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A dispersion equation is obtained and the spectrum and damping of the longitudinal oscillations of an 
electron Fermi liquid in a quantizing magnetic field are investigated. It is shown that coupling results from 
the interaction of the phonons with quantum waves of the "electron sound" type. The excitations having 
close frequencies and velocities and due to the close coupling of the phonon with one of the quantum 
waves are named by us magnetic phonons. We discuss the applicability of the adiabatic approximation to 
metals in a magnetic field. It is shown that the Friilich model cannot be used to describe the strong 
nonadiabatic restructuring of the phonon spectrum of the metal. The phonon damping is relatively small 
even at the maximum of the collisionless absorption. The electron contribution to the speed of sound drops 
out in this case. 

PACS numbers: 71.4S.Gm 

1. INTRODUCTION 

The adiabatic approximation, as is well known, makes 
it possible to obtain the phonon spectrum of a metal with 
good accuracy. [l,Z] The feasibility of the adiabatic de­
scription is based on the fact that the limiting frequency 
WD of the phonons in the crystal is appreciably lower than 
the characteristic electron energy f,F, i. e., the dimen­
sionless adiabatic parameter is WD/f,F-S/VF, where S 

is the speed of sound and v F is the Fermi velocity of the 
conduction electrons. The small value of this parame­
ter is due in final analysis to the large difference be­
tween the masses of the electrons and ions (S/VF- (m/ 
M)l/Z, where m and M are the electron and ion masses). 
For long-wave phonons, the role of the adiabatic param­
eter is played by the ratio of the frequency of the acous­
tic phonon Wq = qs to the characteristic frequency of the 
electronic transition in the interaction with the phonon, 
f,ptq - f,p 0:; q . v. Since all the electrons on the Fermi sur­
face take part in the formation of the phonon spectrum, 
the adiabatic parameter has in the long-wave limit the 
same order of magnitude S/VF as before. In other words, 
the existence of a single adiabatic parameter for all 
phonons is due to the fact that in the electron system 
there are no collective excitations whose frequency, at 
a .given q, is comparable with the phonon energy Wq. 

To describe the interaction of the electrons with the 
lattice one uses extensively the Frohlich Hamiltonian, 
which is based on the concept of the deformation poten­
tial. The Frohlich model is essentially adiabatic, sihce 
the electron energy is assumed in it to be dependent on 
the instantaneous position of the ions in the vibrating lat­
tice. This model provides a correct qualitative descrip­
tion of the effective short-range interaction between the 
electrons and the ions in the metal, and makes possible 
a correct estimate of the small nonadiabatic effects such 
as the electron contribution to the phonon damping or to 
the dispersion of their velocity, as well as allowanc~ 

for the influence of this interaction on the electrons near 
the Fermi surface. 

The applicability of the Fr/)hlich model is limited 
primarily by the fact that to write down the Hamiltonian 
of a bound system of electrons and phonons in a metal 
one must inevitably introduce "bare" (i. e., non-inter­
acting) electrons and phonons. Whereas for the bulk of 
the electrons this approximation is valid to some degree, 
by virtue of Migdal's theorem, [Z] for the phonons the elec­
tronic renormalization (which is adiabatic in its charac­
ter) of the spectrum turns out to be of the same scale as 
the energy of the bare phonon. This shortcoming of the 
Frohlich model is well known. Another no less substan­
tial shortcoming of the Frohlich model is that it is im­
possible to take into account in it conSistently the Cou­
lomb interactions. The model is based on the assump­
tion that the interaction of the conduction electrons with 
the ions is via a screened potential whose radius is of the 
order of the interatomic distance. Since the character­
istic spatial scales of the electron motion (the mean free 
path, the radius of the electron orbit in the magnetic field, 
and so on) greatly exceed the lattice constant, the radius 
of the interaction potential is made to tend to zero. In 
other words, in the Frohlich model it is assumed that 
rD - 0, where rD is the 'Debye radius of the electronS in 
the metal. By virtue of this assumption, there are no 
electron plasma oscillations in this model, and oscilla­
tions of the Landau zero-sound type occur in their place. 
This means that within the framework of the Frohlich 
model the electrons in the metal behave in analogy with 
an uncharged Fermi liquid coupled to the lattice via the 
deformation potential. Introduction of Coulomb interac­
tions is therefore inconsistent in the Frohlich model and 
it is impossible to take correct account of their influence 
on the phonons in the metal. 

Thus, although the adiabatic approximation in metals 
is valid with high accuracy, its realization in the Froh-
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lich model encounters objections in a number of re­
spects. Recently Brovman and Kagan[1·3] have construct· 
ed, in their known cycle of papers, a consistent adiabatic 
theory of the phonon spectrum of metals with allowance 
for the Coulomb and multiparticle interactions. It was 
shown in these papers that many properties of metals, 
including polyvalent ones, can be calculated with high 
accuracy from first prinCiples. 

At the same time, the phonon spectrum of a metal can 
contain also nonadiabatic effects. Thus, if the Fermi 
surface has flat sections, then the quantity f:p+q - f:p ""q . v 
is a constant on such a section and can be comparable 
with the phonon frequency wq• Since the phase volume 
determined from the condition Wq ""q'v is finite in this 
case, the nonadiabatic contribution of such electrons to 
the phonon spectrum becomes substantial. The charac­
ter of the singularities of the phonon spectrum produced 
in' this situation was first analyzed by Afanas' ev and 
Kagan. ['] 

Nonadiabatic effects become particularly strong in the 
presence of a magnetic field, when the electron motion 
acquires a quasi-one-dimensional character. Owing to 
the quantization of the energy of the transverse motion 
in the magnetic field, the longitudinal electron velocity 
on the Fermi surface can assume only discrete values 
v.=vn (z is the direction of the vector H). The fact that 
the discrete velocity with the smallest absolute value 
can vanisl1leads to certain singularities in the density 
of the electronic states on the Fermi surface. The state­
density increase due to the electrons with low velocities 
attests to the important role of these electrons in the 
formation of the phonon spectrum. The applicability of 
the adiabatic approximation for such electrons is deter­
mined by the velocity ratio S/Vn, and at vn;Ss their inter­
action with the lattice becomes essentially nonadiabatic. 
Since the interaction of the electrons with the ions is not 
weak, it follows that the absence of a small adiabatic 
parameter in a magnetic field makes necessary a multi­
particle formulation of the phonon-spectrum problem 
from the very outset, and calls for a consistent allow­
ance for Fermi-liquid effects. 

