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An analysis is made of the effects accompanying the propagation of sound in metals in which sections of 
the Fermi surface in different energy bands approach each other closely. It is shown that in such metals 
the propagation of an intense hypersound wave whose wave vector multiplied by Planck's constant is 
approximately equal to the distance between the respective sections of the Fermi surface, may appreciably 
alter the dynamics of the electrons in a magnetic field. In these circumstances open trajec~ories may 
become closed ones and vice versa. This phenomenon is termed acoustic breakdown. The energy spectrum 
of electrons under acoustic breakdown conditions is analyzed and the interaction of acoustic and magnetic 
breakdown studied. The change in the form of the electron trajectories as a consequence of acoustic 
breakdown should result in a number of effects, viz. a change in the smooth part of the asymtotic 
expression for the galvanomagnetic tensor, the appearance of new oscillation periods of the kinetic 
coefficients, and suppression of the nonlinearity in the absorption of sound. Estimate show that 
observation of these effects is within the scope of modern experimental techniques. 

PACS numbers: 7l.25.Pi, 72.50. + b 

I. INTRODUCTION 

There are many known metals in which sections of the 
Fermi surface in different energy bands approach one 
another closely. The aim of the present work is to show 
that an appreciable distortion of electron trajectories in 
a magnetic field occurs under the action of a sound wave 
whose wave vector q multiplied by Ii is approximately 
equal to the distance between the respective sections of 
the Fermi surface in p-space. As a result, open tra
jectories, for example, may be converted into closed 
ones, and closed ones into open ones. We shall term 
both phenomena acoustic breakdown. It seems that one 
of the simplest methods of studying this phenomenon ex
perimentally is to observe the appearance of new Shubni
kov oscillation periods under the influence of an intense 
sound wave, and also to investigate the monotonic part 
of the asymptotic form of the galvanomagnetic tensor 
(see[l,2 J). 

As will be clear from what follows, acoustic break
down can occur only in combination with magnetic break
down, since the periodic field of a sound wave cannot on 
its own give rise to transitions between trajectories. 
We shall see that in the presence of a sufficiently intense 
sound wave whose frequency w is so chosen that liq is 
approximately equal to the distance between the electron 
trajectories in different energy bands, magnetic-break
down transitions occur in much weaker magnetic fields 
than in the absence of sound. Acoustic breakdown thus 
provides a method of quantitatively studying the elec
tron spectra of metals near their Singular points. 

As is well known, an intense sound wave may lead to 
splitting of the electron trajectories even within a single 
energy band. This possibility was pointed out by Brandt 
et al. [3J An analysis of this case should proceed from 
the results of Keldysh, [4J who examined the problem of 
the electron spectrum in the periodic field of a sound 
wavel) in the one-energy-band approximation. Keldysh 
showed that in a coordinate frame bound to the moving 
field of the sound wave, the electron spectrum is a sys
tem of allowed and forbidden one-dimensional acoustic 

bands. He pointed out that the presence of acoustic 
bands must have an appreciable effect on the behavior 
of a crystal in an external electric or magnetic field. 
The possibility of the existence of a current state in 
acoustic-band conditions has been discussed by Rakhma
nov. [5J 

The influence of the periodic field of an intense sound 
wave on the electron spectrum will be investigated in 
Sec. 2. For methodological reasons, viz., in order to 
trace in detail the change from a stationary coordinate 
frame to a moving one and to elUCidate the role of the 
electric fields arising in this change, it will be conve
nient for us to start from the one-energy-band case 
analyzed in[4J. We shall then proceed to the case of two 
close bands, which is of direct interest to us.2) 

Everywhere in this paper we confine ourselves to the 
weak acoustic coupling approximation 

(1.1) 

The quantity on the left-hand side of this inequality is the 
characteristic energy of interaction of a conduction elec
tron with the deformation field created by a sound wave 
(},.ik is the deformation-potential tensor and vl2) is the 
amplitude of the deformation tensor). In the case of a 
Single energy band this quantity is the width of the first 
forbidden acoustic band. The quantity on the right-hand 
side of (1. 1) is the width of the first allowed acoustic 
band. 

