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A quantum theory is developed of the radiation from channeled particles in a crystal, with account taken 
of the spatial and frequency dispersions of the electromagnetic field. The influence of the interplanar 
potential on the spectral-angular distribution of the radiation is investigated. It is shown that the 
polarization of the medium and the momentum exchange between the photon and the crystal as a whole 
during the course of the radiation lead to a number of new effects in the radiation emitted by channeled 
particles. 
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INTRODUCTION 

The theory of radiation from fast charged particles 
in crystals has been the subject of many studies. The 
interest in the problem is due to the fact that the spec­
tral and angular distributions of the radiation and its 
polarization in the crystal depend to a considerable de­
gree on the direction of particle entry into the crystal, 
in contrast to an amorphous substance. 

This feature of emission of fast particles in a crystal 
was first pointed out by Ferretti Ul and Ter-Mikaelyan, [21 
who calculated the bremsstrahlung spectrum of a rela­
tivistic electron in a crystal. It was shown in[2J that the 
medium influences the electromagnetic radiation of rela­
tivistic particles because the radiation is formed over a 
rather long path on the particle trajectory (over the co­
herence length), and in particular over the coherence 
length of the radiation the interaction of the emitted pho­
ton with the crystal can become substantial. This inter­
action can cause, for example, x-ray photons to be emit­
ted even from a relativistic particle uniformly moving 
in the crystal. [3J The resultant radiation has properties 
close to those of Cerenkov radiation and will henceforth 
be called quasi-Cerenkov radiation. A detailed exposi­
tion of the foregOing effects is contained in Ter-Mikael­
yan's monograph. [31 

The theory of electromagnetic radiation of a uniformly 
moving particle in a crystal of arbitrary thickness was 
considered by Garibyan and Yang Shi. [41 It was shown 
that besides the quasi-Cerenkov radiation there is pro­
duced in the crystal radiation propagating at Bragg an­
gles in a forward direction relative to the particle mo­
tion. The cause of this radiation is coherent Thomson 
scattering of virtual photons of the particle field.1) 

The spectral and angular distributions of the radiation 
by a relativistic particle in the case of planar channel­
ing in the crystal (see, e. g. , [51) was theoretically in­
vestigated by Kuroakhov[61 in the case when the potential 
of the interplanar field could be regarded as paraboliC 
(the particle trajectory was a sinusoid) and the angles 
of particle deflection by the field were small in compari­
son with the emission angles. In this case the radiation 
by the channeled particle[61 coinCides with the dipole ra­
diation of a uniformly mOving oscillator (see, e. g. , [7]) 
whose oscillation frequency depends parametrically on 
the longitudinal velocity. This dependence distinguishes, 

as noted in [61, the radiation of a channeled particle from 
the undulatory radiation. 

As already mentioned, an important role in the radia­
tion by relativistic particles is played by the interaction 
of the photons with the medium. This statement per­
tains, generally speaking, also to radiation by channeled 
particles. 

We develop in this paper a quantum theory of the ra­
diation by channeled particles in a crystal, with account 
taken of the spatial and frequency disperSions of the 
electromagnetic field of the radiation. For an arbitrary 
form of the interplanar potential and at an arbitrary ra­
tio of the photon emission angles and the particle-scat­
tering angles, we obtain the spectral-angular distribu­
tion of the radiation. It is shown that allowance for the 
dispersion of the electromagnetic field in the crystal 
leads to a number of new effects in the radiation by 
channeled particles. We determine the influence of the 
interplanar field on the spectral-angular distribution of 
the radiation and obtain the condition under which radia­
tion from different sections of the channeled-particle 
trajectory is coherently swnmed when the radiation has 
a non-dipOle character. 

1. GENERAL EXPRESSION FOR THE RADIATION 
PROBABILITY IN A CRYSTAL 

In the calculation of the probability of particle radia­
tion in a crystal we shall use the general method de­
veloped by Yakimets[Sl and Zhevago[91 for the calculation 
of the radiative losses in inhomogeneous media. 