The quantization of the electronic states in a magnetic 
field is also the cause of the well known phenomenon of 
giant quantum oscillations of the collisionless absorp­
tion of acoustic[5] and electromagnetic[6] waves in metals. 
This phenomenon is due to the quasi-one-dimensional 
character of the electron motion in the magnetic field 
and to the quantization of its longitudinal velocity on the 
Fermi surface. The absence of absorption in those 
phase-space regions where the energy conservation law 
Wq =q.vn is not satisfied leads to the existence of singu­

.lar electronic excitations of the acoustic type, dubbed 
quantum waves, with a dispersion law W =q.un, Un"" (vn 
+vn+1)/2Y-10] Since excitations with velocities com­
parable with the speed of sound appear in the electron 
system, the assumption of phonon adiabaticity is incor­
rect for this reason, too. 

In addition, the premise that the deformation potential 
is constant in a magnetic field is incorrect. The point 
is that the deformation potential is determined to a con­
siderable degree by effects of screening of the Coulomb 
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interaction by conduction electrons. This circumstance 
is reflected in the appearance of the dielectric constant 
in the denominator of the expression for the deformation 
potential. [11] As the frequency of one of the quantum 
waves is approached, the dielectriC constant tends to 
zero, and the value of the deformation potential in­
creases strongly. Consequently, the deformation poten­
tial in a magnetic field cannot be regarded as constant 
even at acoustic frequencies. Yet it is just this assump­
tion which is inherent in the Frohlich model. 

By virtue of the foregoing Circumstances, the Froh­
lich model is unsuitable for a consistent study of the 
phenomena connected with electron-phonon interaction 
in a magnetiC field, particularly for the study of the 
singularities of the phonon spectrum of metals. More­
over, it must be emphasized that an electron-phonon 
interaction theory based on the concept of bare phonons 
and a constant deformation potential is unsuitable for a 
quantitative description of the strong electronic renor­
malization of the phonon spectrum, brought about by the 
singularities in the density of the electroniC states on 
the Fermi surface. 

It is necessary to review in this connection the results 
of Blank and one of usU2 ] as well as a number of other 
studies in which the Frohlich model was applied literally 
to the analysis of the phonon spectrum of metals in mag­
netic fields. Those of the results which are connected 
with the calculation of the "simple loop" and with allow­
ance for small corrections to the phonon spectrum are 
correct. As to the conclUSion that the spectrum is 
strongly renormalized and that other strong effects due 
to electron-phonon interaction are pOSSible, these can­
not be regarded as correct. It would also be necessary 
to analyze anew the line shape of the giant quantum oscil­
lations of strong absorption in those cases when the ab­
sorption is so large that the damping decrement becomes 
comparable with the frequency. 

It can thus be stated that the question of a consistent 
investigation of the strong singularities of the phonon 
spectrum and of the giant quantum oscillations of sound 
absorption in metals in magnetic field has not yet been 
solved. The solution of this problem is closely connect­
ed with the problem of a correct analysis of the acoustic 
and quantum waves in metals. 

The purpose of the present paper is a study of these 
phenomena. A consistent theory can be constructed on 
the basis of the electron-ion model of the metal. In these 
phonons are not introduced a priori, but are the result 
of a solution of the disperSion equation. Such a model, 
in the absence of a magnetic field, was investigated by 
a number of workers. [1.3.13-15] 

In the next section we derive a dispersion equation 
for the longitudinal oscillations in the electron-ion sys­
tem of the metal with account taken of the Fermi-liquid 
interaction between the electrons. Section 3 contains an 
analysis of the phonon spectrum in the absence of a mag­
netic field, a comparison with the results of Brovman 
and Kagan, [1.3] as well as a discussion of the transition 
to the Frohlich model. The last section considers final­
ly the spectrum of the longitudinal oscillations of a met-
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al in a quantizing magnetic field, when strong adiabatic 
effects due to the interaction of the electron Fermi­
liquid with the lattice become significant. 

It must be emphasized that the description proposed 
below for the interaction between the electrons is not 
connected with perturbation theory, since it is not weak 
at metal densities. In other words, the parameter e2/ 

IiVF is not regarded as small, and the polarization oper­
ator of the conduction electrons was obtained without us­
ing the random-phase approximation. The results of the 
work are valid under the same assumptions as the Lan­
dau Fermi-liquid theory. Landau's theory, as is well 
known, uses not the smallness of the parameter e2/livF' 
but the absence of damping of the excitations on the Fer­
mi surface. As to the actual calculation of the Landau 
function f, while difficult to carry out theoretically in 
consistent fashion for real metal, it can nonetheless be 
estimated by various approximate methods with reason­
able accuracy. [S] In a magnetic field, under conditions 
of quasiclassical quantization, the interelectron inter­
action is taken into account essentially by the same meth· 
od as used at H = 0 by Brovman and Kagan. [1,3] 

2. DISPERSION EQUATION FOR LONGITUDINAL 
OSCILLATIONS OF THE ELECTRON FERMI LIQUID 
OF A METAL 

We start with an expression for the Hamiltonian of the 
lattice electrons and ions. We confine ourselves for 
simplicity to a monovalent metal with a cubiC lattice: 

(2.1) 

Here rna is the mass of the free electron, the subscripts 
a and j number the electrons and ions, respectively; 
cI>(r-RJ) is the electron-ion interaction energy; H/i in­
cludes the kinetic energy of the ions, the energy of their 
Coulomb repulsion, and the non-Coulomb part of the 
interaction of the ion shells; He is the energy of the 
electron Coulomb repulsion. We assume that the energy 
of interaction of each electron with the homogeneous 
positive background has already been subtracted from 
the electron-ion energy, and that the energy of the cor­
responding charged background has been eliminated from 
the energies of the electron-electron interaction (He) and 
ion-ion interaction (H/I). 

