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We consider a degenerage solution of 3He in superf1uid 4He from the point of view of the properties of 
fermion systems with short interaction ranges. We obtain all terms of the expansion of thermodynamic 
quantities and kinetic coefficients in powers of x 1/3, where x is the molar concentration, for the case 
where the properties of the solution are determined by specifying only a single parameter-the s-wave 
scattering length a. Comparison with experinJentai data shows that the theory proposed here describes the 
solution well up to concentrations of the order of 3 to 4%. We evaluate the propagation speeds of spin 
waves, of hydrodynamic and of high-frequency sound oscillations. 

PACS numbers: 67.60.Fp 

1. INTRODUCTION 

A solution of 3He in superfluid 4He at temperatures 
below the degeneracy temperature To is a quantum 
Fermi-liquid dissolved in a super fluid background. It 
then becomes important to take into account effects con­
nected with the degeneracy and with the Fermi-liquid 
interaction of the impurity excitations. Bardeen, Baym, 
and Pines [1] and a number of other authors (for refer­
ences see the review by Ebner and Edwards[2l) suggested 
the use of arbitrarily chosen model potentials for the 
interaction between a pair of impurity quasi-particles to 
describe a degenerate solution. The parameters of the 
potentials were chosen in such a way that the calculated 
characteristics of the solutions were guaranteed to agree 
with experimental data. A phenomenological theory in 
the spirit of Landau's Fermi-liquid theory was first con­
structed by Khalatnikov (Ref. 3, p. 293). 

The thermodynamic properties of a degenerate solu­
tion of 3He in superfluid 4He are comprehensively deter­
mined by specifying Landau's Fermi-liquid function 
faa"(P' p').[3.4l For solutions of an arbitrary concentra­
tion (less than the demixing concentration of - 6%) the 
explicit form of faa' (p, p') is, in general; unknown. Ex­
perimentally; however, one can only determine the first 
two harmonics in the expansion of the Fermi-liquid func­
tion in terms of Legendre polynomials. It is, however, 
clear that in the case of sufficiently low concentrations 
the bare 3He quasi-particles dissolved in the superfluid 
background form a dilute degenerate Fermi gas of slow 
particles with a short interaction range. The thermo­
dynamic functions of a gas of fermions in which the en­
ergy of interaction between two particles decreases 
rather rapidly at large distances was studied by Huang, 
Lee, and Yang[S.6l and also by Abrikosov and Khalatni­
kov (see Ref. 3). 

In such an approach all properties of the solution can 
be described by just a single parameter-the s-wave 
scattering length a for the collision of two bare quasi­
particles. It then turns out to be possible to evaluate 
theoretically the concentration dependence of all experi­
mentally observed quantities. The author has earlier 
studied some properties of a degenerate solution. [7l The 
present paper deals in the framework of the above men­
tioned approach, with the thermodynamic characteris-

tics, kinetic effects, and oscillatory processes in weak 
super fluid . solUtions, and presents a comparison with the 
available experimental data. Since we are dealing with 
a solution at suffiCiently low temperatures, we shall 
hereafter neglect the contribution from phonons and 
rotons to the thermodynamic and kinetic properties. 
Only the impurity excitations will give the basic contri­
bution. 

The state of the solution is completely determined by 
three quantities: the distribution function of the excita­
tions na (P) (p and (J are the momentum and spin of the 
excitation), the velocity Vs of the superfluid motion, and 
the density m4N4 of the Bose-component of the liquid. 
Here m. (m3) is the mass of a 4He eHe) atom, N. (N3) 
the number of *He eRe) atoms per unit volume of the 
solution. The total energy E and momentum P of the 
system are functionals of these three variables. We de­
fine the energy Ea(P) and momentum p of an excitation 
through the following variational relations: 

e.(p)= [~ ] • P=m,N,v.+ L. pn.(p). (1.1) 
6n.(p) v, ,N, pa 

We find, as usual, the equilibrium distribution function 
by maximizing the entropy under the additional condi­
tions that the total energy and the number of impurity 
atoms are constant: 

n~O)(p)=~[l-th e.(p)-J.l,]. 
2 2T 

(1. 2) 

The energy of an excitation Ea(P) and the chemical poten­
tial of 3He in the solution, iJ.3' depend, in general, on 
v s and the external magnetic field H. 

The energy of an excitation Ea(P) is also a functional 
of na(p), v s, and N4, and its first variational derivative 
determines the Fermi-liquid function: 

[ 6e.(p) ] , 
~( ') =taa'(P'P)' na' P "",1'0-, 

(1. 3) 

Changing to a reference system which moves with the 
velocity v s through a Galileo transformation and USing 
the definitions (1.1) and (1. 3), we can find the energy of 
an excitation in the laboratory frame of reference (Ref. 
3, p. 297) which close to the Fermi surface has to a 
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first approximation the following form: 

e.(p)=1'.+-(p-p,)+ f+~ -~ pv. P [( F )-. m 1 
m' 3 m' 

- H~./4 oH+ I>~~(p,p')8n •. (p'), 
P'O" 