According to Zhevago,[91 the probability d 2W/dwdt of 
emission of a photon of energy w from a particle with 
charge e and with unity mass per unit time, summed 
over the final states of the particle, is given btl (w > 0) 

d'W e' .. 
-~=--ImJ J J L,v(-r,k,k')D.,(k,k',Ol)dTd'kd'k'. (1) 
doodt 2'31;' 

• 

The tensor L ILV is connected with the matrix elements 
of the operator j 1L(x) of the particle current for a transi­
tion from the initial state I to a final state F by the rela­
tion 

Lo' (T, k, k') =e-;·' 1: [j"(x) e;b] ,,[r (X')e-;k"']". (2) 
F 
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The remaining quantities in (1) have the following mean­
ing: 

D •• (k, k', 00)- J D •• (x, x')e·o,-.(l,_l"')d'rd'r'dT 

is the photon Green's function in the crystal in the mo­
mentum representation; k is the momentum of the ra­
diated photon; T=t-t', x=(r,t). 

In the case of interest to us the general expression (1) 
for the radiation probability density can be simplified. 
First, we calculate the radiation probability in a suffi­
ciently thick crystal the effects of whose boundaries on 
the radiation can be neglected. Next, using translation­
al invariance, we can represent the photon Green's func­
tion in the form 

D ( , )- ~D(h) ( ') _u<,,' "., r, r, 't' - ~ ~v r-I', 't e , (3) 
". 

where KA is an arbitrary vector of the reCiprocal lattice 
of the crystal. 

Second, the motion of the radiating channeled particle 
in the crystal turns out to be "almost linear." The ten­
sor L "V ( T , k, k') can therefore be apprOximately repre­
sented in the form 

U'Cr, k, k')=L"Cr, k, k)6(k-k'). (2') 

Substituting in (1) photon Green's function (3) in the mo­
mentum representation and the tensor L"v (T, k, k') in the 
form (2') we obtain 

~-~Re f J L"(-r,k,k)ImD(h-O)(k, Ol)d'kd-r, 
doodt 4,,' • 

(4) 

where 

is the Fourier component of the zeroth term of the expan­
sion of the total photon Green's function (3) in the reCip­
rocal-lattice vectors. 

The result (4) for the probability density of photon 
emission by a particle in a crystal agrees with the analo­
gous result (see formula (6) oftSl) obtained for a one­
dimensional periodic structure. The representation of 
the tensor L"V(T, k, k') in the form (2') corresponds here 
in the classical limit to averaging of the probability 
density of the radiation (1) over the time of flight of the 
particle through a unit cell of the crystal. 

2. MOTION OF CHARGED PARTICLE IN A CRYSTAL 

We consider for simplicity the case when a positively 
charged relativistic particle with charge e enters at an 
angle l/i ~ l/ic through one of the planes of the crystal. 
Here l/ic '" [Uo/(E _1)]118 is the critical angle for planar 
channeling (see, e. g. , t5l), E is the particle energy, and 
Uo is the characteristic value of the particle interaction 
energy with the channeling planes. 

A particle moving in the interplanar potential ~(x) (x 
is the particle displacement from the median plane) has, 
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beSides, energy, a definite projection p" of the general­
ized momentum on the channeling plane. Let the mo­
mentum k of the emitted photon be small compared with 
the particle momentum P". We can then neglect the quan­
tum recoil in the radiation, and the longitudinal motion 
relative to the crystal plane turns out to be quasiclassi­
cal. The transverse motion' of channeled particles al­
ways has nonrelativistic velocities v J. ~ l/ic. 

Thus, the interaction of the particle spin with the elec­
tric field of the planes can be neglected and it can be 
assumed that the particle is characterized by a wave 
function w(r, t) satisfying the Klein-Gordon equation 

a • [(iat-e~(X») +~-1 ]'¥(r,t)=o. 

We seek the solution of the equation in the form 

'¥ (r, t) = (2EII)",e-jEtHp l Ptp (x), (5) 

where p = (y, z) is the radius vector in the median plane; 
E =E" +El, E" = [p"a +1]1/2 is the particle energy connect­
ed with the longitudinal motion. 