We shall consider hereafter only small longitudinal 
oscillations. We expand the Hamiltonian (2.1) in powers 
of the small displacements 6R J = R J - R JO from the true 
ion equilibrium positions1) Ria' The equilibrium lattice 
configuration should be obtained from the condition that 
the total energy of the metal be a minimum (with account 
taken of the electron contribution to this energy) as a 
function of the ion coordinates. This problem was solved 
by Brovman and Kagan. [1,3] In the expansion of Hif in 
powers of 6RJ we confine ourselves to the quadratic terms 
(it can be shown[S] that the linear term of the expansion 
is zero because of the lattice symmetry). We obtain the 
potential cI> (r - R J) accurate to terms linear in 6R J (the 
quadratiC terms are small in the parameter 6R/a - (rn/ 
M)l/ ~ and correspond to third-order anharmonicities). 
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We proceed next to the second-quantization representa­
tion for the Bloch electrons and the lattice vibrations. 
In this representation, (2. 1) takes the form 

(2.2) 

Here a; and a, are the creation and annihilation opera­
tors of a Bloch electron with quasimomentum p and en­
ergy E" the latter being an eigenvalue of the Hamiltonian 

p'/2mo + 1:!D (r-RjO); 
, 

the electron-density fluctuation operator is 

b: and bIt are the Bose creation and annihilation of a 
longitudinal lattice vibration with frequency wIt and wave 
vector q. The f~equency WIt is determined by solving 
the pure imaginary problem with the Hamiltonian HfI. 
Finally, V" and v(q) are the respective matrix elements 
of the discrete electron-ion and electron-electron Cou­
lomb interaction, and are calculated with the aid of 
Bloch wave functions. We assume that the dependences 
of V" and v(q) on the momentum p is a smooth one and 
can be disregarded. 

We must emphasize the'difference between our pres­
ent approach and the method used by Brovman and Ka­
gan. [1,3] In their theory the initial states were those of 
the free electrons, while the interaction with the ions 
was taken into account by expanding the total energy in 
terms of the small parameter VKi£:F, where K*O is the 
reciprocal-l.ttttice vector. In our case the initial states 
are those of the electrons in the periodic field of the 
crystal. In addition, the theory of Brovman and Kagan 
was adiabatic from the very outset. We cannot use their 
results directly, since we are interested in strong non­
adiabatic effects. 

In a quantizing magnetic field, the states of the elec­
tron are classified by an aggregate of quantum numbers 
t={n,p~,.t) .. } (we chose a Landau gauge with a vector po­
tential A = (0, Hx, 0». The spin dependence of the energy 
is neglected. In the t-representation it is necessary to 
replace in the Hamiltonian (2.2) only the first term by 
~t E t a; a and p. by ~t, t' M t' t a;,at , where a; and at are the 
creation and annihilation of the operators in the state 
It>, Mt't is the matrix of a plane wave between the 
states t' and t: Mt't=(t'lexp(-iqr)lt). 

Proceeding to the derivation of the dispersion equa­
tion, we must bear in mind that the interaction between 
the conduction electrons in a metal is not weak, and the 
electrons must be regarded as a charged Fermi liquid. 
The dispersion equation can be easily written down if 
the polarization operator of the electrons in the metal is 
known. The calculation of this equation for a charged 
Fermi liquid is an important and sufficiently difficult 
problem even in the absence of a magnetic field. We 
present below a derivation of the dispersion equation un-
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der conditions of quasiclassical quantization of the elec­
tronic states in a magnetic field. The interaction of the 
electrons with one another and with the ions is taken into 
account in the spirit of the Landau Fermi-liquid theory. 

The spectrum of the longitudinal oscillations is deter­
mined by the poles of the exact phonon Green's function 
D(q, w, H). The Dyson equation for D(q, w, H) becomes 
much simpler if it is recognized that the phonon propa­
gator D(q, q', w, H) is diagonal in q and q' even in the 
presence of a magnetic field, D(q, q', w, H) = <'iqq.D(q, w, H). 
This property of the function D in the case of a quadrat­
ic dispersion law for electrons with a Frolich interac­
tion with the phonons was proved in[12,181 The proof is 
actually based on the fact that the translation of the sys­
tem by an arbitrary vector introduces in the Hamiltonian 
only a change that can be cancelled by an appropriate 
gauge transformation. In other words, in a homogeneous 
magnetic field the momentum transfer is conserved as 
before, even though the electron propagator depends not 
only on the coordinate difference. This proof is easily 
extended also to electrons in a periodic field with a Ham­
iltonian in the form (2.2). 

Thus, the Dyson equation for the photon propagator 
has also in a magnetic field the usual form (Fig. 1): 

D(q, 00, H)=D.(q, oo)+IV.i'D.(q. 00) IT(q, 00, H)D(q, 00, H). (2.3) 

The thick dashed lines denote the exact phonon propaga­
tor, and the thin dashed lines correspond to the function 
Do =2wq /(w2 - w:). The points represent simple Vq ver­
tices which, by definition, are not included in the polar­
ization operator II represented by the crossed circle. 

To take explicit account of the interelectron interac­
tion, we separate from II the compact part S, which is 
represented by the aggregate of all the compact diagrams, 
i. e., diagrams not cut into two parts along the thin pho­
non line and along the line v(q) of the Coulomb interac­
tion between the electrons. The latter will be represent­
ed by a wavy line, and the compact part by a shaded 
circle. The equation for II then takes the form of Fig. 2. 
whence 

. 2 
w2 _ w2 + 2Wg I Vg I S(9., w, H) _ 0 

1 + v(q)S(q, w, H) - • 
(2.4) 

The equation for S is in turn of the form shown in Fig. 
3. The thick lines denote the exact electron propagators, 
while the shaded square (Fig. 4) represent the exact elec­
tron four-point diagram r(12,34). The quantity r is 
graphically represented by the aggregate of all compact 
diagrams with four ends, containing all the possible com­
bination of the phonon, electron, and Coulomb lines. 