(1. 4) 

where lina(P) is the deviation of the distribution function 
from the equilibrium function (1. 2) for constant V sand 
N., 13 is the Bohr magneton, Po = (3rr3Ns)1/S1i is the Fermi 
momentum, m* the total effective mass, 

p.m' (0) , '{"1 '7Jiii/ .. · (0) =F(O) +Z(O)oo = .l....J (F.+Z.oo')P.(cosO) 

• 
is the value of the function faa' (p, p') at the Fermi sur­
face in the zeroth approximation in v s and H, which de­
pends on the angle 6 between the vectors p and p', and 
P~(cos6) are the Legendre polynomials. (When com­
paring with the results obtained by Khalatnikov[S] one 
must bear in mind that the variation lina(P) in Ref. 3 
and in the present paper are defined differently. ) 

The change in the distribution function caused by the 
appearance of the superfluid motion and the inclusion of 
an external magnetic field can then in first approxima­
i\:ion be expressed as follows: 

on'o) [( F )-. m] on'O) ~ ~n:')(p)=- 1+~ -~ pv.----oH. ae 3 m' ae 1+Z0/4 
(1. 5) 

We note that the chemical potential Ils changes only in 
second order in V sand H. 

2. THE FERMI-LIQUID FUNCTION 

For a single SHe atom placed in superfluid tHe at rest 
the energy spectrum of an impurity quasi-particle can 
be written in the form 

e=-~ +L[ 1-~(.!...)'] . 
2M p, 

(2.1) 

Here Pc =m.50, 50 is the sound speed in pure tHe, M 
'" 2.33 ms' The quantity ~ was determined from second­
sound measurements in solutions and is ~ = O. 14 ± 0.05. [8] 

According to Sobolev's data[9] the quantity ~ =0. How­
ever, numerical calculations show that taking this fact 
into account hardly affects the results of the subsequent 
calculations. 

Following a method proposed in Ref. 3, we can write 
the total energy of the system in second-order perturba­
tion theory in the form 

where the indices i, k, l, m number also the spin states, 
ElO) is the energy of pure tHe, Qik = t - UI • Uk • Twice 
varying the energy (2.2) with respect to na(P) we get an 
expression for the Fermi-liquid functionla~(6) which 
was first obtained in this way by Abrikosov and Khalat­
nikov (see Ref. 3, p. 277): 
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t"'(0)=2nali' [1+2/.(2+ cosO In HSin(0/2»)] 
M 2sin(0/2) 1-sin(0/2)· 

_ 8nali'oo' [1+21. (1-...!..8in~In HSin(0/2»)] 
M 2 2 1~sin(0/2) , 

(2.3) 

where 71. =poa/rr1i is the small parameter of the theory. 
Retardation effects in the interaction of the impurity 
quasi-particles give a contribution to the Fermi-liquid 
function of order (pO/Pc)2 and we shall therefore neglect 
them here and in what follows. 

The Fermi-liquid harmonics Fn and Zn have opposite 
Signs: when n =0 

FOIXI., Zo/41X-1., 

and they decrease rapidly. for large values of n: 

When superfluid motion and an external magnetic field 
are present, the expansion of the Fermi-liquid function 
in a power series in v sand H takes the following form, 
if we take the symmetry of faa' (p, p') into account: 

I .. ' (0) =1:':1(0) +h •• • (B) (p+p')v.+g(B) (o+o')H. (2.4) 

The function faa' (6) is also a functional of na(p), vs, and 
Nt and its change can therefore be expressed in terms 
of a variation of the distribution function through the 
formula 

6/,,' (p, p') = E 'P .. ""(p, p', p") 6n ... (p"), (2.5) 
p"(1" 

where C{Jaa'a" (p, p', pIt) is simply the third variational de­
rivative of the total energy E. 

A direct calculation, USing Eq. (2.2) leads to the fol­
lowing value of the function C{J aa' a" (p, p', pIt) in a solution 
at rest when there is no external magnetic field: 

(0) (O~) 128n'a'Ii' [ Q ... 
<pao'\J" ,11, =- Po'lM cOST}+cos~-cosa-1 

+ Q.... + Q •.• " ] (2.6) 
cos ~+C08 O-cos 1]-1 cos O+cos 1]-COS ~-f . 

Here cos17 = cos ~ (Pp"), cost' = cos ~ (P'p"). Substituting 
(2.6) and (1. 5) into Eq. (2.5) and using Eq. (2.4) we get 

h ... (0)=32 a'li 6m Q,,' 1 (1- COS (0/2) In HCOS(B/2»), 
po M cos'(B/2) 2 1-c08(0/2) 

(2.7) 
a'lI f 1 +8in (B/2) 

g(O) =16-po ~ Sl'n (B/2) In ., 1-sin(B/2) 

where Om =M - ms' 

When obtaining Eq. (2.7) we used Eq. (2.3) for the 
Fermi-liquid functionf~~(6) and retained only the main 
terms in the concentration. One verifies easily that the 
function haa• (6) obtained in this way is automatically the 
same as the relation following from the Galilean rela­
tivity prinCiple for a solution at rest, 
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or) ojl') ~ on(') 
-+-= 4.lCj>(O)-. 
ilp ilp' ...... ilp" 

For the sake of simplicity we dropped here the spin in­
dices and arguments. 