The energy E J. connected with the transverse motion 
of the channeled particle takes on discrete values (E; 
SUo). The kinetic energy E" - 1 of the longitudinal 
motion of the relativistic particles always exceeds their 
potential energy in the interplanar field (E" -1» Uo). 
We can therefore neglect in the Klein-Gordon equation 
the term quadratic in ~(x), as well as the quantity EJ. 
in comparison with E". As a result we obtain for the 
function qJ (x) the equation 

(6) 

which has the same form as the SchrOdinger equation for 
a particle with a relativistic "mass" E" • 

The current-density operator for scalar particles is 
known to be of the form 

r(x)=i (~-.!....). ax, ax, 
If we use a photon Green's-function gauge with zero 
scalar potential (see Sec. 3), then we need calculate 
only the spatial component of the tensor L"V(T, k, k). Us­
ing the particle wave functions in the form (5), we ob­
tain for the spatial components of the transition current 

(j(x)e'"') IF=vA;!(kx ) exp {iw;d+i(E,"-E,")t} (2n)'b(p;"-p,lI-kl:), 

where 

(7) 

where v is a three-dimensional vector with components 
"- /k (vY v·) -v" v" -p" /E" "'p" /E" is the longi-v - Wit '" , -, - I Iff 

tudinal velocity of the particle, wI! =E~ - E~ is the dif­
ference between the energies of the particles in the 
states qJ,(X) and qJf(x) connected with the transverse mo­
tion in the interplanar field, and k" and k" are the photon 
momentum components perpendicular and parallel to the 
channeling plane, respectively. In the calculation of 
the tensor L"V(r, k, k) we can sum over the final projec-
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tions p~ of the particle momentum on the channeling 
plane. The tensor then takes the form 

V'(r:, k, k) =e-',o-kl!vll" E IA;r(kx) l'e'w'I'v'v" j, k=1, 2, 3. 

f 

3. PHOTON GREEN'S FUNCTION IN A CRYSTAL 

(8) 

To calculate the photon Green's function in a medium 
we use Dyson's equation (see, e. g., [to] Chap VI): 

D" (r, r', (i)) =D~~' (r-r', (i)) 

+ D,(," (r-r" (i)) II'm(r" r" oo)Dm.(r" r', (i)) d'r,d'r" (9) 

where D 19)(r - r', w) is the photon vacuum Green's func­
tion, and IIlm(rh r 2, w) is the polarization and is deter­
mined by the interaction of the photons with the medium 
(see below). We apply to both sides of (9) the operator 
R ~~) = w2liiJ - curlin curl"j. We take into account the fact 
that in a gauge with zero scalar potential the function 
Dl~)(r -rl' w) satisfies the equation R }~) Dl~) = 41Tlijlli(r 
- r 1), while the polarization operator, by virtue of 
translational invariance, can be represented in the form 

II C ) \""1 II ,h, C ) ia" 
jm 1, r 2, (0 = ~ jm r-r2, (i) e . 

Ii, 

We then obtain for the photon Green's function in a 
crystal, in the momentum representation, the follow­
ing functional equation: 

R:~' Ck)D,,(k, k', (i)) =4nl\j,Ck-k') 

+4n EII,!."'Ck,oo)D ... Ck+K..k',oo), (10) 
It. 

where 

Rj~" Ck) = (oo'-k') {jj,-k,k" 

n,h, (k ) - S II ,h, ( ) -i·'d' jm • (0 - jm p, w e p. 

Consider for simplicity the case (see (11) and (14» 
when the tensor structure of the polarization operator is 
determined by the relation 

where nm)(k, w), nal(k, w) are the respective amplitudes 
of the scattering of transverse and longitudinal virtual 
photons with momentum k and energy w by a unit cell of 
the crystal, with transfer of a momentum Kh (the sub­
script h =0 corresponds to the forward-scattering ampli­
tude). 