Thus, r includes all the types of short-range forces 
between the conduction electrons in the. metal, i. e., r 

-0-=* +~. FIG. 2. 
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includes both the short-range part of the direct Coulomb 
interaction and the indirect interaction of the electrons 
via the bands. By definition, singular elements having 
a Coulomb singularities of the type q -2 are excluded from 
r as q - O. The short-range interaction between the elec­
trons will be described in the language of the Fermi-liq­
uid theory. The quantity S can then be regarded as the 
exact polarization operator of a system of fermions with 
Short-range forces, in which the fermion propagator co­
incides with the exact Green's function of the conduction 
electron in the metal, and the complete four-point dia­
gram coinCides with r. 

We confine ourselves henceforth to an analysis of the 
longitudinal-oscillation spectrum at small wand q. The 
quantity S is calculated in the Appendix and is of the form 

S( 00 H) _ S.(q, 00, H) 
q" - 1+</('»S ( H) . o q,6), 

(2.5) 

We have introduced here the quantity 

2V. .;, '( qJ.'L') 
S.(q,oo,H)= (2ltL)' L M •• , -2-

n,n'_O 

X S~ d I[E. (p,-q.) ] -/[E., (p.) ] 
p. , 

_~ E., (P.) -E. (P.-q.) +00 (2.6) 

which will be called hereafter a simple loop, bearing it 
in mind that for non-interacting particles it is propor­
tional to the longitudinal susceptibility. Vo in (2.6) is the 
normalization volume, q~=q~+q~, L=(c/eH)1/2 is the 
magnetic length, andj(E) is the equilibrium Fermi func­
tion. The dispersion law for true quasiparticles in a 
magnetic field is 

(2.7) 

where 0 is the cyclotron frequency, me is the cyclotron 
mass, and m is the effective mass in the z-axis direc­
tion (the contribution of the Fermi-liquid interaction is 
allowed-for in m and me)' The modulus of the matrix 
element on the oscillator wave functions is given by 

M •• , (x) = IM,,'I=e-·/2xl.-.'"'L.!.~;~:~.,) (x), (2.8) 

where L ~ (x) is a generalized Laguerre polynomial nor­
malized to unity. 

The quantity <t 1O» in (2.5) is the averaged correla­
tion function of the Landau Fermi-liquid interaction be­
tween the electrons. The mean value <t(O» is defined by 
formula (A. 12) and takes into account the change in the 
region of averaging on the Fermi surface as the state-

X FIG. 4. 
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density singularities are approached. Thus, at H = 0 the 
quantity (f0» reduces in fact to the correlation function 
(H' averaged over the Fermi surface. In the case of a 
quantizing magnetic field, however, in the immediate vi­
cinity of the state-density singularities, the averaging is 
over only the extremal section p. = 0 of the Fermi surface. 

Substituting (2. 5) in the dispersion equation (2.4) we 
get 

m'-m ,+ 2m.iV.I'S.(q,m,H) 
• 1+[v(q)+<j<'l>jS.(q,m,H) 

O. (2.9) 

It is seen that allowance for the Fermi-liquid interaction 
leads, first, to the appearance, in the simple energy 
loop, of true quasiparticles (with effective masses, etc.), 
second, to an additive increment (f(0» to the Coulomb 
interaction v( q). 

It must be emphasized that formula (2. 5) holds only 
in the case when the damping of the quasiparticles on 
the Fermi surface is equal to zero. The proof of the 
important statement that under the conditions of quasi­
classical quantization the damping actually vanishes on 
the Fermi surface was obtained by Luttinger. [17] 

3. PHONONS IN A METAL IN THE ABSENCE OF A 
MAGNETIC FIELD. TRANSITION TO THE FROHLICH 
MODEL 

In the absence of a magnetic field the spectrum of the 
longitudinal oscillations of a metal contains at least two 
branches, which differ substantially in frequency. The 
low-frequency branch corresponds to slow lattice vibra­
tions; these are the longitudinal phonons. The other, 
high-frequency branch is connected with oscillations of 
the electron density and describes the Langmuir plasma 
oscillations of the electrons. In an uncharged Fermi 
liquid, the high-frequency branch of the spectrum is the 
Landau zero sound, while in a charged isotropic Fermi 
system there is no zero sound connected with the charge­
density oscillations.[18] We consider here only the 
acoustic part of the phonon branch. 

The spectrum and the damping of the phonons can be 
easily obtained from Eq. (2.9). We need for this pur­
pose explicit expressions for Wq, v (q), VOl and So(q, w) 
at small q and w. The spectrum of the lattice vibrations 
Wq is determined only by the ion-ion interactions and be­
gins with the ion plasma frequency WI 

m.'=m;' (1+q'a) , m;'=4nne'/M, (3.1} 

where n is the electron and ion denSity, while a has the 
dimension of length squared and its magnitude and sign 
are determined from the solution of the purely ionic 
problem (see, e. g. , U,3]); in order of magnitude we have 
1 a 1-a 2, where a is the lattice constant. 

For small q we have furthermore 

4ne' 
v(q)=- (Hq·~). 

q' 
(3.2) 

The appearance of the term with {3 in (3.2) is due to the 
use of Bloch wave functions to calculate v(q), and there­
fore {3 contains the small parameter I VII: 12 / l:~ • The 
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pseudopotential VOl for q - 0 is equal to 

V.=-iq(2mqV,nM) -'f, (4nne'/q'-b) , b>O. (3.3) 

The parameter b describes the energy of electron re­
pulsion by the ion shell. 