In order to analyze the effects associated with the 
presence of an acoustic band spectrum it is obviously 
necessary for the inequality 

(1. 2) 

to be fulfilled, where T is the characteristic relaxation 
time of the conduction electrons. For}" -10-11 erg and a 
sound intenSity of the order of 1 W/cm2, the quantity on 
the left-hand side of the inequality (1.2) amounts to 
-10-16 erg. Thus, for relaxation times T appreciably 
in excess of 10-11 sec the inequality (1. 2) is fulfilled. 
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2. THE ENERGY SPECTRUM OF THE CONDUCTION 
ELECTRONS 

We shall analyze the problem of the motion of conduc
tion electrons in the periodic field of a crystal lattice 
V(r') distorted by a sound wave propagating in the crys
tal. The corresponding single-electron Hamiltonian of 
the problem is 

~=k"/2m.+V.(r'-u)+V'(r'-u)+ V.(r'-u). (2.1) 

Here k' = - iii alar' is the electron momentum operator, 
Vo is the periodic potential of the undeformed lattice, 
V' is the change in the periodic potential as a result of 
the deformation, and Vs is the potential of impurity 
atoms. It is evident that 

V'(r')=V"'Il,,, (2.2) 

where u," =~ (audax~ + &u,,/aui) is the strain tensor and 
u(r " t) is the displacement vector of the crystal lattice 
taking part in the acoustic oscillation. 

Analogously as intS] we shall perform a canonical 
transformation corresponding to a change to a coordinate 
frame Lu co-mOVing with the lattice. We shall choose 
a canonical-transformation operator of the form 

'f = exp (-u a~' ) = exp( -i-nk') . (2.3) 

The displacement u may depend on the space coordinate 
r' and consequently, m~ not, generally speaking, com
mute with the operator k'. Here and below we shall re
gard, without further reservations, all such expressions 
as symmetrized. In addition we shall conSider the de
formation as small: 

I ou,lox.' I <1, (2.4) 

assuming q «ai/, where ao is the lattice constant, and 
we shall neglect the derivatives of the strain tensor u," 
everywhere. 

The transformed energy operator has the form 

O'l' k' 
~u='f-\~'f-ili'f-\-=-+ V.(r) +V'(r)+V. (r) 

rJt 2m. 
1 A A • A 

- - u"k,k,-uk, 
m. 

(2.5) 

whex:.e r =r' - u is the coordinate in the co-moving frame 
andk=-ilia/ar. The energy of interaction of the elec
trons with impurities thus becomes stationary after the 
transformation, i. e., it depends on the coordinate r. 
We can define the amplitude f of electron scattering by 
impurities in this frame and this amplitude will be. con
sidered a known qUantity in what follows. We shall 
therefore disregard the potential Vs (r) in further trans
formations· of the Hamiltonian, but the scattering at im
purities can be accounted for directly in the colliSional 
term of the kinetic equation. 

We wish further to change to the well-known gener,al
ized-effective-mass method. The essence of this is that 
if the motion of an electron under the influence of per
turbations which vary slowly in time and space is con-
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sidered, the operator kZ /2mo + Vo(r) can be replaced by 
the operator E(-iliV), where E(P) is the dispersion law 
for an electron in the given energy banl:l and p is its 
quasimomentum. The perturbation produced by the 
deformation is usually of this type. It can therefore be 
described by introducing a deformation potential 
~,,,(- iliV)u'k' where ~iI.(P) is the average of the operator 
-u",k,k,./mo+ Vf,,(r) over the Bloch wave function. The 
motion of an electron in the given band is thus described 
by the one-band Hamiltonian 

