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The processes of decay of transverse electromagnetic waves propagating across a constant magnetic field 
are considered. The possibility of using these decays for tuning the frequency of the stimulated radiation 
in the magnetoactive plasma of semiconductors. as well as for the diagnostics of the magnetic fields that 
spontaneously develop in a laser plasma is discussed. 
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It is well known that the nonlinear properties of a 
plasma lead to numerous effects, in particular, to the 
existence of decay (parametric) instabilities of high­
power electromagnetic waves. [1] The number of possible 
decay channels increases substantially for a plasma lo­
cated in a magnetic field. Some of these processes have 
been studied in a number of papers. [2-5] In the present 
paper we analyze the possibility of using the decay insta­
bilities of electromagnetic waves propagating perpendic­
ularly to the external magnetic field Ho for the continuous 
tuning of the coherent-radiation frequency in the far in­
frared region in the magnetoactive plasma of semicon­
ductors, [8] as well as for the diagnostics of the magnetic 
fields that spontaneously develop in a laser plasma. [7] 

The analysis of the case of the propagation of the 
waves along Ho is less interesting from the standpOint 
of the continuous tuning of the infrared-radiation fre­
quency in a sufficiently broad band. 

It should also be noted that, because of the conserva­
tion of the photon momentum, there arise additional­
with respect to the case of transverse propagation-se­
lection rules for the possible decays. Some decay cases 
for waves propagating along the magnetic field are con­
Sidered in Refs. 4 and 5. 

For high-frequency electromagnetiC waves propagating 
perpendicular ly to the external magnetic field Ho, there 
exist the following types of oscillations[S]: 

1. An ordinary wave (O-wave) with the electric-field 
vector, E, parallel to Ho (Ho is directed along the z axis), 
whose dispersion equation has the form 

(1) 

where 1j=coo(1-w:lw2), k is the wave number, w the 
wave frequency, c the velocity of light in vacuo, Coo the 
high-frequency permittivity of the medium, Wp = (41Te 2nl 
coom*)1/2 the plasma frequency, n the electron concen­
tration (for semiconductors, in the conduction band), 
and m* the electron effective mass. 

2. An extraordinary wave (E-wave) with electriC vec­
tor, E, perpendicular to Ho. For the case when the vec­
tor k is directed parallel to the x axis, the dispersion 
equation has the form 

k 2c2 e~etl~ 
-,- = e~ - --;;;;:;; £11 

W filII 
(2) 

where 

£="'e,=e •• =£,=£~ (1-w.'1 (w·-Q'». 
e",,=-e .. ""'ig. g=e~w"QI w (w·-Q'). 

o =eHolm*c is the electron cyclotron frequency, 

e,=l-£~co"(w'-Q')/co' (w'-Q.'). Q.= (Q'+w.')'~ 

is the "upper" hybrid frequency. 

3 •. A Bernstein mode (B-wave), an almost longitudi­
nal (E II k II x) wave whose dispersion equation has the 
form 

£ .. =0. (3) 

Here we should make allowance for the resonance at 
the second cyclotron harmonic in the expression for Cyy• 

The expression for cyy for a semiconductor plasma in a 
quantizing magnetic field, for example, has the formes] 

(4) 

In Figs. 1-3 we show the dispersion curves for the 
indicated waves for the case when wp « O. Let us con­
sider those possible decays for these waves that satisfy 
the phase-synchronism conditions: kt =ka +ks, Wl =W2 

+ w3' Here kl and Wl are the wave vector and frequency 
of the incident laser radiation, ka, ks and W2, W3 are the 
wave vectors and frequencies of the quanta generated as 
a result of the decay. When the condition t 0 2 + w: > w~ 
is fulfilled, a phase-synchronous decay of the E-wave 
into two O-waves is pOSSible, which allows the realiza­
tion of frequency conversion with continuous tuning near 
w1 /2. The decays 0 1 - O2 + E3, as well as the decays 

w 

FIG. 1. Dispersion curve of an 
ordinary electromagnetic wave. 
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FIG. 2. Dispersion curves 
of an extraordinary electro­
magnetic wave. 

El - E2 +E3 and E 1 - E2 +Bs, in the plasma of semicon­
ductors allow the achievement of frequency tuning in the 
far infrared region (ws - gil or ws - 0). 