Finally, in the case of an isotropiC Fermi surface, 
small wand q, and w« qVF the simple loop is given by 

S,(q, m)=V,vcI(s,) (1+lnm/2qvF) , v c.!sF)=3nI2s., (3.4) 

where lIel (l:F) is the density of the electronic states on 
the Fermi level at H = O. 

A phonon spectrum with a linear dependence of W on q 
is obtained from (2.9) because W, is cancelled by the 
corresponding term of the last member of the equation. 
This cancellation is due to the electric quasineutrality 
of the metal. Substituting (3.1}-(3. 4) in (2.9) we obtain 
the spectrum and the damping of the phonons: 

(3.5) 

The velocity of the longitudinal sound is given by the ex­
pression 

s'=~[4nne'(IX+M+2b+n<f">+ __ n_]""s .. + M n( )' (3.6) 
M . Vel (Sp) Vel 8, 

where s~ denotes the sum of the first three terms of 
(3.6). 

We note that when the coupling of the electrons with 
the lattice is excluded (a, {3, b - 0) formula (3.6) goes 
over into the known Landau expression for the square 
of the sound velocity in an uncharged Fermi liquid. £19] 

The result represented by (3.6) coincides essentially 
with that of Brovman and Kagan. [1,3] 

We consider now the manner of changing from the 
dispersion equation (2.9) to the corresponding equation 
of the Frohlich model. It is known that the latter should 
be of the form 

(3.7) 

where So is the unrenormalized speed of sound and 

A.=-lqA(2s.q V.nM) -''', (3.8) 

A is the deformation potential (in the isotropic case 
IAI =2l: F /3). Equation (2.9) can be recast in an equiva­
lent form 

2 , 4ne' { + 4nne2~+2b+n<r> i} m-q - nIX 
M S. '(q,m)+v(q)+<j"> q' 

4nne' 
=- ( [ ]S.(q,m). 

MS. q,m) H(v(q)+<j"»S.(q,m) 
(3.9) 

Equation (3.9) differs from (3.7) in the sign of the first 
part. To reduce (3.9) to the form (3.7) we subtract 
from both halves of (3.9) twice the value of the right­
hand side. We recognize next that in the Frohlich model 
the electron screening radius is assumed equal to zero 
and the adiabatic approximation (w - 0) ·is used. The co­
efficient of q2 in the left-hand side (the square of the un-
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renormalized velocity s~) and the multiplier of So(q, w) 
in the right-hand side (the effective electron-phonon cou­
pling constant) are then taken at w =0. We then obtain 
Eq. (3.7), in which the deformation potential is IAI 
=2CF/3 (as it should), and the unrenormalized sound 
velocity So is connected with the observed velocity S by 
the relation 

, • + A' () ,+ 2n 
8. =8 -M'YC1 8p =8. M ( ) n 'Yd 8p 

(3. 10) 

It is seen from the foregoing analysis to what tricks 
we must resort to set Eq. (2.9) in correspondence with 
the Frohlich model. The contribution of the electrons 
to the unrenormalized sound velocity So is taken into ac­
count here twice: the last term of (3.10), due to the 
electrons, turns out to be twice as large as the corre­
sponding term in (3.6) (this circumstance was pOinted 
out already by Brovman and Kagan[1]). 

In addition, there is a leeway in the transition to the 
Frohlich model. It is due to the fact that in some of the 
factors of (3.9) the simple loop So(q, w) is replaced by the 
static quantity So(q, 0), while in others the dependence of 
So(q, w) on w is preserved (if we take into account the w­
dependence in the terms in which it was neglected above, 
we obtain an incorrect expression for the damping and a 
different value of A). There are in fact no grounds for 
such substitutions. They are particularly inadmissible, 
and lead to incorrect results, in those cases when non­
adiabatic effect play an important role. This is precise­
ly the situation in a quantizing magnetic field. 

4. LONGITUDINAL OSCILLATIONS IN A STRONG 
MAGNETIC FIELD 

We proceed to consider longitudinal oscillations in a 
metal placed in a quantizing magnetic field. We consider 
ourselves to the quasiclassical case 0« C F, when we 
can disregard the change of the Fermi level in the mag­
netic field. It was noted in the preceding section that at 
H = 0 there exist in a metal only two weakly -damped lon­
gitudinal modes-phonons and plasmons. This result is 
a direct reflection of the fact that the charged-particle 
system comprising the metal consists of two subsystems 
with two different velOCities, ionic S and electronic v F' 

In a magnetic field one should expect even from general 
considerations an increase in the number of weakly 
damped longitudinal oscillations. [7-10] In fact, quantiza­
tion of the energy of the transverse motion of the elec­
trons (relative to the magnetic field) leads to quantiza­
tion of their longitudinal velocity on the Fermi surface: 
v. = ± Vn , n = 0, 1,2, ... ,N, where N is the number of Lan­
dau level under the Fermi surface: 

(4.1) 

and ~ is the fractional part of the quantity CF/O-t. As 
a result, the electron subsystem consists in turn of N + 1 
subsystems, each characterized by a definite velocity 
along H. This discrimination of the electrons leads to 
the existence of longitudinal quantum waves with acoustic­
type spectra even in a free electron gas, when there are 
no ion oscillations (M - 00). [7-9] The spectrum and damp-
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ing of these waves are obtained from the condition that 
the denominator of the second term in (2.4) vanish. The 
number of such oscillations is N + 1, one of which corre­
sponding to plasmons and the remaining N to "electron 
sounds." In anisotropiC metals, transverse quantum 
waves should exist besides the longitudinal ones. [10] If 
the lOngitudinal waves propagate obliquely the picture 
becomes more complicated because of the interaction of 
the quantum waves with the transverse oscillations. tao] 

We confine ourselves here to an investigation of the 
simplest case of long-wave longitudinal oscillations 
propagating along the vector H. Then the simple loop is 
given by the formulas 