For antiparallel spins Eq. (2.7) has singularities at 
8 =w and 8 =0. When a >0 the sum of the main perturba­
tion theory terms vanishes. If, however, a < 0 the first 
singularity corresponds to the Cooper pole in the scat­
tering amplitude of the excitations, while the singularity 
at 8 = 0 is a consequence of the fact that the momentum 
of an excitation is not invariant under a Galileo trans­
formation when there is superfluid motion present. 
When summing all terms of the expansion in powers of 
va this corresponds simply to a shift of the Cooper pole. 

3. THERMODYNAMIC PROPERTIES 

The free energy of the solution is, when we neglect 
terms which are quadratic in v s> H, and TIT 0, given by 
Eq. (2.2). A direct calculation leads, as in Refs. 3, 5, 
and 6, to the following result: 

~ 3 Po' { 10 4 5 ( , F=F/ +N,(-a)+--N, 1 +-A.+-A.'(11-21n2)--s ..E!)] 
10 M 9 21 7 p; 

(3.1) 

Differentiating (3.1) we get at once the chemical poten­
tials of 3He and *He in the superfluid solution: 

'[ 4 4 1 ",=-a+~ 1+-A.+-A.'(11-21n2)-~(!!!....) , 
2M 3 15 p, 

(3.2) 

(') a(-a) 3 a(lnM) , ".=". +N,--+----Po N" aN. 10 aN. (3.3) 

where IJ.lO) is the chemical potential of pure 4He. 

The change in the chemical potential of SHe when the 
number of particles changes by 6Ns can be written in 
the follOWing form[4]: 

po n'1i' 
6", =-6po+--Fo6N •. 

m' pom' 
(3.4) 

Substituting (3.4) into Eq. (3.2) we find the total effec­
tive mass of an excitation: 

m' 8 (P' )2 -= 1 +-A.'(71n2-1)+2s - . 
M 15 p, 

(3.5) 

The osmotic pressure II in a system with a "supergap" 
(membrane with fine pores through which only the super­
fluid component can pass) can be evaluated from the con­
dition that the chemical potentials of the solvent must be 
equal on the two sides of the supergap 

(3.6) 

where P is the pressure in the solution. Expanding both 
sides of Eq. (3.6) in powers of Ns and II and USing the 
thermodynamiC identity at T = 0 

(3.7) 

we get the osmotic pressure in the form 
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or 

NS' a", 
II= N,-dN, 

aN. 
o 

II =2~N. [1 +~A. +~A.'(11-21n2)- 10 ~ (!!!....).]. (3.8) 
5 2M 3 21 7 p, 

We determine the excess enthalpy of the system WE 
from the following equation (Ref. 10, p. 300): 

(3.9) 

Here -lso and - Z*o are the latent evaporation heats of 
pure SHe and *He at T = 0, per atom, and W is the en­
thalpy per unit volume of the solution. Up to terms of 
order (TITo)2 

We can then write for the excess enthalpy 

(3.10) 

USing (3.6) or (3.7) to evaluate IJ.4 +l40 we arrive at the 
final result 

(3.11) 

The magnetic susceptibility X of the spin system, tak­
ing the Fermi-liquid exchange interaction into account, 
was first evaluated by Landau[4J: . . 

l(id I+Z./4 
x-= 1+F,/3' (3.12) 

where X'd is the magnetic susceptibility of an ideal Fermi 
gas with energy spectrum (2.1). Substituting the Fermi­
liquid function (2.3) into (3.12) leads to the following val­
ue of the susceptibility: 

l(id!x=1-2A.-"/"A.'(ln 2+2). (3.13) 

We now evaluate the densities of the superfluid and 
normal components of the solution. When there are nor­
mal and superfluid motions present the total momentum 
of the liquid can be written in the form 

p=p{n)Vn+p(')V" (3. 14) 

where vn is the velOCity of the normal motion, pIn) and 
p<S) are, respectively, the densities of the normal and 
the superfluid components. As the velocities vn and Vs 

enter linearly into Eq. (3.14) it is sufficient to evaluate 
the flux P for the cases when only one of the two veloci­
ties is non-vanishing. When only the superfluid motion 
is present the total momentum p<S)vs is given by Eq. 
(1.1) in which we must substitute the change in the dis­
tribution function ~n!l)(p) of (1. 5). Using Eq. (3.5) to 
perform the calculation we get 

(3.15) 

(3.16) 

which agrees with the results given in Ref. 3 when Eq. 
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FIG. 1. Concentration dependence of the chemical potential of 
lIe in a solution. The open circles here and in other figures 
are the data of Ref. 12. 

(3.5) is taken into account. 

