 
not present any fundamental difficulty. Each of the ex- 
pansion coefficients can be expressed in terms of four 
quantities: 

Q(O), Q'(0). Z(O), @ ( 0 ) ,  (6.18) 

which a re  in effect the initial conditions for the system 
of equations. 

As follows from our solution (6.16), the physical quan- 
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tities R : and T ';,,,,, become infinite a t  the cosmological 
singularity solely because of the conformal factors; in 
this respect, the evolution of the universe with allowance 
for quantum gravitational effects is very different from 
the Kasner evolution. 

It is necessary to emphasize particularly that the mod- 
e l  of a homogeneous anisotropic Universe in the theory 
of gravitation with quantum corrections i s  parametrized 
by the four quantities (6. 18), whereas the solution of the 
classical Einstein equations for the same model contains 
only two arbitrary parameters. This is because the ef- 
fect of vacuum polarization raises the order of the equa- 
tions of the theory, which leads to  the appearance of new 
solutions for the curvature of spacetime. 

The new non-Einstein solutions in the theory of gravi- 
tation with quadratic invariants were investigated nu- 
merically by ~ u z m a i k i n . ~ ' ~ ~  He showed that if one does 
not invoke special initial conditions the solution of the 
equations of this theory depart sharply from the Ein- 
stein solution asymptotically at large t -the anisotropic 
curvature increases. It follows from (6.10)-(6.12) that 
the two new solutions for Q a r e  exponential functions, 
one of which increases with increasing r while the other 
decreases. It is the increasing exponential that corre- 
sponds to ~ u z m a k i n ' s  numerical results. 

We shall take the point of view that the new, non-Ein- 
stein solutions a r e  unphysical, i. e., that the role of the 
radiative corrections reduces merely to distorting the 
solutions of the classical equations of general relativity. 
In this case, in not too strong fields, the vacuum polar- . 

ization leads to a "hyperfine" structure of spacetime- 
quantitatively, to a very small effect. But near the sin- 
gularity the radiative terms have a strong influence on 
the geometry: As can be seen from (6.16) and (6.171, 
they largely determine the nature of the solution. It is 
only necessary to bear in mind that in accordance with 
the role assigned to the radiative corrections only two of 
the four parameters (6.18) a re  independent. 

The problem of the initial conditions can be solved 
naturally if the Einstein solution is specified during the 
contraction stage asymptotically as t - - m. During the 
process of collapse, this solution will be distorted by the 
quantum gravitational effects. Of course, the functions 
R :(t) and T :(t) cannot be continued through the singular 
point t =O. However, the possibility of eliminating a 
singularity by multiplying the physical quantities by con- 
formal factors makes it possible to use the ideas formu- 
lated inC9''01 for its investigation. Namely, we associate 
the rea l  universe R :(t) with a "standard" universe :(T), 
where a:(r) is the curvature of the spacetime with the 
metric gik(r) = (-g)-lJ4gik. The behavior of the physical 
quantities in the "standard" is determined by the Eqs. 
(6.10)-(6.12), from which the conformal factors have 
already been separated. The absence of a singularity in 
these equations makes it possible to use the "standard" 
to describe the transition from contraction to expansion. 
Returning then by a conformal transformation to the 
"prototype"-the real  universe-we can elucidate the 
physical consequences of passing through the singularity. 
We emphasize that the irreversible nature of the evolu- 
tion of both the prototype and the standard make it possi- 
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ble  to establish a unique correspondence between the 
times T and t . 

Simple estimates of the various terms in (6.9)-(6.11) 
show that the physics of the transition from contraction 
to expansion is determined by the quantum gravitational 
effects. The most significant as regards its conse- 
quences is the production of real  particles. It follows 
from Eqs. (6.10)-(6.13) that, irrespective of the physi- 
cal conditions during the initial stage of the collapse, the 
isotropization time of the universe during the expansion 
stage i s  automatically of the order of the Planck time: 
ti, - t,, = x1l2 = sec. This result, predicted earlier 
incz. 11 , holds because the effect of particle production 

establishes during the expansion stage a quite definite 
relationship between the parameters characterizing the 
degree of anisotropy of space and the number of parti- 
cles in the universe. 