~u =e(p)+A,,(p)u,,-m.u,v,; (2.6) 

the strain tensor UI" and the displacement vector u are 
functions of r - wt, where w is the phase velocity of the 
sound. Thus, in the Lu coordinate frame the Hamilto
nian (2.6) is nonstationary. However, the Hamiltonian 
turns out to be stationary on changing to the Lw coor
dinate frame moving together with the sound wave with 
velocity w. Such a chang~ can be effected by means of 
a canonical transformation with the operator 

(2.7) 

The Hamiltonian of the generalized-effective-mass meth
od transformed to the Lw frame has the form 

(2.8) 

where R =r -wt, PR =-ilia/aR. The term -mov. U de
scribes the Stewart-Tolman effect in the nonstationary 
field of a sound wave. Usually the contribution of this 
term is small compared to the last term, which is due 
to the deformation potential. In estimating the magni
tude of the interaction of sound with the electrons below 
we shall therefore consider that it is determined prin
cipally by the last term. 

Like the original Hamiltonian (2.1), the Hamiltonian 
(2.8) does not allow for the solenoidal electromagnetic 
fields which may arise during propagation of the sound. 
These fields can be neglected for sufficiently high-fre
quency sound with wavelength much less than the anom
alous skin length. t7] We shall assume below that ultra
sound frequencies satisfy this condition. 

Satisfaction of inequality (1.1) means that one acoustic 
band is under examination, viz. the lowest forbidden one; 
the widths of all the other bands are small in terms of 
the parameter (2.8). 

The presence of perturbations of the type U(e'Ol.R 
+ e-;Ol.R)/2 leads to interaction of the states Ip -liq/2) 
and Ip+liq/2). The Hamiltonian of the effective-mass 
method is therefore a 2 x 2 matrix whose nondiagonal 
elements are equal to U(P)/2. Now, in the framework 
of the generalized-effective-mass approximation, we 
may perform a reverse transformation to the Lu frame 
by means of the operator 

'f \-\'= (1 0) exp ( -wt~) 
01 oR . 

(2.9) 

In such a transformation the nondiagonal matrix elements 
remain unchanged and we can thus investigate the spec
trum of the Hamiltonian deu ' 
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So far we have not allowed for the magnetic field in the 
Hamiltonian. We shall show that such an allowance will 
yield, inasmuch as we wish to trace how the trajectories 
of the electrons are distorted under the action of sound 
in a magnetic field. For this purpose the substitution 

(2.10) 

should be made in the Hamiltonian, where A(r') is the 
vector potential. If the same substitution is also made 
in the canonical-transformation operator (2.3), the re
sult will be that the transformed Hamiltonian is obtained 
from (2.5) by a substitution analogous to (2.10), but with 
the difference that A depends on the argument r + u. It 
is, however, more convenient for us to deal with a 
Hamiltonian in which A is a function of r. We consider 
a constant, homogeneous magnetic field: A is a linear 
function of its argument, and in that case a gauge trans
formation may be performed, as a result of which A 
becomes a function of r, but the term eqJu, which de
scribes the induced electric field 

E.=-v Ojl.=c-'[UH]. 

is added to the Hamiltonian. This field, although non
stationary in the Lu frame, becomes stationary in the 
L", frame. ID. the latter frame, however, there appears 
an additional electric field 

(2.11) 

due to the Lorentz transformation. In the estimates 
that follow we shall assume that the inductive interaction 
of the electrons with the sound does not exceed the de
formation interaction in order of magnitude. As regards 
the field $"., it vanishes in the reverse transformation 
(2.9). The effective Hamiltonian which describes the 
interaction of the electrons with the sound thus turns 
out to be ~u. 