We give in Figs. 1 to 5 a comparison of theoretical 
curves calculated using Eqs. (3.2) to (3.13) with experi­
mental data [11l-16l for the value a = - 1. 51 A of the scat­
tering length (x =Ns/(Ns +N4». The comparison enables 
us to conclude that the proposed method describes a 
real solution satisfactorily up to concentrations of the 
order of 3 to 4% (the dashed curve in Fig. 1 corresponds 
to an ideal gas). For higher concentrations there is 
qualitative agreement. As a < 0, which corresponds to 
attraction between the impurity atoms, the calculations 
performed are suitable for the temperature range 

T,<T<T., . T ( 2 ) 'I. { nit } T,""- - T.exp --- ; 
n e 2p.a 

Tc is the temperature at which the excitation spectrum 
undergoes a change-over which is connected with the 
formation of Cooper pairs and a phase transition of 3He 
in the soluti(;m into a superfluid state. [17] 

In conclusion we note that in the Boltzmann region T 
>To the main concentration correction to the free energy, 
caused by the interaction between the impurity quasi­
particles 5Flnt retains its earlier form (3.1). Indeed, 
5Ftl1t can be written in the following form (Ref. 18, p. 
261) 

g=2sH=2, (3.17) 

where Ztl1t is expressed in terms of the phase 51 of the 
scattering amplitude through the formula 

n, Torr 

20 

15 

10 

5 

Q z (j 

x, 'Y, 

FIG. 2. Osmotic pressure in a degenerate solution. The open 
and filled squares are the data of Ref. 13. 

975 Sov, Phys. JETP 46(5), Nov. 1977 

o 2 
.T. % 

4,--;--,,-6 

FIG. 3. Excess enthalpy of a 
degenerate solution. 

g E S· dll, ( pi) Z;.,=- (2IH) -exp --- dp, 
n dp MT 

! • 

(3.18) 

For s-wave scattering of slow particles aH 51 =0, apart 
from 50 = - palli. Substituting 50 into (3.18) and bearing 
in mind that only particles with antiparallel spins take 
part in the scattering process we find 

(3.19) 

which agrees with the corresponding term in (3.1). 

4. HYDRODYNAMIC TYPES OF SOUND 

The propagation of low-frequency sound waves in a 
solution is described by a set of hydrodynamical equa­
tions (Ref. 3, p. 214) which in the linear approximation 
has the form 

aN, aN. 
m'-a;-+ m'-a;:+ p'n) divv.+p'·) div v.=O, 

Here 

aN. fit + N, div v.=O, 

as 
Tt+Sdivvn=O, 

av. avo 
p,n)&"t+p"'-at+ VP=O, 

avo 1 
-+-VIl'=O. at m, 

M[ 8 ' S=~ 1+-A'(7Jn2-1)+26 (~) ] T 
31t' 15 p, 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

is the entropy per unit volume of the solution. Eliminat-

o z 6 x, % . 

FIG. 4. Total effective mass of impurity quasi-particles. 
Here and in other figures the filled triangles are data of Ref. 
14 and the filled circles data of Ref. 11. 
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Xid/X 
1.3 

1.2 

i ~ I I.T t 
1.0 

Z x, % t 
FIG. 5. Magnetic susceptibility of a solution; open triangles 
are data of Ref. 15, and the open diamonds the results of rela­
tive measurements of the magnetic susceptibility[16J normalized 
to the value for x = 1. 3%, evaluated using Eq. (3. 13). 

ing Vs and vn from the hydrodynamical equations we get 
the set of equations 

S-Si'V,IN,=O, 

m.lv.+m,N,-LlP=O, 

( p(n») p(" 
m.N.+ m,-- N.--Ll".=O. 

N, m. 

(4.6) 

We choose as independent variables N3, N~, and T. 
We consider a weakly excited state of the solution. We 
shall assume that small perturbations for all equilibrium 
quantities vary in the field of the sound wave as e l ",t-it.l'. 

Neglecting terms of order TITo by USing the thermody­
namic identity (3.7) we get: 

(m.u'-A.) 6N.+ (m,u'-A,) 6N,=O, 
(4.7) 

( 
2 p(,) a".) [( p(n») , p(,) a".] 

m.u ---- 6N.+ m,-- u ---- 6N,=O, 
m. aN. N, m. aN, 

whereAI=N3aIJ.3/aNI+N~aIJ.~/aNh i=3,4; u=wlk is the 
propagation speed of the acoustic wave. From the com­
patibility condition of the set (4. 7) we find the required 
dispersion equation 

m. ~:) u'-u'{ p(') (=: :;: -:;: ) +m,A,~ (m, - %:) ) A.} 

+{A3~-A.~}~=O. (4.8) 
aN. aN, m. 

Equation (4.8) determines the velOCities of first and 
second sound in a degenerate solution. Substituting 
Eqs. (3.2), (3.3), (3.15), (3.16) into the dispersion re­
lation and solving it we get finally (compare Ref. 3, p. 
309, and Ref. 19) 

[ m. ( 6m)' 6m] Po' {1 m, ( 6m)' 
u.'=so'+so' M a+--;;.- +1-~ c+ M' 3M a+~ 

_X(cx+6m)_26M(a_m')'+~'lM}c, (4.9) 
In, mit. m, 10 m", 

u,'=..!!i:....[1+21.+~I.'(11-2In2)-4s(~)'] m." (4.10) 3JP 1a pc - M a So c, 

where 

alnM 
x=--""125 ["] a InN.' , 

,iJ'lnM N, 
'l=MN. aN." c = N.· 

The last term in Eq. (4.9) describes the non-linear con-

976 Sov. Phys. JETP 46{51. Nov. 1977 

centration dependence of the first sound speed in a de­
generate solution, observed by Abraham et al. [21] In 
Ref. 21 it was assumed that the observed non-linearity 
was connected with a concentration dependence of the 
effective mass of the impurity excitations m* which is 
caused by the Fermi-liquid interaction. However, Eq. 
(4.9) shows that the parameters characterizing the in­
teraction between impurity quasi-particles do not enter 
at all in the expression for the first-sound speed, which 
is therefore the same as the first-sound speed in a solu­
tion of an ideal Fermi-gas with the spectrum (2.1) in 
superfluid 'He. 

