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1. INTRODUCTION 

In earlier papers of one of the authors (L.N. L.) a 
method was proposed for estimating high orders of per­
turbation theory for the Green's functions based on the 
saddle-point method of calculating corresponding func­
tional integrals. [1] Although in these papers only scalar 
field theory mOdels were conSidered, with the interac­
tion Hint =gl{J"/nl in D=2n/(n - 2)-dimensional Euclidean 
space-time, it was shown that the method of calculating 
can be transferred to other more interesting field mod­
els. In the present paper we obtain asymptotic formulas 
for high orders of perturbation theory in scalar electro­
dynamics. We regard this result as an intermediate 
stage preceding the main problem-obtaining asymptotic 
estimates in spinor electrodynamics. The solution of 
this problem would certainly be of interest both from the 
point of view of an approximate calculation of higher ra­
diative corrections to observable quantities of the type of 
the anomalous magnetic moment of the electron, [21 and 
also from a purely theoretical point of view as a method 
of going beyond the framework of perturbation theory in 
the problem of internal selfconsistency of quantum elec­
trodynamiCS. (3) 

The first indications of the divergence of the perturba­
tion theory series in quantum electrodynamics were ob­
tained by Dyson. ['1 He gave qualitative arguments in 
favor of the Green's functions having a singularity at the 
origin in terms of the fine structure constant a. This 
singularity arises as a consequence of the instability of 
the theory for a<O. Within the framework of quantum 
mechanics of the anharmoniC oscillator the nature of the 
singularity in terms of the coupling constant was investi­
gated in the papers by Va'inshtelnt5l and Langer. [61 The 

exact asymptotic formula for the expansion coefficient 
for the energy of the ground state of an anharmonic os­
cillator was obtained in the paper by Bender and Wu. [7) 

Until very recently, there existed in quantum field theory 
only rough estimates of high orders of perturbation the­
ory (cf., for example, Ref. 8). The saddle-point method 
of calculating the functional integral utilized in Ref. 1 
enables one to construct asymptotic formulas in princi­
ple of arbitrary accuracy in the form of an expansion in 
inverse powers of the order of perturbation theory. This 
method was generalized by the authors of Ref. 9 to the 
case when the scalar field has an internal symmetry 
group. They also showed that an analogous approach 
can be formulated for the problem of estimating high 
orders in the E-expansion due to Wilson. This provided 
the possibility of calculating with greater confidence 
critical indexes in the theory of second-order phase 
transitions[91 and in Regge theory. [tOl 

Asymptotic estimates in perturbation theory enable 
one to calculate the nature of the singularity in the case 
of small coupling constants. [11] In Ref. 12 the question 
is discussed of the summability in the Borel sense of 
the perturbation theory series under the condition that 
the theory does not contain solutions of classical equa­
tions appropriate to the physical sign of the coupling con­
stant. Summation of the perturbation theory series ac­
cording to Borel is equivalent to replacing it by a Wat­
son-Sommerfeld integral under the coruJitions that the 
coeffiCients are analytic in the index. The evaluation of 
the sum of the perturbation theory series with the aid of 
the Watson-Sommerfeld transformation was utilized in 
Refs. 1 and 13. 

Bogomol'ny'i[14] and Parisi[151 generalized to field the-
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ory the formalism of LangerLS] for evaluating the discon­
tinuity in the amplitudes at the singularity in terms of 
the coupling constant g. They showed that the discon­
tinuity for g < 0 is determined by the probability of the 
wave function of the ground state of the system leaking 
through the potential barrier. The corresponding prob­
ability can be found in the quasiclassical approximation 
by means of solving the classical equations for imagi­
nary time, i. e., in Euclidean theory. From the tech­
nical point of view it is apparently simpler to seek the 
discontinuity starting from the asymptotic formulas 
(cf., Ref. 11). 

After the present work had been completed there ap-­
peared in print a note by Itzykson et ale [18] in which sim­
ilar questions are discussed. As we shall show the solu­
tion of classical equations obtained in Ref. 16 does not 
realize the maximally highest saddle-point in evaluating 
the functional integral in a high order of perturbation 
theory. Nevertheless certain results of the cited paper 
are of considerable interest. Thus, for example, the 
use of the insertion theorems due to Sobolev[17] could 
give a rigorous mathematical basiS for the method of 
Ref. 1. 