1. Let us consider in greater detail the indicated de­
cay processes for the plasma of semiconductors. The 
computation of the nonlinear properties of a magneto­
active plasma can be carried out in the hydrodynamic 
approximation. The thermal corrections in the case 
under consideration are small in the parameter kVT /'1 
«1 (VT is the thermal velocity of the electrons), and 
can be neglected. The polarizability, P, of a magneto­
active plasma and the current connected with it through 
the relation J = ap fat can be computed by expanding the 
electromagnetic waves participating in the interaction 
into power series in the amplitudes: 

Here Jl is the linear-in the field-part of the total cur­
rent and jn = CtfJ/,E,,,~,, is the nonlinear current, propor­
tional to the product of the amplitudes of the fieldS El 
and Ei. 

As an example, let us compute the coefficient CtYII~ in 
the nonlinear current at the frequency Ws in the decay 
01 - 02 + Es. It follows from the continuity equation 

8n18t+div (nv) =0 

that the transverse electromagnetic waves 0 1 and 02 do 
not perturb the equilibrium plasma density no, and, for 
the computation of j :s, it is necessary to compute the 
components of the velocity V2 that are proportional to the 
product of the amplitudes of El and Et: 

(5) 

(There are no nonlinear terms of the type (v 1 • V)v 1 in the 
equation of motion because of the transverse character 
of the 0 1 and O2 waves.) In Eqs. (5), the Vl are the 
linear-in the field-velocities, determinable from the 
equation av1 /at =eEdm*; Hl and H2 are the magnetic 
fields of the waves with frequencies Wl and W2' Solving 
Eq. (5) for v::, and expressing V':.l, v~:, H~;, and n:: 
in terms of the components E~; and E~: of the fields 
with frequencies Wl and W2, we obtain 

iQe'k, E E' 
m"OOloo,(oo,'-Q') I'. 
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The nonlinear coefficient Ctll~~ for the 0 1 - 02 +Es decay 
turns out to be equal to 

Below we give the values, computed by us, of the 
quantities for the above-enumerated decays. 

The El - O2 + Os decay: 

a ... = 4nm'oo,oo , (oo,'-Q') • 

a ... = 4nm'oo,oo, (oo,'-Q') • 

the El - E2 +Bs decay: 

(6a) 

(6b) 

(6c) 

(6d) 

Let us note that, for electron-concentration values in 
the conduction band n -1018 cm-s and Ho -105 Oe, in the 
El - 02 + Os decay for InSb the coefficient Ct -108 cgs 
units, which corresponds to a nonlinear polarizability 
coefficientt10] X = Ct/ W -10-8 cgs units. For the other de­
cays the numerical values of Ct lie within the limits 
107_108 cgs units. Thus, it can be seen that, by its 
nonlinear properties, the magnetoactive plasma of 
semiconductors can successfully compete with the crys­
tals widely used in nonlinear optics. [11] 

The E 1 - E2 +E3 decay process was observed experi­
mentally in InSb crystals in fields of Ho -10· Oe when n 
-2Xl015 cm-s and T-70 K. t12] The estimation of the 
magnitude of the nonlinearity for these conditions yields 
X- Ct/W3 "'4. 5xl0-7 cgs units, which is close to the ex­
perimental value of X = 2da '" (3.5 ± 1) x 10-7 cgs units, 
found from the magnitude of the output power at the 
frequency Ws '" 102 cm-1. Notice that in Van Tran and 
Patel's paper[12] the corresponding nonlinear suscepti­
bility was attributed to the crystal, the influence of the 
plasma amounting, in the opinion of the authors, to the 
securing of the phase synchronism. As follows from 
the above-given estimate, the effect of the presence of 
the plasma is not only to change the permittivity of the 
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FIG. 3. Dispersion curves of 
the Bernstein mode. 
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crystal in a magnetic field (in Ref. 12 a not exactly cor­
rect expression is, moreover, given for E(W3», but also 
to increase in resonant fashion the nonlinear suscepti­
bility as the magnetic-field strength is varied. 