Figure 6 illustrates the agreement between Eq. (4.9) 
and the experimental data, [21J and the remaining undeter­
mined parameters y and 1] turn out to equal y = - 2.26; 
1] = - O. 89. (In the case when the quantity ~ = 0 [9] the 
parameter 1] has the value 1] = -1. 15.) 

We emphasize that the first-sound speed was evaluated 
up to terms of order (p OlPc)6, whereas the second-sound 
speed was evaluated only up to terms of order (Po IPc)5. 
This is explained by the fact that retardation effects, 
which we neglected, gave a contribution of order (Po I 
Pc)5, to the second-sound speed, while the corresponding 
terms do not occur at all in the expression for the first­
sound speed. 

By analogy with pure He II, the so-called fourth 
sound[22] can also propagate in a degenerate solution. 
This occurs in the case when the solution fills capillaries 
that are so narrow that their diameter turns out to be 
less than the penetration depth of a viscous wave or the 
mean free path of the excitations. Oscillations will then 
propagate only in the superfluid component of the fluid, 
while its normal part turns out to be stationary. The 
fourth sound speed is determined from the set of Eqs. 
(4.1) to (4.3), (4.5) in which we must put vn =0. Ne­
glecting again all terms of order TIT 0 we find imme­
diately 

(4.11) 

Eliminating Vs and substituting IJ., from (3.3) we find 
the fourth sound speed in a degenerate solution: 

or finally 

1 , nsec 
u,-S;'cm 

~oo 

200 -

O~-L-~2--~~~ '~ 

cr. % 

(4.12) 

FIG. 6. Deviation of the concentration dependence of the first­
sound speed in a solution from the linear dependence (indicated 
by a dashed line); the crosses are experimental data of Ref. 21. 

E. P. Bashkin 976 



( 5m) (PO)' M[3 (M)'] 
U,'=Bo'+,,' "f - ~ C + M m, 10 ,,-2; m, c. (4.13) 

5. HIGH-FREQUENCY OSCILLATIONS 

The complete set of equations which describes the 
propagation of high-frequency oscillations in a solution 
consists of the linearized equations of continuity, the 
equation for the superfluid motion, and the collisionless 
kinetic equation: 

~ [ m,N, + Lm.n.(p) ] +diV[ m,N,v. + Lpn.(p) ] -0, (5.1) 
pO' pO' 

aV'+~V_a_[Eo+ ~ e.(p)lin.(p)] =0, 
at m. aN, .t..J 

(5.2) 
p. 

an.(p) + Vn.(p) ae.(p) _ an.(p) Ve.(p)=O. 
at ap ap 

(5.3) 

Here Eo is the total equilibrium energy of the system. 

We consider oscillations of the solution at T=O. We 
write the perturbed distribution function in the following 
form [see (1.5)] 

an'O, [( F )-' m] an'O, n(p)=n'o,+-- 1+~ -~ pv.+--[v(p)+1I>(p)o], 
• ae 3 m' ae 

(5.4) 

where n (0) is the "globally" equilibrium distribution 
function when there is no superfluid motion (we con­
sider here the case without an external magnetic field) 
and the small deviations ,,(P), 1/1 (P) , 6N., and Vs are 
periodic functions of the coordinates and the time and 
proportional to el",t-t'r. One verifies easily that under 
the substitution 

where "k are the harmonics in the expansion of the func­
tion ,,(e) in Legendre polynomials, Eqs. (5.1) and (5.2) 
change into the corresponding equations of the two­
velocity hydrodynamics (4.1) and (4. 5) while we get by 
standard methods Eqs. (4.2) and (4.4) from the kinetic 
Eq. (5.3). 

We solve Eqs. (5.1) and (5.2) for Vs and 6N. and sub­
stitute the expressions obtained into the kinetic Eq. (5.3) 
with the distribution function (5.4) and the Hamiltonian 
(1. 4) with H =0. After straightforward calculations we 
get 

(1,,-kvO)[v(B, If) +'"(B, If)O]-kvo<[F(B, B')+Q(u)+R(ll) eosB'] 
X \'(B'. '1") _kVO(I/,Z(B, B')",(8. If»O=O. (5.5) 

In Equation (5.5) vo=polm*; ,,(e) and I/I(e, cp) are the val­
ues of the functions ,,(P) and 1/I(P) on the Fermi surface, 
( ••• ) indicates averaging over solid angles, u=w/k, and 