2. FIVE·DIMENSIONAL FORMULATION OF 
SCALAR ELECTRODYNAMICS 

The action for scalar electrodynamiCS has the follow­
ing form in Euclidean four-dimensional space: 

S(A In e, ,,'- J Hd'x- J d'x['/,(8.A.-8"A.)' 

+1 (8.-IeA.)cpl'+'I.glcpl'), (1) 

where qJ is a complex scalar field. We have added to 
the Lagrangian H the termglqJ 1'/2 since it inevitably 
arises as a result of renormalizations. The mass term 
for the field qJ is not included in the action (1) since we 
shall be interested in the behavior of the Green's func­
tions for large momenta, with the momentum IJ. at the 
point of normalization of the invariant charges 
,e·(p2)1, •• ,.2=e~, g(p.) I,a.,.a =g,. being chosen much 
greater than the mass of the scalar particle: 

(2) 

An arbitrary Green's function G(Xh" ., xJ/; Yl,"" YN; 
Z h ••• , z.) in scalar electrodynamics can be found in the 
form of a perturbation theory series in terms of the re­
normalized charges e,. and g,.: 

(3) 

where G ... (Xb"" z.) is given in the Lorentz gauge by 
the functional integral 

G,,,,(Zh ... , Z.; YiI ... t YN; Sit ••• , :a:.If) 
II: 

=Z. -. J n [dA.(x) dcp (x)dcp' (x) II (O.,A.(x) ») II A'r (x,) 

',' ,-. 
II" J de.' S dg. 

X !fJ(Y.)cp'(z.) 2'( ,) .. +1 2'( )H. m e. mg • . -. 
X exp { -8 (A. cp, e •• g.) - S d'x H' (A •• CPo e •• g.) }. (4) 

Here H' is a counterterm corresponding to the renor-
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malization of the masses, the wave functions and the 
vertex functions. In order to evaluate the asymptotic 
behavior of Gil", at large k and m it is sufficient to know 
the lowest terms in the expansion of H' in terms of g,. 
and e ~ (they are contained, for example, in the paper by 
Vladimirov[1S]). The value of Zo in formula (4) is chosen 
by imposing the condition that for e,. =g,. =0 the function 
G(Xh ••• , ZN) would be given by a product of free Green's 
functions. We note that formula (4) contains a contribu­
tion from disconnected diagrams and from diagrams with 
vacuum loops, but for large k and m this contribution is 
not Significant. [1] 

In accordance with Ref. 1 we evaluate the integral (4) 
by the saddle-point method. For this it is necessary to 
obtain a solution of the Euler-Lagrange equatiOns for the 
functional (1) for small and, generally speaking, complex 
values of the constants e and g. For these solutions the 
action must be finite: 

It'jj(x) 11 .. ~_<con8t/(x·)"'. 1..4(x) 11 .. ~_<con8t/(z')'''. (5) 

Thus, the solutions must be bounded in space, i. e. , 
they must have a definite center Xo and a scale~. In 
virtue of the translational and scale invariance of the 
functional (1) the set of such solutions is expressed in 
terms of the solution ~(x),A~(x) with,the center at the 
origin and with a unit scale by means of the following 
formulas: 

(6) 

Below we consider the solution with the center at the 
origin and with unity scale. This means that from the 
general 15-parameter group of transformations under 
which the action (1) is invariant (the Lorentz transfor­
mation, a displacement, a stretch, a conformal trans­
formation) we can hope to retain the invariance of the 
solution only with respect to the 10-parameter group. 
In order to make the invariance of the action (1) with re .. 
spect to this group with ten parameters explicit it is 
necessary to go over, follOWing Adler, [19] to a five-di­
mensional formulation of scalar electrodynamics.!) We 
introduce the five-coordinates of a point on a unit sphere 
in five-dimensional space according to the following for­
mulas 

z'-1 
%.-:;;+t, (1-1,2,3.4), 

• L. z.'=1; 
'_1 

S dS,=S d'zll( (~z")'f'-1) =s d'x(2/( Hz'» '. 