The photon Green's function has in this case an analo­
gous tensor structure. We are interested in the emis­
sion of transverse photons in the crystal. The trans­
verse part of the photon Green's function satisfies ac­
cording to (10) the equation 

R(k)D,,(k, k', (i)) =4nli (k-k') +4n EIIt~h' Ck, (i)) 
Ith~O 

XDt,(k+K., k', (i)), (10') 

where 
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RCk) =oo'e'o, (k, oo)_k2, 

,0, (k ) =1 _ 4n II(h~', (k ) e , (i) (1)2 IT , 0) J • 

We solve Eq. (10') by successive approximations. In 
the zeroth approximation, neglecting spatial dispersion, 
we obtain 

D,,(k, k', (i)) =4m5Ck-k')/R(k). (11) 

We can confine ourselves to this approximation, for ex­
ample, in the calculation of the spectrum of radiation 
with wavelengths greatly exceeding the lattice period of 
a cubic crystal far from the resonant absorption lines. 
For shorter radiation wavelengths, it is necessary, 
generally speaking, to take the spatial dispersion into 
account. 

The probability of emission by a particle in a crystal 
is determined by that part of the Green's function Dtr{k, 
k', w) which is singular in k - k' and is the zeroth term 
of the expansion of Dtr(r;r', w) in the crystal reciprocal­
lattice vectors (see (4». In the next application, which 
takes the spatial dispersion into account, we get 

(12) 

For a sufficiently thick crystal and for emission wave­
lengths comparable with the length of the lattice period, 
the applicability of expression (12) obtained by succes­
sive approximation calls for an additional analysis. In 
particular, if several vectors of the type k - K h are lo­
cated on the Ewald sphere k 2 = e (0) w2, then a more con­
sistent method for the solution of (10') is the method of 
dynamic theory of diffraction (see, e. g. ,[11]). 

We shall show that even for insufficiently hard photons 
with wavelength much shorter than the crystal lattice 
period (w» K h ), when the successive-approximation 
method can be used, the spatial dispersion leads to no­
ticeable effect in the emission by channeled particles. 
Photons with such wavelengths are emitted at small 
angles to the direction of motion of the particle (see be­
low), and in this case the denominator R(k-Kh) in (12) 
can be approximately represented in the form 

R(k-I{,,)zoo'e{h' (oo)-k', (13) 

where e(h)(w) = 1 - w: /w2 +2KVw, Wp = 41TNe 2 is the plas­
ma frequency of the medium, and K ~ is the projection of 
the reciprocal-lattice vector on the longitudinal velocity 
of the particle. When summing in (12) over the recip­
rocal-lattice vectors it is necessary to confine oneself 
to vectors (K,,)max such that the condition I e~~ - 11 « 1 
is satisfied and the photon emission angles remain 
small. The employed approximation is more accurate 
the faster the decrease of the Green's function expan­
sion coefficient with increasing I Kh I. In this approxi­
mation, the transfer of a momentum K" from the photon 
to the crystal is equivalent to the change of the phase 
velocity of the photon, which is determined by the effec­
tive dielectric constant e(h)(w) (cf. formula (13) of[S]). 

We are interested in the x-ray spectrum at frequencies 
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when the absorption of virtual photons is immaterial 
(11m n~:)(k, w)l«Re n~~)(k, w) I), as are consequently also 
processes such as ionization and excitation of the atoms 
(nuclei) directly by the particle. [9] In the same approxi­
mation, in the calculation of the photon-scattering prob­
ability ng)(k, w), we can neglect the difference between 
the virtual and real photons (k 2 =w2 ). Then, if the photon 
scattering is mainly by the quasi-free electrons of the 
medium, and the unit cell of the crystal contains one 
atom, the probability of photon scattering with allowance 
for the thermal vibrations of the lattice takes the rather 
simple form 

InS.) (k- ) II [CiJ" I/(K,,) I ]' _'W(It.) 
utr ,CiJ - 4;'--z- e , (14) 

where f(Kh) is the atomic form factor, Z is the number 
of electrons in the atom, and W(Kh) is the Debye-Waller 
factor. 

4. PARTICLE EMISSION IN PLANAR CHANNELING 

By substituting in the general expression (4) the tensor 
L"V(T, k, k) in the form of (8) and the photon Green's func­
tion D~':,"O)(k, w) in the form determined by formula (11) or 
formulas (12) and (13), and subsequently integrating with 
respect to the modulus k of the photon momentum and 
with respect to the time variable T, we arrive at the 
following result for the spectral-angular probability 
density d 2w/dwdO of photon emission by the particle per 
unit time in the case of planar channeling in the crystal: 

d'w e'w - [ 00-' 
dwdQ =z;-1: IA,,(nzwl'e''') I' (n z-'-l) w'e':"o, 

I 

- 200" 1 -+(1-n.') v,'l'e(" - ~ v,n, j6[wO-n,v,l'e"') -00,,), (15) 

d'w e'w 1:D ( w-! --=- Ail(wecos<p)I'P(h'(w) 'e" , 
dw dQ 2n 00 cos <jl 

I K. 