3 m' 1 [ p'" (aJ1)' m aJ1 Q(ll)=,--,--, -N. -' -u'(p"'-m,N,) ~-' 
Po m, u -u, m, aN, m, aN. 

all. ] -u'(2m,N,-p,n') aN. ' (5.6) 

3 m' u [ 1 aJ1, aJ1, 1 R(u)=---,--, (p"'-m,N,)--+N,- . 
Po m, u -u, m, aN, aN, 

(5.7) 

We choose the direction of k as the polar axis. Mul­
tiplying both sides of Eq. (5.5) by (f and taking Tra w,e 
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get as the result 

(ulvo-cosll)1jJ(8, q»-COSIl<'/.Z(Il, 1l')1jJ(8', <p'»=O. (5.8) 

LandauC.J was the first to obtain the integral Eq. (5.8) 
which determines the propagation speed of spin waves. 
Following Landau, but taking into account that t Z(e, e') 
«1 we find the speed of a symmetric (m =0) spin wave[7J 
(cf. Ref. 23, p. 231) 

u.lv,=1+exp{1/A-2}. (5.9) 

An analysis of Eq. (5.8) shows that due to the smallness 
of the function t Z(e, e') the propagation of undamped 
asymmetric spin modes (m ,*0) turns out to be impossible. 

We now average Eq. (5.5) over the spins. We find 

(ulvo-cos ll)v(ll, '1') -cos 8( r F (Il, 8') +Q(u) +R(u) cos 8']v(8', <p'»=O. 

(5.10) 

Equation (5.10) describes' zero-sound and high-frequency 
sound (see below) oscillations in the solution. In a closer 
consideration, similar to the one in Ref. 3 (P' 255) for a 
pure Fermi liquid it turns out, however, that due to the 
smallness of F(e, e') Eq. (5.10) does not have real zero­
sound roots u~vo. There is then one root u-so which 
corresponds to the first-sound velocity close to the ab­
solute zero when the relaxation time of the impurity 
excitations increases fast and may exceed the period of 
the sound oscillations. [24J 

For a calculation of the speed of high-frequency first 
sound we note that the function F(e, e') in Eq. (5.10) has 
a much smaller absolute magnitude than the functions 
Q(u) and R(u) and that it therefore can be neglected (this 
means, however, not the neglect of terms IX,\ 2 in the ex­
pressions for Q(u) and R(u». Using this fact the required 
dispersion equation takes the following form: 

Q(u) +~R(u) =llw(ulvo), 
vo 

where 

x x+l 
w(x)=-ln---1. 

2 x-l 

(5.11) 

When u/ v» 1 we have w(u/ va) '" v ~ /3u 2 • Then substitut­
ing Eqs. (5.6) and (5.7) into Eq. (5.11) we have 

[ 1 aJ1, (m, ) u'-u' u.' + ,- (p"'-m,N,) 1 -----;-
m, aN, m 

+J.... aJ1'N,(1_2m:+ P:" )]_.-!,p,.,(a J1,)'N,.=o. 
m, aN, m mN, m, aN, m 

(5.12) 

The solution Uo - So of the dispersion Eq. (5.12) is the 
velocity of the high-frequency first sound in the solution: 

, , Po~ m, ( + lim ) 
Uo =Ul --- a; ,-

3M' M m, 

[ 6m 8 ( Ma)' (m.)] x a+-+- so- (7In2-1) a-- c. 
m, 5 nn m, 

(5.13) 

The first-sound speed of a given frequency thus turns 
out close to the absolute zero to be less than at higher 
temperatures (when we have the low-frequency hydrody­
namic limit) by an amount of the order of (pO/Pc)5 given 
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by Eq. (5. 13). In other words, the temperature depen­
dence of the first-sound speed must have a maximum. 

The absorption coefficient of a high-frequency wave 
equals 1/ WT (the imaginary part of the kinetic equation 
then identically vanishes). Here T is the relaxation time 
which is, in general, different for spin and sound wave 
propagation processes. However, as to order of magni­
tude 

t To' 't""-(-) luta'N.v. T 

The condition that the damping is small can then be ex­
pressed in the following form: 

1;. (1;.00 )'/. 
T<j;f M . 

Or, substituting for T the experimental values, we get 
T«4.5Xl0-8Wl/2. From the conditions T>Tc and liw 
« To we find, on the other hand, a region of frequencies 
in which it is possible to observe high-frequency spin 
and sound waves: 

z'/'>->(aN1')'z'/'exp - -. 00 {(n)'I.t} 
00. 3Nz a 

Here Wo =IiM-i N2/S, N =Ns +N4• Substitution of numeri­
cal values gives 

z·/,> 1.43 . 1O-"oo>z'/' exp{-2.36/z'{'}. 