In semiconductors, under experimental conditions, the 
plasma is often degenerate (EF~T, where EF is the Fer­
mi energy of the electrons), and the magnetic fields are 
of quantizing intensities, nn» T. Also realizable is the 
case when the electron gas is highly degenerate, and all 
the electrons are in the zero Landau level, with the spin 
oriented in the direction opposite to that of the magnetic 
field; in this case the Fermi energy is equal to[13] 

eF=I/,IiQ-I/,gItHo+211'Ii'c'n'/m·Hoe'~IiQ. 

Here gp. is the effective Bohr magneton, n is the carrier 
concentration (in a gaseous plasma lZO=gp.llo, m* =me , 

and g =2). Under the indicated conditions a quantum­
mechanical treatment is necessary for the computation 
of the nonlinear currents. The application of the meth­
ods of quantum field theory[14] with the use of the tem­
perature diagram technique is convenient. The corre­
sponding computations, using as an example, the El - O2 

+03 decay, are presented in the Appendix. If the wave­
lengths ~»(nc/eHo)1/2, the Landau length for electrons 
in a quantizing magnetic field, then the answers for the 
nonlinear susceptibilities coincide with the answers given 
above. This circumstance is quite evident if we take 
into account the fact that the quantization primarily af­
fects the effects connected with pressure and that it de­
termines the spatial dispersion of the plasma.[9] If VT/ 

Vph« 1 (VT is the "thermal" velOCity, determined by the 
quantities (lZO/m*)1/2, (EF/m*)1/2), then the dynamics 
of the electrons is determined to a high degree of accu­
racy by the equations of motion in which the terms con­
taining the strain tensor and carrying information about 
the equation of state of the plasma, have been dropped. 
The remaining corrections are small in the parameter 
(lic/eHo)1/2/~. 

The presence of the nonlinear currents at the frequen­
cies W2 and w3 leads to a parametric coupling between 
the waves 2 and 3, and, if the intensity of the pumping 
wave exceeds a certain value (threshold), there develops 
an exponential growth of these waves in time, or in 
space, depending on the conditions of the problem. 

In the decay of the (Wb k l ) extraordinary wave into two 
extraordinary waves (W2, kz) and (W3'~) (the other pro­
cesses can be considered in much the same way), the 
reduced Maxwell equations for the slowly varying-in 
space-amplitudes have the form 

Here l = 2, 3. The attenuation of the pumping wave is 
neglected. 

Eliminating the component E I " from (8), we obtain 

aE,. 211<U,. 
-~- + 1,E,. = - -- cx,E"E3• , 

dx k,c' 

919 Sov. Phys. JETP 46(5). Nov. 1977 

(7) 

(8) 

iJE,; . 271oo3'E • 
--+1 3E 311 =---ct3 111 E'!llt ax k.c' (9) 

where 

The imaginary part of Et arises upon allowance for col­
lisions or other wave-attenuation mechanisms. 

The wave number kl is connected with WI through the 
relation 

The solution to the system (9) has the form of exponen­
tial functions with exponents Pl.2 equal to 

(10) 

where 

As follows from (10), when the threshold condition 
yi > YJlY3 is fulfilled, one of the solutions increases ex­
ponentially in space. In a semiconductor plasma with 
n-lOl6_10l7 cm-3 and T-20-70 K, the attenuation of the 
electromagnetic waves is fairly high: y-1-10 cm-l • 

This corresponds to a threshold pump intenSity Itbr 

-106_107 W /cm2 • Although the introduction of such a 
power into semiconducting crystals is a complicated 
problem because of a possible optical breakdown, it is, 
apparently, practicable. 

Thus, the use of the magnetoactive plasma of semi­
conductors for the tuning of radiation in the far infra­
red region is attractive, since the plasma is a high­
performance nonlinear element, and an external magnet­
ic field enables us to resonantly increase the nonlinear 
susceptibility of the plasma (see (6)), as well as to con­
tinuously tune the scattered-radiation frequency in a 
broad band. 

2. The above-indicated examples of decay instability 
may be important in a laser plasma in the presence of 
magnetic fields spontaneously developing in it. [7] Since 
the appearance of such fields can affect the symmetrical 
compression and heating of the laser target, it is im­
portant to have reliable information about the intensity 
magnitudes and the configuration of the lines of force 
of the magnetic fields. There are at present no reliable 
measurements and theoretical computations of these 
fields. 