2mV. ~ '1 (v.+qI2m)'-u' 'j' 
ReS.(q,ro,H)= (2nL)'q """In (v.-qI2m)'-u' ' 

n_O ~ 

(4.2) 

(4.3) 

Here vn =vP{1- (n+t)O/CFP/a and u=w/q is the phase 
velocity of the wave. The quantity y(q, w, H) is the ratio 
of the power absorbed by the electrons in the magnetic 
field to the power absorbed at H = 0 [21]: 

,((q,oo,H) 

qQ ~ ~S 1(8)-1(8+00) S~ =-;;-""" de 00 dp,6[e-E.(p,)]6[8+oo-E.(p,+q)]. 
11.,.00 

(4.4) 

Formulas (4.2) and (4.4) do not take the scattering of 
the electrons into account and pertain to absolute zero 
temperature. The scattering and for the thermal smear­
ing of the Fermi distribution are accounted for in pre­
ceding papers. [10.21] At T = 0, the quantity y(q, w, H) as a 
function of the square of the phase velocity u 2 takes the 
form of a system of narrow rectangular pulses of width 
2vn q/m, whose centers are located at u 2 =v~. Inside 
the pulses we have y(q, w, H) = 0/ w, and outside y(q, w, H) 
=0. 

It is seen from (4.2) that ReSo(q, w, H) also changes 
strongly with the phase velocity. In Fig. 5, curves 1 
show the dependence of ReSo on u 2 • At u=O the quantity 

(4.5) 
is the quantum density of state of the electrons on the 
Fermi surface in a quantizing magnetic field. The verti­
cal asymptotes, near which the function Re So becomes 
discontinuous, actually represent narrow strong-absorp­
tion intervals, in which y(q, w, H) = 0/ w (the width of 
these intervals on the figure is equal to zero). Curves 
2 represent the right-hand side of the dispersion equa­
tion 

1 q' u'-ooll q' 
-V S,(q, oo,H) = . 

o 41te% s. z_uz 
(4.6) 

The intersection points ah aa, ••• , aN of curves 1 with the 
horizontal line - q a /4rre2 are the zeros of the dielectric 
constant, i. e., they yield the spectrum of the quantum 
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FIG. 5. Procedure for the solution of the dispersion equation 
in a magnetic field at ~o= ms ;/20> 1: curves 1-Viii ReSo(q, w, 
H), 2-right-hand side of (4.6); a1> a2, ••• , aN-points of 
intersection of curves 1 with the line q2/4rre2 = const and 
representing the spectrum of the quantum wave in the immo­
bile lattice i.M- 00); AI' A 2, "" AN-quantum wave in vibrat­
ing lattice: A andA'-magnetic phonons. 

waves and of the plasma oscillations of the free electron 
Fermi liquid (M-oo). 

The pOints of intersection of curves 1 and 2 are solu­
tions of Eq. (4.6) and determine the spectrum of cou­
pled oscillations in which phonons take part in addition 
to the already mentioned waves.a) That the waves are 
indeed coupled is seen from Fig. 5, which shows in the 
interval (v ~, V ~-1)' in place of one solution corresponding 
to the point an, two solutions (the pOints A and A'). We 
shall call such two oscillations "magnetic phonons" to 
distinguish them from the remaining solutions, which we 
shall call as before quantum waves. The onset of mag­
netic phonons is due to the interaction of the lattice vi­
brations with the quantum wave whose velocity differs 
least from s* (we recall that s* is determined by the 
elasticity of the metal from which the pure electronic 
elasticity has been subtracted). The situation Hlustrated 
in Fig. 5 is realized in weak magnetic fields n<ms~/2. 
Of course, for magnetic phonons to exist at such n we 
need very low temperatures and pure samples, so as to 
satisfy the quantization conditions n» T and n» T-1 (T 
is the free-path time). A detailed quantitative analysis 
of the properties of magnetic phonons and of the influ­
ence of the temperature and scattering will be published 
in a separate paper. We confine ourselves here mainly 
to a graphic investigation of the dispersion equation. 

FIG. 6. Procedure for the solving Eq. (4.6) in a stronger field 
~o« 1, ~ >~o. The notation is the same as in Fig. 5. 
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FIG. 7. The notation is the same as before, but there is one 
magnetic phonon A at ~> ~o. 

Figures 6 and 7 show plots of the behavior of magnetic 
phonons in stronger magnetic fields n» ms! /2. In such 
fields, the magnetic-phonon velocities are smaller than 
the velocities of all quantum waves. In the case shown 
in Fig. 7 we have VN<S* or ~< ~o =ms~ /2n, and there 
are two magnetic phonons, whereas at ~>~ there is 
only one (Fig. 6). In the latter case it is easy to find 
an analytic expression for the velocity and the damping 
of the magnetic phonon. If s * « v N (~» ~), then 

The amount by which the damping (4.8) differs from 
zero depends on the allowance for the scattering of the 
electrons by the impurities and on the extent to which the 
temperature is finite. 

It must be stated that (4.7) and (4.8) differ substan­
tially from the corresponding expressions in the Froh­
lich modelt121 in that the quantum density of states enters 
in the denominators of the expressions for the velocity 
and the damping. In particular, near the singularity of 
the density of states, where N ~ - 0 and I'qU (E F, H) - 00, 

the square of the velocity of the magnetic phonon remains 
finite and positive, whereas in the Frohlich model it be­
comes negative and its absolute value increases in pro­
portion to I'qu(EF, H). The decrease of the speed of sound 
in accord with formula (4. 7) is explained by the fact that 
the effective number of the electrons that participate in 
the formation of the phonon spectrum increases on the 
Fermi surface. This strengthens the screening of the 
interaction between the electrons, a screening which 
this interaction weakens and by the same token decreases 
the electron contribution to the elasticity of the crystal. 
Since the square of the Debye radius is inversely propor­
tional to the state density on the Fermi surface, it fol­
lows that with increasing I'qu(EF, H) the velocity of the 
magnetic phonon decreases. Far from the state-density 
singularity we have s(H) =s, i. e., the phonon velocity is 
the same as at H = O. 