6. KINETIC COEFFICIENTS 

The kinetic effects in a degenerate 3He-He II solution 
are determined by fermion quasi-particle pair scatter­
ing processes corresponding to the transition 

(P,) +(P,) .... (P,') + (P,'). (6.1) 

We denote the 4-momentum by Ph i. e., Pi = (£:1, PI)' 
Brooker and Sykes[251 obtained exact expressions for 
the thermal conductivity, K, the viscosity, 1/, and the 
spin diffUSion, D, coefficients by solving the kinetic 
equation; they have the following form: 

KT=~~( W(O,<p) (l-COSO»-' H('}..x), 
3 m" cos (0/2) 

1'"' 64 1;.'Po' ( W(O, <p) (1 0)' ., )-'cv.) (6.2) 
T] = 45 m" cos(0/2) - cos sm <p , , 

DT,=32 n'Ii'p,' (l+ Z') ( 2WD (0,<p) (l-cos<p) (l-COSO»-'C('}..D)' 
3 m" 4 cos (0/2) 

where B is the angle between the vectors Pi and P2, cP 
the angle between the (Pb P2) and (Pi, 112) planes, while 
the coefficients H()..K), C(~), and C()..D) are given by the 
following relations: 

'}..E (W(O, <p) ) = ( W(O, <p) (1+2 cos 0» , 
cos (0/2) cos (0/2) 

;....( W(O,<P» =( W(O,<p) [1-~ (l-cosO)'sin'<p]) , 
cos (0/2) cos (0/2) 4 

('}..D-O( W(O,<p) )=_( WD(O,<P)O_COSO) (l-cos<p) ), (6.3) 
. cos (0/2) cos(O!2) 
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3-'}..., ~ 4n+5 
H('}..K) = -4 -4..l (n+1) (2n+3)[ (n+1)(2n+3) -'}..E) , 

n_' 

1-'}.. ~ 4n+3 
C('}..)=T 4..l(n+1)(2n+1) I<n+1) (2n+1)-'}..1 ' n_. 

The functions W(B, cp) and WD(B, cp) in Eqs. (6.2) and 
(6.3) are phenomenological probabilities for quasi-par­
ticle pair collisions near the Fermi surface for the ap­
propriate processes. We emphasize that because the 
particles are indistinguishable the angle cp varies be­
tween the limits of 0 and 1T. 

One can easily obtain the collision integral in the quasi­
classical approximation by USing the Liouville equation 
for the single-particle density matrix including exchange 
effects (see Ref. 23, p. 220): 

/() J 'dp. dp,' d '~( + ")~( ") n, =- (2nh)' (2nh)' p, u p, p,-p, -p, u 8,+8,-8, -Il, . 

2n [1 I ,3 ,], , XT T ftl(O,<p)I +T1ftt(0,<p)1 [n,n, (l-n,) (l-n,) 

-n,n,(l-n,') (l-n,') I. (6.4) 

Here r .. (B, cp) and rtt(B, cp) are the scattering amplitudes 
for quasi-particles in the Singlet and triplet states, re­
spectively. 

Comparing Eq. (6.4) with the collision integral used 
in Ref. 25 we find that 

(6.5) 

On the other hand, the probability WD(B, cp) is determined 
by those terms in (6.4) which correspond to the scatter­
ing of quasi-particles with opposite spins. Finally we 
get 

(6.6) 

Galitskii[261 obtained the equation which enables us to 
determine the vertex part r(p~, Pa; Ph P2 ) in terms of 
the scattering amplitude of two particles in vacuum 
f(P~, P2; Pb P2) in the case of a non-ideal low-density 
Fermi gas: 

2nh' 16n'h' J dk 
f(p', p, G) =- -----xI f(p', p) + M' '(2nh)' f(p', k)j" (p, k) 

X[g,_g2/4M~~;~+iIlN(k) + k2/M-P~/M-ill]' (6.7) 

We have changed in Eq. (6.7) to relative momenta P and 
p' and the center of mass momentum G: 

pl='/,(p,'_P,'), P='i,(P,-P,), G=P,+P,=P,'+P,'=(g., g). (6.8) 

The factor N(k) takes into account prohibitions following 
from the Pauli prinCiple: 

N(k)=1-n('/2g+k)-n(l/2g-k). (6.9) 

In the case of s-wave scattering of slow particles 

f(p', p) =-a(l-ip'a/li) (6.10) 

and for collisions leaving the quasi-particles on the 
Fermi surface we find up to and including terms of or-
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FIG. 7. Concentration depen­
dence of the thermal conduc­
tivity coefficient; filled dia­
monds are experimental data 
of Ref. 27. 

der a2 from (6.7) that the vertex part r(p', p, G) is inde­
pendent of the angle cp and thereby becomes the same as 
the forward scattering amplitude rIO) (0) (the situation is 
analogous to the scattering of slow particles in vacuum). 
The real part of the forward scattering amplitude can 
for singlet and triplet states, respectively, be expressed 
as follows (Ref. 3, p. 286): 

[ 1-5v' )] n'Ii' ru (8)=41. 2+1. (-v-arthv+7 p,M' (6.11) 

( 1 v' ) n'Ii' r/;) (8)=41.' --=;;-arth v-I p,M' (6.12) 

Here v = sin(t 0). It follows from Eqs. (6.11), (6.12) 
that up to terms corresponding to p-wave scattering of 
quasi-particles only those terms from I r!?) (0) 12 occur 
in the transition probabilities W(O, cp) and WD(O, cp) which 
are porportional to a 2 and a 3. Finally we have 

(6.13) 
2W D (8, <p) ='/,W(8, <p). 