X6 _h __ "_ • _. ( K '+00 £-'+00 '/00' e') 
00 2 2 

(15') 

Expression (15) is valid here for relatively soft emis­
sion frequencies, while (15') holds for x-ray frequencies 
and small emission angles (8« 1); n is a unit vector in 
the emission direction, and the coordinates x and z are 
chosen respectively perpendicular to the channeling plane 
and along the longitudinal velocity v .. ; 8 and qJ are the 
polar and azimuthal emission angles; dO = sin 8 d8 dqJ is 
the differential solid angle. The matrix element Alf of 
the radiative transition are determined by expression 
(7); wlf = wlf(E ") is the difference between the trans­
verse-motion level energies and depends on the longi­
tudinal-motion energy E". The coefficient p(h)(W) is the 
probability of transfer of a longitudinal momentum K: 
from the photon to the crystal in the radiation process, 
and is given by 

P(h ..... '( )= (4nlII~h) 1)1 <: 1 P("(w)=1- {"1 P(h'W, (16) 
00 w',(K.')" .l..J 

1I:Jt.""'0 

where In~:) 12, in particular, is determined by relation 
(14). 

In the sums over the final states f in (15) and (15') 
we can separate a term with f = i, which determines the 

894 Sov. Phys. JETP 46(5), Nov. 1977 

probability of the Cerenkov radiation at the soft frequen­
cies (15) or of quasi-Cerenkov radiationU ] at the hard 
frequencies (15'). 

On the other hand, at f*i and K" ::0, the terms in 
(15') determine the probability of emission by a chan~ 
neled particle in the interplanar field in a medium with 
frequency dispersion. The terms in (15') with f*i and 
K: *0 describe more complicated processes, in which 
account is taken of the spatial dispersion, so that when 
it emits a hard photon the particle can exchange a longi­
tudinal momentum K: with the crystal as a unit. 

Since the long-wave dielectriC constant of the crystal 
E(O)(w) is usually greater than unity, it follows that, ac­
cording to (15), a process is possible in which the trans­
verse energy of the channeled particle increases (wlf<O) 
and the particle emits a soft photon (anomalous Doppler 
effect). For complicated particles such as atoms, this 
effect was predicted by Frank. [12] For x-ray frequenCies, 
the dielectric constant, as a rule, is smaller than unity.3) 
However, as follows from our result, in a crystal with 
allowance for spatial dispersion the energy of the trans­
verse motion can increase upon emission of an x-ray 
photon. The analogy of this effect with the anomalous 
Doppler effect becomes complete if it is recognized that 
the particle channeled by the planes of the crystal is a 
uniformly moving "one-dimensional atom" (see (6», and 
at hard frequencies the crystal, with allowance for spa­
tial dispersion, is characterized by the effective dielec­
tric constant (13), which can exceed unity. 

The possibility of the onset of the anomalous Doppler 
effect in the case of radiation by channeled particles at 
frequencies close to an absorption line of a Mossbauer 
nucleus was investigated theoretically by Baryshevskir 
and Dubovskaya. [15] Such an investigation, however, 
should in general be carried out with account taken of the 
virtual photons, since 11-E' I-E" near an absorption 
line. 

Let us analyze the spectral-angular distribution of the 
spontaneous emission of a channeled particle (terms with 
Kh =0) in the region of relatively hard frequencies (w 
»wj»' We consider first effects that do not depend on the 
concrete form of the interplanar potential. 