In view of this, the question of the influence of the 
magnetic fields in a laser plasma on the processes of 
the nonlinear conversion of the laser radiation is of in­
terest. Let us conSider, for example, the transforma­
tion of an electromagnetic wave in the t ncr region (ncr 
=mwV41Te 2). 

In the absence of a magnetic field, the process of de­
cay of a transverse wave into two plasmons (t -l + l ') 
is widely enlisted in the explanation of the observed ~Wt 

V. A. Roslyakov and A. N. StaroSlin 919 



and fWl laser-radiation harmonics. m,16l In a magnetic 
field, which, according to estimates, can be of strength 
of up to -108 Oe, a collinear decay of the extraordinary 
wave into two extraordinary waves is possible, it being 
necessary for the fulfillment of the synchronism condi­
tions, k1 =ke + lea, that for one of the waves (Wa, Ira) the 
relations ka:= k 1 := WI I c, wa:= n" := w, be fulfilled, while 
for the other (wa, lea) the relations ka - nl c «ka, wa:= w, 
± n/2, correspondingly. (The analysis of the case of 
noncollinear propagation of the waves is substantially 
more tedious, although it may be necessary in a detailed 
analysis of the experimental data.) In this case the fol­
lOwing characteristic values of the parameters were 
used: w,:= WI 12 -1015 sec-1 (for a neodymium laser), n 
-1013 sec-1 (for fields H -108 Oe). 

In the decay E1 - Ea + Ea, the generated photons can be 
observed experimentally, and manifest themselves in 
the form of WI 12 and w1 /2 + n/4 harmonics of the re­
flected radiation. The presently accepted explanation 
of the observed harmonics makes use (in the absence of 
a magnetic field) of the incident-radiation scattering 
processes on the plasmons, t + 1- t' and 3 1- t ' • The 
first of these processes occurs when allowance is made 
for the scattering of the plasmons produced in the t-1 
+ l' decay on the ions, since in the opposite case it is 
not possible to guarantee the fulfillment of the law of 
conservation of momentum (kz +ks =k1). 

In a magnetic field the direct conversion of the inci­
dent radiation into the w1 /2 harmonic on account of the 
E1 - Ea +Ea process is pOSSible, and the value of the 
relative shift, awl W - n/2w, of the harmonic toward the 
blue region allows us to estimate the strength of the 
magnetic field. The WI 12 harmonics that are shifted 
toward the red region apparently turn out to be forbid­
den. In a magnetic field the fWl harmonics can be gen­
erated upon the merging of three extraordinary waves, 
and lead to shifts, - n, toward the red and blue regions. 
The normally observed spectrum of the fWl harmon­
iCSU5,16l contains a red and a blue component, the rela­
tive magnitude ($10-2) of the shift being accounted for by 
the thermal corrections to the plasmon dispersion: awl 
W - (vTelc)2. A frequency shift of the same order of mag­
nitude can be due to magnetic fields of intenSity 1 MOe. 
To distinguish one harmonic-shift mechanism from the 
other, we need a careful independent measurement of 
the electron temperature. 

Let us give estimates for the threshold power and the 
increments of the decay instability El - Ea + Es for the 
conventional laser plasma. The expression for the non­
linear coefficient G' in the case when WI = 2wa := 2w, » n 
has the form 

ie'nQk, eQ 

a" mZwllf)z[ (IDz+iv)2_QZ_(ro/+k2vT/) (l+iV/(Oz)]~ 4n:mC'v· 
(11) 

Here v is the electron-ion collision rate. It follows 
from the expressions (10) and (11) that the quantity YL, 
which determines the spatial increment, is equal to 

"(L=:' (...!.. Olp (~)'_I (~)')'I', 
16 Q '\I nme' e 

(12) 
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where I is the intenSity of the pumping wave. 

The threshold intensity of the laser radiation is de­
termined by the expression 

I,m "='2 ('\I/Q) 'nme' ('\I/Ol,)'. (13) 

For the conditions of a laser plasma produced by a 
neodymium laser (n-ner /4:=2. 5X1OZo cm-a, vlw, ":;10-2, 
vln ..:;1), we obtain from (13) that I tbr $1014 W/cm2 • Be­
cause of the critical dependence of Itbr on the denSity, 
the above-described processes for a plasma produced 
by a COz laser set in at I tbr :s 1010 wi cma• 

Taking account of the expressions for the decrements, 
'Ya and 'Ys, we obtain for the nonlinear increment from 
(10) the value 

The temporal increment, 'YT, corresponding to this case 
is equal to 

where va =c(vTelc)a is the group velocity of the (wa, Ira) 
wave, va =cn/2w, is that of the (wa, lea) wave, and r-1 
nsec is the duration of the laser pulse. 