As is known, [1,2] the rule for finding an electron tra
jectory in p-space in a magnetic field amounts to the 
following: after the Hamiltonian of the system has been 
found in the absence of a magnetic field, it is necessary 
to find the intersections of the constant-energy surfaces 
with the constant P~ planes (H is parallel to the Z axis). 
The spectrum of the Hamiltonian 16 u in our approximation 
is determined by the eigenvalues of the matrix 

G = (1\ (p-tiq/2), 
U(p)l2, 

which are equal to 

U(p)/2 ) 
e(p+/iq/2) , 

(2.12) 

liq «P (where P is the characteristic value of the electron 
momentum), the region of significant trajectory distor
tion corresponds to low values of P%. If the vector Pl (0, 
Ply, p~) is introduced, where Ply is connected with E and 
p~ by the relation 

E='/,[I\ (p,+liq/2) +8 (p,-liq/2) ], 

then the shape of the trajectory in the vicinity of the 
point Pl is determined by the expression 

(2.14) 

Figure 1a shows the electron trajectories in this region, 
and Fig. 1b shows the general appearance of trajec
tories which have been distorted by the perturbing action 
of the sound wave. 

We shall now turn to an analysis of the case of two 
close energy bands. For simplicity we shall confine 
ourselves to the case of weak energy coupling, in which 
the Hamiltonian of the dfiu type is a 2 x 2 matrix of the 
following form: 

i i b' I-(P+-) 
~. = \ 2m, V,,' 2 ' 

V .. 
) . (2.15) 

Here V 12 is the interband matrix element of the pseudo
potential and b is the reciprocal-lattice vector. We 
shall consider this vector to be directed along the Y axis. 
rno is the free-electron mass. The energy spectrum 
corresponding to the Hamiltonian (2.15) has the form 

E=L+~±{IV1212+ (bPu)'}'j,. 
2m, 8m, m, 

(2.16) 

It is evident that the interband matrix elements are im
portant in the vicinity of points where the difference (p 
+ b/2)2 _ (p - b/2)2 is small. The trajectory of an elec
tron in the neighborhood of such a point is determined by 
the expression 

px-P2x· 
=±p,{l + (bp,l2p,p,J'} '\ (2.17) 

where the quantities P2%(E,p~) and Po(E,p~) are defined 
by the relations 

i ( b') 2m, P,x'+P,'+T =E, 

m,IV121 
p,=---. (2.18) 

p,. 
E,.,='/,[e (p+Iiq/2) +e (p-liq/2)] 

±{CJ2+'/.[e (p+Jiq/2) -1\ (p-liq/2) ]'} -t,. (2.13) The minimum distance between trajectories is thus 

(The Stewart-Tolman effect and the inductive interaction 
may easily be allowed for, if deSired, by adding the cor
responding term to U in this expression). 

It is seen that the electron trajectories are apprecia
bly distorted in regions where the difference c(p +liq/2) 
-c(p-liq/2) is small. For simplicity we confine our
selves to the case q 1 H and direct the X axis along q. 
Inasmuch as the above difference vanishes at P% = 0, and 
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FIG. 1. Trajectories of an 
electron near the boundary 
of an acoustic band. 
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equal to 2po. If the difference fiq - 2po is small, then 
the acoustic perturbation intermixes the states 11, p 
+fiq/2) and 12, p - fiq/2) in the vicinity of the point Ph, 
since the corresponding matrix element differs from 
zero. In its turn, the state II,p+Iiq/2) is formed from 
plane waves with momenta p +fiq/2 +b/2 and p +fiq/2 
- b/2. The energy spectrum in the region of interest to 
us is thus determined by equating to zero the determi
nant of a 4 x 4 matrix of the form 

(

51(+, +), v(O) , 0, 
v(O) , 51(+, -), u, 

0, u, §>(-,+), 
,U 0 v(O) 

(2.19) 

where 0 0) =(1, pi Vo12, p) is the interband matrix ele
ment of the periodic lattice potentu,.l 

, 1 ( hq ,b )' 9'(~,~ )=- p+~-+~ - -E, 
2m. 2 2 

We shall examine below the case where the difference 
I fiq - 2po I is small. We assume that the ratio y = (fiq 
- 2Po)/2po is a small parameter of the subsequent theory. 