According to (15'), a photon with fixed energy w is 
emitted when a particle goes over to a level f at a defi­
nite angle 

(17) 

This result is the consequence of neglecting the finite 
path of the particle in the crystal, the metastability of 
the transverse-motion levels (Imwli)' and the absorption 
of the virtual photons in the course of the radiation 
(1m ntr(k, w» (allowance for these photons leads to re­
placement of the 0 function by a function with finite 
"width") • 

The x-ray frequency band obtained in spontaneous 
transition of a particle from the level i to the level f 
is determined by the condition that the radicand in (17) 
be positive: 
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o)'~~",=E'[O)i/± (O);/-O).'E-') "'J. 
(18) 

mi_ 

When the particle energy E II decreases to a value ~~) 
defined by the relation 

(19) 

the x-ray band emitted in the i - f transition contracts 
towards the frequency w~~) =w:;wlf(E~~». At particle 
energies E < E~) the emission of x-ray frequencies on 
going to the level f becomes impossible because of the 
influence of the polarization of the medium on the radia­
tion by the channeled particle. 

It follows from (17) that the end-point frequencies 
w:!l" and w:!::' are emitted at a zero polar angle e. The 
maximum emiSSion angle possible for hard frequencies 
is given by 

(20) 

At this angle there is emitted a Single (at a fixed transi­
tion i-f) frequency w(ema,,) = w: / wI!. Each fixed emis­
sion angle 8 *" 8m"" corresponds to two emission frequen­
cies') in the allowed band w:!l" .:;; w .:;; w:!::. ("complex" 
Doppler effect). 

These are the spectral and angular characteristics of 
the radiation by a channeled particle, and follow essen­
tially from the condition for the energy and momentum 
conservation in the radiation. 

The spontaneous-emission probability is determined 
by the values of the matrix elements All of the radiative 
transition between the levels i and f: 

(21) 

Using (17), we can easily show that the phase 0 of the 
exponential factor in the integrand of (21) reaches its 
maximum value at the emission frequency w = wlI(E)E 2 

and is determined (at cos cp = 1) by the equation 

6:::"=EO);j (E) (1-0).'/ O).,'E') "'x. (22) 

If we use for the tranSition frequencies the estimate 
(see (25) below) wif- (UO/E)1!2 d-l and use the value d 
for the effective x, then we find that the phase is small 
(0« 1) if) (UOE)1!2« 1 (Uo is the characteristic value of 
the interplanar potential). In this case the radiation has 
a dipole character: 

(23) 

where 

The frequency dependence of the spectral distribution 
dw(f) / dw of the probability of emission when the particle 
goes from the state i to the state f of transverse motion 
has a universal form that does not depend on the type of 
inter planar potential 
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FIG. 1. Emission spectrum of a particle of unit mass, 
channeled in a crystal. at different particle energies. The ab­
scissa is the ratio w/wb of the emission frequency to the fre­
quency wb=2wIfE2• and the ordinate is the ratio of the emis­
sion spectral probability density per unit time to its maximum 
value (dw(f) /dw)m",,=e2w~fl XIII 2. Solid curves-emission spec­
trum with allowance for polarization of the medium. dotted­
without allowance for the po~arization. Curves 1-3 correspond 
to particles with energies E = 50Eer• 3Ecr• and 1.001Ecr' re­
spectively. 

(24) 

where 1)(w) is the Heaviside unit function, 

dw(f) 
dw/dO) = \""1 __ . 

~ dO) 
f<i 

The emission spectrum of a channeled particle in the 
dipole approximation (24) is illustrated in Fig. 1. The 
ordinates represent the ratio 

dw,n / (dW'I)) 
dO) dO)_ 

and the abscissas the ratio w/2wlI E2 (cf. [61). The solid 
lines show the transformation of the emission spectrum 
with increasing energy of the pOSitron (electron), start­
ing with E ~~), below which the emission of hard quanta 
(w» WI» is impossible,B) for different values of the en­
ergy (E=1.001E~~), E=3E~~), E=50E~». 

For comparison, the figure shows the spectrum with­
out allowance for the polarization of the medium[Bl (dot­
ted line). 

With further increase of the particle energy (E» E~r)' 
the effect of the polarization reduces in fact to an abrupt 
termination of the emission-spectrum curve at w '" w ~(dE/ 
8 UO)1!2 -102 E 1/2 eV, and the maximum differs by 

a factor of two from the dotted curve in the region of 
w - w:(dE/2Uo)1!2. 