In contrast to the Frohlich model, the phonons interact 
even during the pulses of the strong collisionless absorp­
tion at ~ = ~o, where 'Y = 'Ymax = n/ wand 
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ImS,=.::..~>1. (4.9) 
ReS, 2 qu, 

The solution of the dispersion equation (4.6) is 

u'=s.'+nV,IMS,(q, CJl, H), (4.10) 

from which we get 

4 mv,' (qV')' s"(H)=s.'+--- -- , 
3n' M Q 

mv,' (qVl') r(H)--- - CJl. 
3nMs.' Q 

(4.11) 

It is seen that the phonon damping r(H) is small in this 
region compared with the frequency w on account of the 
parameter qvp/n« 1. The relative smallness of y dur­
ing the pulses is due to the fact that the simple loop 
So(q, w, H) is contained in the denominator of the second 
term of (4.10), also that the appearance of a large imag­
inary part of the function So leads to a damping that is 
smaller the larger 1m So. 

We thus arrive at the conclusion that in a quantizing 
magnetic field, even in the quasiclassical Situation, the 
interaction of the electrons with the lattice is essentially 
nonadiabatic, and the nonadiabatic effects play an im­
portant role in the region of small wand q. Under these 
conditions the velocity of the long-wave phonons in the 
metal cannot be determined from the thermodynamics, 
since it is essential to take into account the strong fre­
quency dependence of the elastic moduli of the metal. 
In other words, the dynamic (in the sense of the depen­
dence on w) and static longitudinal elastic moduli are 
substantially different if the speed of sound is close to 
one of the electronic velOCities vn • This constitutes the 
principal difference between the phonon spectrum of 
metals in a magnetic field and the adiabatic situation (at 
H=O) that has been exhaustively analyzed by Brovman 
and Kagan. [1,3] . 

We note that in the magnetic-field region where s* 
«VN and the nonadiabatic effects can be neglected, the 
speed of sound (4.7) is determined by the static (thermo­
dynamiC elastic modulus, which coincides with the dy­
namic modulus. Quantization of the electronic states 
manifests itself in this case in strong oscillations of the 
elastic moduli of the metal. This question was analyzed 
by Lazarev and the present authors. [23] 

We have disregarded above the spin splitting of the 
electronic levels in the magnetic field. If this splitting 

FIG. 8. Solution of the dispersion equation in the Frohlich 
model. A-phonon, Ao-zero sound. 
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FIG. 9. 

is taken into account, then the number of quantum waves 
is doubled. Nonetheless, the analysis described above 
is applicable also to this case and yields analogous re­
sults. 

We discuss in conclusion the results of the quantization 
of the electronic states in a magnetic field in the case of 
the Frohlich model. If we substitute in the dispersion 
equation (3.7) the expression for the simple model (4.2), 
then we arrive at the situation shown schematically in 
Fig. 8. Besides the fact that in this model there are no 
solutions of the plasma-oscillation type and a solution 
corresponding to zero sound appears (the point Ao), the 
existence of the phonon root A depends on the magnetic 
field intenSity. In fact, the point A exists only if IIqU (f: p, 

H) <so/2q IAq 12. Owing to the oscillations IIqu (f:p, H), this 
condition may be violated; the square of the sound veloc­
ity then becomes negative even before a change occurs 
in the number of Landau levels below the Fermi surface. 
It follows from the entire foregOing analysis that such 
conclUSions stem from an unsubstantiated application of 
the Frohlich model to the analysis of the electronic 
properties of crystals in a magnetic field. 

The authors thank I. M. Lifshitz and Yu. Kagan for a 
discussion of the results. 

APPENDIX: CALCULATION OF THE FUNCTION 
S(q,w,H) 

Following the Landau Fermi-liquid theory, [2*,25] we 
introduce the effective electron-electron interaction 
I (12, 34), which is an aggregate of diagrams made up 
of r which are not cut in two along two electron lines. 
Then r satisfies the integral equation of Fig. 9, where 
the light rectangle represents the effective interaction I. 
This equation can be symbolically written in the form 

r=I+IRr, (A. 1) 

where R corresponds to the product of two internal 
electron propagators. 

We confine ourselves hereafter to the analysis of the 
spectrum of longitudinal oscillations at small wand q. 
The limiting value of r as w - 0 and q - 0 is well 
known[24] to depend on the order of the limiting transi­
tion, in view of the ambiguity of the limit of R. At 
small w (w «f:F), the matrix elements of R take the form 

R", (E, E') =-0,,' (E, E') +R,~~) (E, E'), 

f(E,')-f{E,) 
o,..(E,E+CJl)-z,z" tj(E-E,) , 

E,-E,'+CJl 

(A.2) 

where E t is the energy of the true quasiparticles of the 
electron Fermi-liquid of a metal with a Fermi distribu­
tion function!(E). Relation (A.2) is proved by a method 
similar to thatused at H = 0 by Luttinger and Nozieres. [25] 
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All the singularities that appear in the oscillation 
spectrum are due to the quantity (1, which is the singu­
lar part of R. The quantity R(O) remains single-valued 
as w - 0 and q - O. Under the conditions of the quasi­
classical quantization, it depends little on the magnetic 
field, so that H in R(O) can be made to tend to zero. We 
note that quantities of the type R(O) coincide as w - 0 
and q - 0 with the usual w-limit of the corresponding 
functions. Zt in (A. 2) denotes the residue of the exact 
electronic propagator; Zt and zi1 have no singularities 
as functions of the magnetic field[17026] and can also be 
replaced by their limits as H - O. The existence of for­
mula (A2) is due to the important circumstance that even 
in a magnetic field the imaginary part of the self-energy 
of an electron vanishes on the Fermi surface under the 
conditions of quasiclassical quantization. This state­
ment was proved by Luttinger. [17] 