Equation (2.19) is a fourth-order equation. At con .. 
stant P. it describes four trajectories in p-space. By 
virtue of the smallness of I fiq - 2po I two of them ap
proach each other closely. The other two are separated 
from the point of closest approach by a distance ;;. 2Po.3) 

This fourth order equation has accordingly two neighbor
ing roots which we shall try to find. In dOing so we shall 
describe the shape of the electron trajectories in the 
viCinity of the point of closest approach in a region much 
smaller than Po in size. Thus to find the shape of the 
trajectory in the region of interest to us, we must, in 
the lowest apprOXimation, solve a second-order and 
not a fourth-order equation. In doing this we in fact 
make use of the standard procedure of perturbation the
ory for a doubly degenerate state. We shall cite the re
sult, leaving out the cumbersome but straightforward 
algebraic transformations. The shape of the trajectory 
is defined by the equation 

(2.20) 

The trajectories near the point of closest approach in 
p-space are shown schematically in Fig. 2. The shape 
of the trajectory depends on the sign of y. If y<O (fiq 
<2po), then there is one point of closest approach at p, 
=0, and the minimum distance between the trajectories 
is 

2p.(y'+1l/2)'h. (2.21) 

If, however, y>O (1iq>2po), then two cases are possible 

~J(L _ X 
~ y.' 

FIG. 2. Electron trajectories 
near the point of closest ap
proach of the energy bands. 
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depending on the ratio of the y and o. The parameter 0 
is a relative measure of the distortion of the electron 
trajectories under the influence of the periodic field of 
the'sound wave. The parameters y and 0 are small, 
and in that case the shape of the trajectory proves to be 
dependent on their ratio. If y< 0, there is one point of 
closest approach at P y = 0, and the distance between the 
trajectories at that point is determined by formula (2.21) 
as before. If, however, y>o, there are two such pOints 
at ~=2(y-1I), which corresponds to 

p. = ± 2Pi'" (2 (y-Il) )"'; 

the minimum distance between the trajectories is equal 
to 

2p.(6l2) '1'=2p. (m.Ulp.p",). 

3. THE INTERACTION OF THE ACOUSTIC AND 
MAGNETIC BREAKDOWNS 

(2.22) 

As is known, in a magnetic field an electron moves 
along a trajectory in p-space like a classical particle. 
Exceptions are those regions of p-space where the clas
Sical trajectories approach each other closely. To be 
preCise, if the magnetic field is such that the quantity 
fi/aL (where aL = (cfi/eH)1/2 is the so called Landau mag
netic length) is comparable with the distance between the 
trajectories, tunnel transitions from one classical tra
jectory to another occur." This phenomenon has been 
termed magnetic breakdown. 

We shall start from an investigation of interband 
acoustic breakdown. In the absence of a sound wave let 
there be a region in p-space where the classical trajec
tories in different energy bands approach one another to 
a distance of 2po. The dynamics of an electron in mag
netic breakdown conditions are determined by the so 
called "joining" matrixes] whose elements are the ampli
tudes of the transition between the classical sections of 
the trajectol y. The square of the nondiagonal matrix 
element, which has the meaning of the probability of a 
tranSition from a trajectory in one band to a trajectory 
in the other, may be written in the formes] 

W=exp(-HMIH) , (3.1) 

where for the energy spectrum we used (cf. [8]) 

8cnl V(O) I'm.' = 4ncpo' (2P"') 
elip,.b eli b' , (3.2) 

Thus, if H<HM, the probability of interband tunnel tran
sitions is exponentially small and the electron moves 
along a classical trajectory in one hand. 

The existence of acoustic perturbation, as we have. 
seen, leads to a Significant reduction in the distance be
tween the trajectories. The possibility is therefore 
created of tunnel transitions at magnetic fields appre
ciably less than HM • A concrete calculation of the ele
ments of the "joining" matrix cannot be performed by 
USing the existing magnetic breakdown theory. This is 
connected with the significant difference between spec
trum (2.20) and spectrum (2.16), which permits a ma-
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trix whose elements contain only quadratic terms in Py 
to be used for the solution of the quantum-mechanical 
problem. In our case, the dependence of the matrix ele
ments on Py is more complicated and we shall confine 
ourselves solely to a classical breakdown-probability 
calculation in the spirit of the procedure set forth in 
Abrikosov's book. [2] The solutions of the dispersion 
equation Py (Ps) are complex in the classically inacces
sible region. As is known, the quasiclassical probabili
ty of a tunnel transition is equal to 