Substitution of Eqs. (6.13) into (6.2) leads after 
straightforward, but tedious calculations to the expres­
sions 

1..='/,+4.761., H(I.K) =0.52(1-0.261.), 

1.,='/,+2.231., C (I.,) =0.81 (1-0.18/.), 

I.D='/,+ 1.191., C (I.D) =0.80 (1-0.101.). 
(6.14) 

The final results for the kinetic coefficients then look 
as follows: 

1 P.' 1 po' KT = ---0.52(1-0.34",) '1T' =---0.81(1+0.741.), 
8n (Ma) , '12n' (Ma)' 

1 Ii' , (6.15) 
DT'=-;-(M) (~,) 0.80(1-2.181.). 

The characteristic relaxation time in a degenerate 
Fermi system 

't= 8n'Ii' < W(8,<p) )-' 
m'T' cos (8/2) 

thus has the following concentration dependence: 

1 1i (1i )' 1 't=-- - - (1-1.86",). 
2nM a T' 

(6.16) 

A comparison of the calculated kinetic coefficients with 
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FIG. 8. Concentration de­
pendence of the spin diffusion 
coefficient. 

6 
x, % 

experimental dataC14,271 is made in Figs. 7 and 8. They 
reveal a satisfactory agreement between the theoretical 
and experimental results. 
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Evaporation of shock-compressed lead in release waves 
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We determined experimentally the rates of expansion of lead samples in air following compression by 
strong shock waves of amplitude 0.4-3.4 Mbar. The strong increase of the expansion rate at pressures 
exceeding 1.32 Mbar attest to evaporate of the lead in the release wave. The results are used to 
determine the shock-compression entropy and to refine the equation of state of the liquid phase of lead at 
high pressures and temperatures. 

PACS numbers: 62.S0.+p. 64.30.+t, 6S.S0.+m 

1. INTRODUCTION 

The solution of many problems of applied physics calls 
for the study of high-temperature evaporation of metals 
under the action of pulses, and an important question is 
that of the thermodynamic equilibrium of the evaporation 
process. [ll Near the liquid-vapor equilibrium line and 
in the trans critical region, a rigorous theoretical calcu­
lation of the characteristics of metals is impossible be­
cause of the presence of a strong interparticle interac­
tion of complex structure, while static experiments are 
limited by the simultaneous action of the high tempera­
tures and pressures that are typical of metals. It is 
therefore of great importance to investigate the proper­
ties of metals near the evaporation line by dynamic meth­
ods. 

Dynamic investigation methods with the aid of strong 
shock waves make it possible to obtain, in a wide range 
of parameters, the caloric characteristics of metals­
the pressure P, the specific volume V, and the internal 
energy E.I:.2,3l This information was obtained for many 
metals in experiments on shock compression of solid 
and porous samples[S-6l and by recording the release 
isentropes. [7-9l By using these data we can, without 
resorting to models, construct a phenomenological equa­
tion of state in the form of the function E(P, V). In this 
case the equation of state, however, does not contain 
such important material characteristics as the tempera­
ture and the entropy. Zel'dovich[10l was the first to call 
attention to the possibility of determining, in view of the 
adiabaticity of the release process, the entropy of shock 
compression from the final parameters of the expanding 
substance. If a metal expands in the state of an ideal 
gas or plasma, its entropy can be calculated from the 
pressure and density (or temperature) measured in the 
course of the dilatation. 

The program proposed inClOl was not realized because 
of the great difficulty of obtaining, in shock compres­
Sion, the high-energy states needed to reach the ideality 
region. Another difficulty lies in the exact registration 
of high expansion velocities on the order of dozens of km/ 
sec. In the case oflower-intensity shock waves, the entro­
py of copper was determinedUl• 12l from the residual tem­
perature of the solid and liquid metal. InCl2 l, the entropy 
of shock compression of SOdium, strontium, barium, and 
uranium was determined from spectroscopic measure­
ments of the fraction of the evaporated metal after ex­
pansion in vacuum, and the object of the investigation 
was the states within the two-phase region. 

We have developed a new variant of obtaining entropy 
information, based on an investigation of the evaporation 
process when metal samples, previously compressed by 
shock waves of various intensities, expand in air. The 
release pressure at which the evaporation started, yield­
ed the point of intersection of one of the isentropes with 
the phase boundary, whose parameters, including the 
entropy, were assumed known. The start of the evapora­
tion upon release can be observed if the relaxation time 
of the metastable states that are produced below the sat­
uration curve is much shorter than the characteristic 
time of the evaporation process. Otherwise the metal 
will expand along the adiabats of the heated liquid or 
supercooled vapor. It is possible, however (see U4l ) that 
owing to the presence of a large number of charged par­
ticles in the metal on the saturation line, the relaxation 
is of the order of 10-9 sec. At such times, the differ­
ence between the temperatures of the metastable and 
equilibrium states, i. e., the superheat of the liquid met­
al, does not exceed several degrees. 

The question of evaporation of shock-compressed met­
als in release waves was investigated in experiment us-

980 Sov. Phys. JETP 46(5), Nov. 1977 0038-5646/77/4605-0980$02.40 © 1978 American Institute of Physics 980 