To calculate the susceptibility S(q, w, H), we express 
it in terms of the vertex fmiction T (12,3) represented 
by the shaded triangle, using the relation (Fig. 10) 

-S=MRT. (A.3) 

The vertex function satisfies the obvious equation (Fig. 
11) 

T=M+IRT. (A. 4) 

At small w, Eq. (A. 4) can be rewritten in the equivalent 
form 

(A.5) 

where rIO) must be obtained from the equation rIO) =1 
+IR(O)r(O), andT(O)=M+r(O)R(O)M. Wereplacethe 
quantities rIO) and T(O) by their limits as H-O. We then 
change over in (A. 5) to the momentum representation, 
which is the most convenient in the quasicalassical situa­
tion. We then carry out a multiplicative renormalization 
of the quantities T, r, and (1 by means of the formulas 

(A.6) 

As a result of this renormalization, the reSidues of the 
electron propagators no longer enter explicitly in the 
definition of l: and in the equations for the renormalized 
quantities T, f, and others. The equation for T becomes 

(A.7) 

and the relation (A. 3) takes the form 

(A. 8) 

where l: differs from (A.2) in the absence of the residues 
Zt and Zt" It is seen from (A. 8) that to calculate S it is 
necessary to know T(O) and T on the Fermi surface. It 
follows from Ward's identity that on the Fermi surface 
T(O) -1 as w - 0 and q - O. [25] Consequently S = l:T, and 
T is determined from Eq. (A.7), in which T(O) is re­
placed by unity. In the momentum representation we 
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have 

~ (0) 
't'.= 1- .t..J j •• ,t.,", 't'",. (A.9) 

PIP. 

Here 

~p,p.= E <t,lp,-q){p,lt.>t",.<t,lp.><p.-qlt.>, (A. 10) 
'1'1 

and (p It) is the wave function of the electron in the state 
t in the p-representation. 

It is difficult to find the exact solution of the integral 
equation (A. 9). The function T, however, has an im­
portant property that allows us to construct a reasonable 
approximation of the solution of (A. 9). This property 
is the smoothness of the function T near the Fermi sur­
face,whereas the function /; is singular at small wand 
q. Following the variational method ort27.&8], we write 
down this apprOXimate solution in the form 

1 
T = -:-:-:-::::7:'"'=-:'---::,,-

1+<j'O»So(q, ro, H) , 

</"»= E ~p,p,jp~;:~p,p. / (~)p,., ) '. 
p"Pz 

(A. 11) 

(A. 12) 

We note that (A. 11) coincides with the correct result 
in all cases when (A.9) admits of an exact solution. The 
relation (A. 11) is therefore a reasonable approximation 
and gives the best approximation of the true solution 
from the point of view of the variational method of[27,28] .. 
Substituting (A. 11) in (A. 8) we arrive at formula (2.5). 

I)The change in the equilibrium positions of the ions can be 
neglected under conditions of quasiclassical quantization be­
cause this effect is connected with a metal-volume change 
proportional to the integral of the electron density states. 
We shall henceforth disregard oscillations of this kind. 

2)The question of the coupling of quantum and sound waves was 
considered phenomenologically by Zyryanova et al. [22J on 
the basis of premises concerning the deformation interaction 
of the electrons with the lattice. 
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Statistical thermodynamics of formation of a new phase. 
II. Theory of boiling of volatile liquids 

B. V. Oeryagin, A. V. Prokhorov, and N. N. Tunitskii 

Institute of Chemical Physics, USSR Academy of Sciences 
(Submitted 11 February 1977; resubmitted 30 June 1977) 
Zh. Eksp. Teor. Fiz. 73, 1831-1848 (November 1977) 

The fluctuating growth of a vapor-filled tuacroscopic bubble in a moderately superheated or decompressed 
volatile liquid is treated as two-dimensional diffusion of a germ of a new phase in the space of its 
variables, viz., the volume v and the pressure p of the vapor in it. The relief of the free energy of a s 
"liquid + bubble with vapor" over the (v, p) plane is investigated in the vicinity of the labile equilibrium 
of the system, and the two-dimensional equilibrium distribution function of the germs with respect to their 
variables is determined. The nondiagonal diffusion tensor in (v, p) space near the saddle point is also 
calculated. A two dimensional stationary equation of the Kramers-Zel'dovich type of the kinetics of 
forruation of a new phase is solved and an expression is obtained for the probability of homogeneous 
nucleation at arbitrary viscosity and volatility of the liquid far from its critical point. Various limiting 
cases are considered. 

PACS numbers: OS.20.Dd, OS.70.Fh 

1. INTRODUCTION 

The analysis of the kinetics of formation of a new 
phase[1-81 has led to the development of a new method of 
describing the kinetics of a first-order phase transition 
in which the growth of a macroscopic germ of a new 
phase is treated as diffusion over the germ-size axis. 
The difference between the equation of the kinetics of 
new-phase formation (the Fokker-Planck equation) and 
the ordinary diffUSion equation lies in the fact that the 
germ-size axis is not homogeneous: a certain force 
field is superimposed on it and is governed by the 
"supersaturation" of the investigated system. A natural 
macroscopiC model of the kinetics of new-phase forma­
tion is therefore diffusion in the field of external forces. 

The task of determining the rate of formation of the 

new phase in this approach breaks up into two stages: 
(a) determination of the coefficient of diffUSion of the 
germ over the size axis as a function of the germ size; 
(b) determination and investigation of the "potential re­
lief" on this axiS, the relief being specified by the posi­
tion of the system on the Van-der-Waals diagram in its 
metastable region. We make use here essentially of the 
fact, first pointed out by GibbS, that the potential relief 
on the size axis is a potential barrier that separates the 
quasi-single-phase region of the size axis from the two­
phase region. It is the diffusion flux from one region to 
the other which determines the kinetics of new-phase 
formation. Both stages of the solution of the nucleation 
problem become much more complicated if a single 
variable no longer suffices for a macroscopic descrip­
tion of the new-phase germ. This is the situation with 
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