(3.3) 

where the integral is taken over the classically inacces
sible section in coordinate space. The projection of the 
trajectory in coordinate space on the XY plane is similar 
to the trajectory in p-space with a similarity factor of 
Ii/ai, one trajectory being rotated through 90° with re
spect to the other. The integral in (3.3) is therefore 
rewritten in the form 

USing (2.20) and (3.4), we obtain for the breakdown 
probability 

(3.4) 

w = [_ 8aL'PO'p,. (Pm,.) " f I 1-/1 )] (3.5) 
"exp bh' po ~(1lI2) 'I, ' 

where 2Pmln is the minimum distance between the trajec
tories in the presence of sound, and 

( 
21'213 

f{x)= ~~li/~ 
12/3l'x 

x<-1 

Ixl<1. 
x>1 

This probability may be written in the form exp(-HA/H), 
where HA/H-f. (Pmln /Po)3/2«1, the case where 'Y- 15 
» (15/2)1/2 being the most favorable. This is essentially 
the prinCipal result of the work. It means that if the 
field H is ?,HA , then the probability of breakdown is of 
the order of unity, although the condition H« H M may be 
fulfilled at the same time, i. e., acoustic perturbation 
stimulates magnetic breakdown. 

From formula (3.5) in conjunction with (2.20) it is 
evident that even at exact resonance 'Y = liq - 2po = 0 the 
field HA (and the minimum distance between the trajec
tories) remains finite and depends on the sound intenSity, 
which must in turn satisfy the condition 

From this we obtain the following criterion for the mag
netic field HA : 

(3.6) 

In particular, in the example we analyzed in the Intro
duction, the dimensionless parameter (Ii/Pol)3/4 is -10-3• 

This means that for H M""105 Oe, the field must appre
ciably exceed 100 Oe. 

What observable consequence can interband acoustic 
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breakdown lead to? AcoustiC breakdown leads essen
tially to a new system of electron trajectories, or, in 
different language, to a new system of quasiclassical 
electron levels. In the presence of acoustic breakdown 
new periods must therefore arise in the "thermodynam
ic"5) and kinetic quantities. 

We shall now discuss the case of a single energy band, 
which was analyzed in[4]. As is evident from Fig. 1, 
under the action of acoustic perturbation two types of 
trajectories arise, viz., closed and open ones in the 
direction of propagation of the sound wave. At the same 
time the character of the movement along the trajec
tories depends on the magnitude of the magnetic field. 
Owing to the magnetic breakdown, a sufficiently strong 
field may lead to suppression of the influence of the 
sound. In contrast to the interband breakdown examined 
above, such intraband breakdown of the acoustic bands 
is described by the standard theory of magnetic break
down. [8] An estimate made in accordance with that the
ory gives the value 

(3.7) 

for the critical field H~ in this case. Of greatest in
terest to us is the case where H <H:, but n(Hh» 1 
(where n(H) is the cyclotron frequency corresponding 
to the magnetic field H). These estimates may not con
tradict each other since 

( b) U U1: 
Q HM 1:=----. 

hqup h 

In the purest bismuth with a mean free path of 3 mm at 
a sound intenSity of 3 W / cm2 and a frequency of 1 GHz 
this parameter may be of the order of 10-20. In that 
case the electrons move along trajectories created by 
the sound, some of which are open, and this must change 
the asymptotic form of the galvanomagnetic tensor in a 
radical way. 