The estimate for the effect of the spatial inhomogeneity 
of the magnetic field over dimensions -10-a cm does not, 
according to Ref. 17, change the magnitude of the spa­
tial increment. 

In conclUSion, we thank L. A. Bol'shov, A. A. Vede­
nov, and A. M. Dykhne for interest in the work and for 
useful discussions. 

APPENDIX 

The nonlinear currents in a plasma can be expressed 
with the aid of the Green function for an electron located 
in external electromagnetic fields tal (for simplicity we 
shall neglect the electron spin): 

[ ieli ( iJ iJ) e'A, ] , 'I j,= -- ---, --- G(r,r,'t','t) 1"_1',,,,'_,&,+0 
2m Dr, iJr, me 

(A. 1) 

(i =X, y, z). The quantity G(r, r', r, r') is found in the 
form of a series in the vector potential A: 

G(r,r',., T)= G,(r,r', T, T)+ S d'x, G,(x,x,)~(x,)G,(XhX') 

+ S d'x, d'x, G,(x, XI)~(X,)G,(XhX,)~(X2)G,(X"x')+ ... , (A.2) 

where 

G,(r, r', T, T')=-(T(¢(r, .)¢+(r', T'»>, (A.3) 

the l/J being Heisenberg field operators. In an external 
magnetic field Ho II z with gauge Ao = (0, Hox, 0), the 
Fourier component of the zeroth-order-in the "tem­
peratures" (r - r')-Green function has the form t9l 

, I] [ (x+x') (y-y') ]E S- i 
G,(r,r ,Olm)=-2 'Ii exp -il]? dp •. _~( ) 

11 ... ,rom ... n,p, 
n _00 ___ _ 

xexp [iP,(Z-Z')-1] (X-x')': (Y-Y')'] Ln (I] (x-x')' ;(Y-Y')') , 

(A. 4) 
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where 71= Ie IH/Fic is the square of the inverse magnetic 
length, Ln(x) is a Laguerre polynomial, w .. = (2m + 1)T 
(T is the temperature of the system), 

~(n, p,) =e.(p.)-I', 

r.n(p,,) is the electron energy in the magnetic field, 

8. (p,) -fiQ (n+'j ,) +fi'p.'l2m, 

and jJ. is the chemical potential. The quantity f is equal 
to 

~ efi ( ~ k, ) e'AoA, e'A' 
~'=-- A"p+-A, +--+--. 

me 2 me' 2me' 
(A. 5) 

The vector potential of the wave with wave vector k, 
and frequency w~ has the form 

A,{x)=A'exp (ik,r-iWm',) , 

and p = - ifiV is the particle-momentum operator. 

If we are interested in the nonlinear current at the 
frequency wa, which is proportional to the product of the 
A (1) and A (2) fields, then we should retain precisely such 
terms in the last term in the expression for ~. We se­
lect in much the same way from (A.2) the other terms 
containing the product of the A (1) and A (2) fields. It is 
convenient to depict diagrammatically the corresponding 
terms of the nonlinear current: 

(A. 6) 

I Jf 11I 1Y 

Here a wavy line represents the vector potential; a line 
ending in a cross, the current vertex. The continuous 
lines represent the Green function Go. 

Let us, for example, consider the contribution from 
the first three diagrams for a plasma without a magnetic 
field: 

") e'fi 1: S dp (k') () i, =--,1 --Go(p) p+- Go(p+k,) A,A, , 
m'e' (2,",') 2 

.p 

(A.7) 

• (0) e'fi 1: S dp (k') Jm =-,-, TA, -(? )3 Go(p) p-?,A, G,(p-k,). me ~ _ 
Op 

Summing over the frequencies wp, we obtain[UJ 

(A. 8) 

where n, is the momentum distribution function of the 
electrons. After performing the summation over the 
frequencies, we can go over to the retarded response: 
iw~ -Fiw' +ir. (r. - 0). Analyzing the obtained expressions 
for kl«P and W»kVT' we obtain 
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"')=_ e3 (A,A')k s~pf)nji)p _e3 (A,A,) 
Iz , , 3 (2) 3 -, 3 k,n, men. Wt m C (01 

(A.9) 

where n is the electron concentration. 