To demonstrate the role of the particle production, we 
shall consider an approximate analytic solution of Eqs. 
(6.10)-(6.13). First  of all, we write down an asymp- 
totic solution of these equations that holds for large 7 

(large It I): 

Under the condition (6.19), the effects of vacuum polar- 
ization and particle creation have a smaller influence 
on the geometry than the effect of the interaction of the 
particles with the self-consistent field. This inequality 
corresponds either to the initial stage of the collapse, 
when the effects of polarization and creation have not 
yet been effectively switched on, or  to the late stage of 
expansion, when they have already ceased. During these 
stages, the cosmological model can be described by ap- 
proximate equations obtained by neglecting the right-hand 
sides of (6.10) and (6.12). The solution of the approxi- 
mate equations has the form 

In (6.20) and (6.21), R;=AX@'/~, Y ; = B X ~ ~ ,  and G is 
a constant of integration that characterizes the degree of 
anisotropy of space. The initial stage of the collapse 
corresponds to the value 8,,, = 8(-a); the final stage of 
expansion, to 8,+, = 8(-). 

Note that (6.20)- (6.22) represent an exact solution of 
the Einstein equations with the energy-momentum tensor 
(5.7) taking into account the effect of interaction of par- 
ticles with the self-consistent field. This effect i s  de- 
scribed by the term - ~ B Q H ~ ~  on the left-hand side of 
(6.10). Compared with the neighboring term, which de- 
termines the nature of the singularity in the Einstein 
equations with hydrodynamic tensor Ti, it has the order 

i. e., it becomes important at Planck densities. The ef- 
fect of the interaction of the particles with the self-con- 
sistent field is already manifested in Eqs. (6.20)- 
(6.22)-as a result of it, the singularity takes on the con- 
formalnature. ' 

The quantities G,,, and 0,,, represent the initial condi- 
tions for our model. We a r e  interested in the parame- 
t e r s  G(+, and 0,) of the expanding universe. Their con- 
nection with the initial conditions can be determined by 
fitting the asymptotic solutions in the different stages 
and using the continuity at 7 = O  of the functions Q(7) 
and 8(7)  that characterize the "standard" universe. 

Below, we shall restrict  ourselves to an approximate 
estimate of G(+, and 6,+,. For this, we note that formally 
the asymptotic solution (6.20) in the limit 7- 0 already 
has the properties inherent in the true,solution (6.16): 
In both cases, the divergence of the physical quantities 
is due to  conformal factors. This makes i t  possible to 
fit the functions Q(7) in (6.20) corresponding to the dif - 
ferent stages and express the anisotropy parameter dur- 
ing the expansion stage G,+, in terms of the anisotropy 
parameter during the contraction stage G,,,: 

To find a lower bound on 0,,/0,_,, we turn to Eq. (6.12), 
replacing Q(7) in it by the asymptotic solution (6.20). 
After integration with allowance for the continuity of 
Q(7) at 7 = 0, we obtain a relation between the initial and 
final temperature: 

In deriving (6.24), we have used the connection between 
the parameters (6.23). 

We now discuss the isotropization time of the expand- 
ing universe. The limits of applicability (6.20)-(6.22) 
enable us to use the asymptotic solution in order to in- 
troduce correctly this very important cosmological pa- 
rameter. The isotropization time is determined by the 
condition hth ,O < Hz (weak difference between the Hubble 
velocities along different directions) and during the ex- 
pansion stage it has the form 

In accordance with (6.25), the isotropization time de- 
pends on the ratio of the anisotropy parameter G,+,/x' 
to the square of the particle number in the universe: 
N~(-) = e:+, . 

Using (6.23), we rewrite (6.25) in the form 

As can be seen from (6.26) and (6.24), ti, << t,, for G,,, / 
x z 8 t ,  << 1, since 8,+, /6,,, = 1. This case corresponds 
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to a universe which is in practice isotropic during both 
the contraction and the expansion stage. In the opposite 
limiting case, 

the contracting universe is strongly anisotropic. On the 
transition from contraction to expansion, there i s  in- 
tense particle production and by the time ti, a tempera- 
ture @(+, >> @(-) is established: 

However, the isotropization time itself is, in accordance 
with (6.26) and (6.27), of order t,,: 

Thus, the expanding universe becomes isotropic at quan- 
tum times irrespective of the initial conditions imposed 
during the contraction stage. In the case of a large ini- 
tial anisotropy the two parameters of the expanding uni- 
verse that characterize the geometry, G(+, , and the 
matter, 0,+,, a re  related by 

CONCLUSIONS 

The effects considered in this paper do not of course 
exhaust all the quantum-gravitational effects. Near the 
singularity, we must expect processes of gravitational 
interaction of particlesC's*'61 and mutual transformations 
of them to become important. Effects of baryon non- 
con~ervat ion~"~ associated with quantum fluctuations of 
the metric will also probably be important. Neverthe- 
less, the results so f a r  obtained give hope that a con- 
sistent quantum theory of gravitation will be capable of 
expwining the observed parameters and properties of 
the universe. 
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