An important criterion for the possibility of observing 
the effects examined above is the requirement of low 
damping of sound over the length of the sample. At the 
frequencies necessary for observing acoustic breakdown, 
the linear damping length is, as a rule, small. Under 
nonlinear conditions the absorption coeffiCient for sound 
can be appreciably smaller than under linear conditions. 
In the case where one energy band is important and nT 
«1, the solution of the problem of nonlinear absorption 
of sound is contained in the Latkhtman and Pogorel'skit 
paper. [10] According to that work, under nonlinear con
ditions r- roli/UT, where ro is the linear absorption 
coefficient, and at H <H: the magnetic field has practi
cally no influence on the absorption. When the value of 
H: is exceeded by the magnetic field, magnetic break
down of the acoustic bands occurs and absorption should 
increase sharply. This sharp increase in absorption 
with increase in the magnetic field can also be used to 
study breakdown of the acoustic bands experimentally. 
In the case where two bands are important, it is also 
natural to expect that r- roli/UT in the region of mag
netic fields below breakdown. If it is assumed that r 0 
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a: q and the damping length at a frequency of 1 GHz is 
equal to 1 cm, then at the frequency of 20 GHz needed 
to observe acoustic breakdown the damping length is of 
the order of 5 x 10-2 cm. The nonlinearity parameter 
UTili may reach several hundreds. There is therefore 
reason to suppose that the phenomena we have examined 
may be observed experimentally in samples of reason
able dimensions. Let us note that in the case where the 
acoustic momentum liq is appreciably smaller than 2po, 
it is not possible to observe acoustic breakdown in the 
literal sense of the word. It is, however, possible to 
observe the sound-stimulated magnetic breakdown phe
nomenon which consists in a reduction of the breakdown 
field under the action of a sound wave. This situation 
has the advantage from the experimental point of view 
that it requires sound of lower frequencies which under
go less damping. 

I)We shall adhere to the following terminology. Allowed bands 
which arise as a result of the periodic field of the crystal 
lattice we shall term energy bands. Under the influence of 
the periodic field of a sound wave they break up into allowed 
and forbidden acoustic bands. 

2)In the present work we shall not touch on the change in the 
electron spectrum in the field of a standing sound wave: this 
problem is more complicated than ours because it cannot be 
reduced to a stationary one by any transformation of coordi
nates. 

3)We recall that the electron spectrum is periodic in p-space, 
with a period Iiq, and it is not therefore necessary to consider 

the two distant trajectories: their existence is a consequence 
of this periodicity. 

4)This estimate is only applicable for the so called interband 
magnetic breakdown. [8] Only the latter is realized in our 
situation: 

5)We have put the word "thermodynamic" in quotation marks 
because the state of a metal containing a traveling sound wave 
is not, strictly speaking, an equilibrium one. 
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The behavior of the surface impedance of cadmium is investigated theoretically and experimentally in the 
range of Doppler-shifted cyclotron resonance. It is found that the reactance of the metal has minima in 
the neighborhood of the thresholds of various dopplerons. The experimental data agree with the theoretical 
results for the case of diffuse reflection of the electrons by the surface. 

PACS numbers: 73.25.+i, 76.40.+b 

Doppler-shifted cyclotron resonance (DSCR) leads to 
the appearance of singularities in the variation of the 
surface impedance of a metal with the value of the applied 
magnetic field H. The behavior of the surface resis1._u"e 
R (the real part of the impedance) of cadmium, for 
H II [0001], has already been investigated. [1,2] A kink in 
the function R (H) was observed experimentally in the 
neighborhood of a doppleron threShold. Theoretical in
vestigation showed that the function R (H) should in fact 
experience a kink for diffuse reflection of the electrons 
by the surface. Unfortunately, in the experiments 
citedU ,2] the imaginary part X of the impedance (the re-

actance) was not studied; and in regard to the reSistance, 
the measurements gave only the functional dependence 
R(H) -R(O) on an unknown scale. 

In the present paper, the variation of the surface im
pedance of cadmium with magnetic field is investigated 
theoretically and experimentally. The experimental 
method used made possible measurement of the absolute 
changes both of the real and of the imaginary parts of 
the impedance. It was found that, in contrast to the re
Sistance, the variation of the reactance with field has a 
nonmonotonic character: there are minima on the X(H) 
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