Similarly, computing the other terms and going over 
from the vector potentials to the intensities AI = - (ie/wI) 
x E I , we obtain 

.(3) _ e'n [ k. (E E ) +' (k,E,) E + (k,E,) E ] J -----2 - 2 t 2 -- •• 
WtDhm (03 WI (02 

(A. 10) 

This expression coincides with the result of the computa­
tion of the nonlinear current in the cold-hydrodynamics 
approximationC181 : the first term corresponds to the 
Miller force (from the (e/mc)v· Hand (v1 • V)v1 terms), 
while the last two are obtained from the consideration of 
the perturbation of the density and the velocity in first 
order in the fields. The contribution of the remaining 
diagrams (IV, etc.) is of the same order of magnitude 
as the discarded terms, which are -kv/w, kip. 

Let us consider the E1 - 02 + 0a decay in a magnetized 
plasma. Taking interest in the current at the frequency 
wa, which generates an extraordinary wave with j II z, we 
can easily see that A2 • A1 = 0 (and the contribution from 
the diagram I vanishes accordingly), where Ab with 
components (A!1), A~1), 0), is the vector potential of the 
extraordinary wave. Similarly, the diagram II vanishes, 
since k2,c = 0 (the wave propagates across the magnetic 
field parallel to the x axis), and the integration over p" 
(p. A2 =P"A!2» yields zero because of the oddness of the 
integrand as a function of PlIO 

There thus remains the diagram III, the expression 
for which has the form 

. ") e' . SS dx dx, Jm = --;;,;;-A, --v-G,(x, x,)~, (x)G,(x, x,). 

Here 

fi k e'A"A.'t) 
~,(x.)= __ e_ (A,,)p+~A't))+---. 

me 2 me' 

Using the expression (A. 4) for Go, summing over the 
frequencies with the aid of (A.2), and going over to the 
variables p=(X2+y2)1/2 and qJ, we obtain 

(A. H) 

(~ = 7Ip2/2). Expanding in (A. H) the function exp(ik2 p 
x cosqJ) in a series (~2» 71-1/2), and limiting ourselves 
to the terms linear in k2' we obtain after integrating 
over qJ and p the expression 
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The last expression with allowance for the relation, 
E!1) =-igE!1)/E:lJ between the components of the ex .. 
traordinary wave, where E:l = 1 - w: / (wZ - (2) and g = nw: / 
w(wl - 0&), reduces to the form 

. (') 1I/).'E,(')·E:1) ek.Q 

1, = 4nmClllCll,(CIll'-Q'-CIlp') 

(cf. (6» irrespective of the degeneracy and the strength 
of the magnetic field. The remaining corrections are 
then -1/.,f/8>..« 1. 
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A theory is developed for determining the frequency shift of electromagnetic waves in a weakly turbulent 
plasma as a function of the level of the turbUlent pulsations. The case of magnetohydrodynamic waves is 
considered. It is shown that the dispersion laws for Alfven and slow magnetosonic waves change markedly 
at low values of the longitudinal (parallel to the magnetic field) component of the wave vector. Modified 
dispersion laws are obtained for them and these are taken into account in a study of relaxation processes 
of excitations in the wave spectra. 

PACS numbers: 52.35.Bj, 52.35.Dm, 52.35.Mw, 52.35.Ra 

1. INTRODUCTION 

As is well known, the interaction between particles or 
quasiparticles leads as a rule to a shift in their energies 
relative to the values of the energy corresponding to the 
free states of the particles. For example, the interac­
tion of an atomic electron with the zero-point oscilla­
tions of an electromagnetic or electron-positron field 

leads to a shift in the energy levels of the atomic elec­
tron. [1J 

A similar situation exists also for the energy spectra 
of electrons, photons and magnons in a solid (see, for 
example, Refs. 2 and 3) and for spectra of the natural 
oscillations in a plasma. In the last case, we need to 
take into account both the nonlinear interaction between 
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