At sufficiently high particle energies E~Ur/ it is in­
correct to calculate the probability of the x-radiation on 
the basis of the dipole approximation 7) and the matrix 
elements All must be calculated from the general formu­
la (21). The frequency dependence of the radiation is 
then determined by the actual form of the interplanar 
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potential. Since the quantities A f , doe not contain a 
small factor in the high-energy case considered here, 
the probability of emission turns out to be higher than 
the value given in the dipole approximation. The maxi­
ma of the spectral probability density occur now at fre­
quencies that are determined by the proximity of the ex­
ponential factor in (21) to the quantities 21m (n = 1,2, .•. , 
n", .. ) in the region where substantial changes take place 
in the particle wave functions. Unlike in the dipole ap­
proximation, these frequencies do not coincide, in gen­
eral, with the end-point frequencies Wmtll and Wmu' 

5. INFLUENCE OF THE INTERPLANAR POTENTIAL 
ON THE EMISSION SPECTRUM 

The matrix elements AfI(n"w) of the radiative transi­
tion of a channeled particle have a relatively simple ana­
lytic form for two types of interplanar potential. 

For particles with a sufficiently low initial transverse 
energy, the interplanar potential can be regarded as al­
most parabolic[5]: e~(x) = (4Uo/d 2 )X 2• In this case 

(25) 

IA,'/'= IA"I', 

where w~=8Uo/d3E, ~=~w3d/8(2UoE)1/3, L:-fW is a 
Laguerre polynomial in~. In the quasiclassicallimit, 
when the quantum numbers of the transverse motion are 
large (i,l» 1) and their difference is small (Ii -/1«i), 
the matrix elements are expressed in terms of Bessel 
functions: IAfI(n"w) 13 ""J~_f(n"wa), where a = (21/woE)1/3 
is the amplitude of the transverse harmonic oscillations 
of the particle; this agrees with the result obtained by 
Ginzburg and Erdman for a uniformly moving classical 
oscillator. 

In the dipole approximation, both in the quantum and 
in the classical case, the matrix elements of the radia­
tive transition have for a parabolic potential the form 

(26) 

where 6 ... n is the Kronecker symbol. Thus, the dipole­
radiation spectrum of a particle channeled by a paraboliC 
potential is determined by the only possible transition to 
the lower transverse-motion level closest to the initial 
level. Radiation with a transition to an upper level I 
=i + 1 is possible with emission of anomalous Doppler 
frequencies (see Sec. 4). If we substitute IAflI3 in the 
form (26) in expression (24) and neglect frequency dis­
perSion, then we obtain for the spectral density of the 
emission probability in the spontaneous transition i-I 
a result that coinCides with the analogous result of Ku­
makhov.[8] 

If the initial transverse energy is high enough (the par­
ticle enters the crystal at near-critical angle), the in­
terplanar potential acts as a "potential box" for the par­
ticle, with walls that can be assumed for simplicity to 
be infinitely high. The matrix elements A fI and the 
transition frequencies are determined in this case by the 
relations 
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lA, (n.m) 1'= 'l'sin[y-n(f-i) /2 1' _ Isin[y-n(j+i)/211 I' 
I Y y'-[n(f-i)/21' y'-[n(f+t)121' 

n' 
mil = 2Ed' (i'-f), y=nxrod. 

(27) 

In the quasiclassical limit i» 1, I »1, and Ii -II «i, 
motion in this potential corresponds to a sawtooth parti­
cle trajectory, while the values of wfl and IAflI3 become 

. n'f. 
roil = Ed' (l-j) , 

, ,sin'[y-n(j-i)/21 
IAiI(n.ro) I =y {y'-[n(f-i)/21'}' . 

(28) 

In the dipole approximation (y« 1) the quasiclassical 
matrix elements Afl (J*i) decrease slowly enough (like 
(j_i)-3) with increaSing energy-level difference. Conse­
quently, several (partially overlapping) bands, corre­
sponding to transitions to different final transverse-mo­
tion levels, should be observed in the dipole-radiation 
spectrum of a channeled particle in a non-parabolic po­
tential. This difference between parabolic and other 
potentials, which is the consequence of the selection rules 
for the matrix element of the oscillator dipole moment, 
vanishes in the general case when the radiation is not of 
the dipole type (cf. (25) and (27». 