(7) 

In place of the fields qJ and A~ it is convenient to intro­
duce new fields Y and A, according to the following for­
mulas 

(8) 

We impose an additional condition on the five-dimension­
al vector A,: 
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(9) 

Using formulas (7) and (8) we can rewrite the action (1) 
in the following form: 

S= J dS,['/,,(L.~.+Lj.AI+L.,Ai)'+'/,1 (L.j-ieA u) YI' 
+21 YI'+'/,gl YI'j, A'j=z.Ai-Z~h 

where 

(10) 

(11) 

is an antihermitean infinitesimal operator for the rota­
tion of a five-dimensional sphere in the (ij) plane. As 
can be seen from formulas (10) and (11), the action de­
pends only on the values of the fields and of their deriva­
tives along the surface of the sphere. The invariance of 
the action (10) and of the auxiliary conditions (9) with re­
spect to the 10-parameter group of rotations of the five­
dimensional sphere is obvious. 

The functional (10) is also invariant with respect to 
gauge transformations of the form 

(12) 

with an arbitrary function p depending on the angles on 
the five-dimensional sphere. We shall utilize this in­
variance in such a manner that the analog of the Lorentz 
gauge would be satisfied (cf., Ref. 19): 

(13) 

Under the condition (9) relation (13) is equivalent to 

(14) 

The Euler-Lagrange equations for the functional (10) 
together with the auxiliary conditions (9) and (14) have 
the following form 

(-'12Lu'+2) A,=ie.z,[ Y (L,,+ie.A .. ) Y' - Y' (L,,-ie.A .. ) Yj, 

[-'12 (L,j-ie.A,j)'+2+g.1 Yl'j Y=O, 
[-'12 (Lij+ie.A u) '+2+g. I YI'j Y'=O; 

z;A,=O, L,jAj=Ai. 

(15) 

(16) 

In order to take into account the translational and scale 
invariances we introduce into the functional integral (4) 
the following expansion of unity (cf., Ref. 1): 

~ a" 
1= J d'xo J v.s' (S d'x Hz:""') ) det 1 J d'x H (z:""') z:""') -/lfj) I, (17) 

o 

where 

(ZQ,l) z, 
2A(x-xo) • 

"'+(x-x.)' 
(i=1, 2,3,4), 

(:Eo,),) 
Z, 

(x-x.) '-,,' 

(x-x.) '+,,' (18) 

After changing the parameters and the variables of inte­
gration according to the following formulas 

(19) 

and after transition to the five-dimensional variables (7) 
and (8) we obtain in place of (4) 
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- d" 
G,\",{xh ••• , Xx; Yh"" YN; Zh"" ZN) = ZO-l S dloxo S--:;;-

o 

Z,i 

xIi fA., (X'~Xo Hi :' fP (Y.~Xo) fP' c'~x. ) 
r ... 1 ,_t 

J de.' J dg. {s J' ' } X 2ni(e.')m+l 2nig'.+1 exp - - d zH, 

x.s' .U d'z Hz, )det 1 J d'z H (z,Zj-ll,j) I. (20) 

Here we have utilized the five-dimensional gauge (13) for 
the potentials AI' It corresponds to the following gauge 
in four-dimensional space: 

a.A.=4z.A.I (1 +x'). (21) 

It is necessary to rewrite the counterterm H ~ in formu­
la (20) in the same gauge. 

3, THE FORM OF SOLUTIONS OF SADDLE·POINT 
EQUATIONS 

The saddle-point values for the fields AI and Y and for 
the parameters e,. and i,. in the integral (20) are obtained 
from the condition that the functional be an extremum 

leA"~ Y, Y', e., g.)=S+mln(-e.')+kln(-g.), (22) 

where S is given by formula (10), Variation of J with 
respect of Ai' Y, y* leads to the classical equations (15) 
with the auxiliary conditions (16) and the restriction 

J dS,Hz.=O, (23) 

arising as a consequence of the I)-functions in formula 
(20). 