CONCLUSION 

The results in this paper on the spectral-angular prob­
ability distribution of radiation from a particle planarly 
channeled in a crystal apply to a considerable degree 
also to radiation in axial channeling. Our investigations 
are of practical interest for the following reasons: 

1. The spectral-angular density of the x-radiation, 
as shown by estimates, [8] is relatively high even when 
the channeling-particle radiation is of the dipole type. 
According to our results it is pOSSible, by using the ef­
fect of the polarization of the medium, to concentrate 
all the radiation in a narrow spectral interval 4w SlO-3w 
in the x-ray frequency region w - 100 eV to 1 keY. On 
the other hand, in the channeling of positrons with real­
istic energies E>10 GeV, the angles of deflection of the 
particles by the interplanar field become comparable 
with the effective x-ray angles, and radiation is formed 
coherently from different section of the particle trajec­
tory (non-dipole radiation). One should then expect a 
relative increase in the spectral-angular probability 
density of the radiation. Since the effective potential of 
an atomic chain is larger by at least one order of mag­
nitude than in the case of planes, the non-dipole charac­
ter of the x-radiation in axial channeling should set in 
already at energies E -1 Ge V. 

2. A channeled particle has finite degrees of freedom 
and constitutes a model of a one-dimensional or two-di­
mensional (in the case of axial channeling) atom whose 
levels are quantized as functions of the longitudinal-mo­
tion energy. From this point of view, there is a realistic 
possibility of experimentally observing the anomalous 
Doppler effect in the optical band, inasmuch as, in con­
trast to atoms, it is possible to move a channeled parti­
cle with relativistic velocity. The foregoing applies also 
to the effect predicted in Sec. 4, of x-radiation from a 
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channeled particle whose transverse energy has been in­
creased, an effect that appears when account is taken of 
the momentum exchange between the radiated photon and 
the crystal as a unit. 

3. Spontaneous transitions to low-lying transverse­
motion levels lead to damping of the classical amplitude 
of the transverse oscillations of the channeled particle. 
When account is taken of the interaction of the virtual 
photons with the crystal, transitions to higher levels of 
the transverse motion become possible, with emission of 
an optical or x-ray photon, and these lead to buildup of 
transverse oscillations. In particular, transitions to the 
continuous spectrum of the transverse motion in the 
course of the radiation lead to de channeling of the parti­
cle. The probability of the corresponding processes can 
be calculated with the aid of expressions (15) and (15') by 
integrating over the angles and frequencies of the emit­
ted photons and by summing over the quantum numbers 
of the continuous spectrum of the transverse motion. 
For light high-energy channeled particles the radiative 
buildup and damping of the transverse oscillations may 
turn out to prevail over the nonradiative de channeling 
processes. 

4. It follows from our results that the positions of 
the end-point frequencies of the radiation in the case of 
spontaneous transition of the channeled particles between 
transverse levels determine the energies of these levels, 
while the spectral density of the radiation energy deter­
mines the dipole moments of the transitions in the inter­
planar field. It is thus possible to draw a number of 
important conclusions concerning the form of the chan­
neling potential by investigating the spectrum of the x 
rays emitted by the particles. 

The authors thank V. I. Glebov for the computer cal­
culations. 

IlThe forward radiation is due to Thomson scattering near the 
boundary of the medium and should be observed also in amor­
phous substances. 

2)Herel/;m;c;1, and the metric isg,,";O (1'>'''), g11;gn;g33 

; -g44;1, 
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3)Exceptions are the frequecny regions near x-ray lines[13J and 
near the absorption bands[141 of the medium. 

4)The possibility of the appearance of the complex Doppler ef­
fect in radiation by channeled particle was pointed out in l151. 

5)This condition is equivalent to the classical condition that the 
particle deflection angles in the field be sma1l in comparison 
with the emission angles. 

S) Typical values for crystals are Ecr~ 10-30 MeV and Wcr 

~ 0.1-1 keY; the value Wcr should lie in the region where the 
"plasma" formula holds for e(O)(w). 

7)For positrons and for the characteristic Uo"" 10 eV, this 
energy is E"" 25 GeV. 
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