The variation of J with respect to g,. and e,. leads to 
the conditions 

g. J e. {} J k=--2 dS,IYI', m=----;:;- dS,I(Lu-fe,.A'I)YI', 
4 ae. (24) 

which fix the values of g,. and e,.. 
In order to guess the form in which one should seek 

the solution of Eqs. (15) we consider first the special 
case when the order of perturbation theory in terms of 
g,. is considerably greater than the order with respect 
to e~: 

k>m>i. (25) 

In this case one should expect that in the first approxi­
mation it is sufficient to define in (20) the saddle for the 
scalar field in the absence of an interaction with the 
electromagnetic field. But such a problem has already 
been solvedCl,91 and the corresponding saddle-point field 
is a constant on the sphere: 

(26) 

where X is an arbitrary constant phase (we have a kind 
of a Higgs mechanism), 
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The solution (26) can be obtained if in the second and 
third equations of system (15) we set Au = O. It is im­
portant that at the same time the restriction (23) is sat­
isfied. As will be seen below this is sufficient that the 
restriction (23) would be satisfied also for the exact 
solution. Just as in Ref. 1 the existence of solution (26) 
leads to the factorial dependence of the coeffiCients of 
expansion of the Green's function in terms of g,. on the 
order k of perturbation theory. At the same time the 
dependence of these coefficients on the order of pertur­
bation theory in terms of e,. in the region (25) is only a 
power-law dependence. Indeed, the radius of conver­
gence of the series in terms of e,. in the region (25) is 
determined by the value e,. =e,. minimal with respect to 
the modulus, for which the first equation of the system 
has a solution different from zero. Such a value of e,. 
will give a root singularity in terms of e,. after the eval­
uation of the functional integral with respect to A, in 
formula (20). 

Substituting (26) into the first equation of the system 
(15) it is easy to obtain the solution for the minimal 
value of Ie,. I : 

(27) 

where in virtue of the restrictions (16) the matrix 1JiJ is 
antisymmetric: 

(28) 

We have separated out the factor a in formula (27) in 
order to normalize 1Jfi in an appropriate manner (cf., 
below (30». 

As can be seen from equations (24), a - (m/k)1/2« 1, 
i. e., the neglect of terms proportional to AIJ in the sec­
ond and the third equations of the system (15) in obtain­
ing (26) was justified in the region (25). One can take 
into account the correction to (26) attributable to the 
terms -A, (27): 

(29) 

Substituting (29) into (15) and obtaining the correction 
- a 3 to A, taking (24) into account we must, proceeding 
in the same spirit, obtain the solutions in the form of an 
expansion in powers of m/k. However this procedure, 
as can be easily seen, can not be carried out for some 
arbitrary choices of the matrix 1Jfi in (27). Indeed, on 
substituting (29) into the right-hand side of the first or 
equations (15) we obtain terms of two kinds for the first 
spherical harmonic: Z J 1Ju and Z J(1J3)IJ. Since the left­
hand side of the equation does not contain the first har­
moniC, these terms must be compensated by a small de­
viation (-e!> from its critical value (27). From this re­
quirement emerges the following condition on the form 
of the matrix 1JfJ: 

(30) 

(the choice of normalization, apparently, is not signifi­
cant and is associated with the normalization of a in 
formula (27». It can be easily shown that this condition 
is sufficient for carrying out the iteration procedure in-
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dicated above. Equation (30) means that the symmetric 
matrix g'I< = 1JIJ 1JM satisfies the relation 

(31) 

from which it follows that its eigenvalues can be equal 
only to zero or to unity. Thus, this matrix must coin­
Cide with the unit matrix in a certain subspace En1. of the 
five-dimensional Euclidean space E 5; in other words, 
the matrix T/fi in virtue of the conditions (28) and (31) is 
an antisymmetric orthogonal matrix in this subspace: 

Such matrices, which are called symplectic, can exist 
only in the case of an even number of dimensiOns, and 
from this it follows that the dimensionality of the sub­
space En1. must be one of two possible ones: 

(33) 

For these two cases one can respectively exhibit ma­
trices of a special form satisfying conditions (32): 

a) T)1t1=(-! ~ ~ ~ ~). b) Ij\p=(-! ~ ~ ~ ~). 
OOOGO 00-100 
00000 00000 

(34) 

All the remaining matrices of this type can be obtained 
from the matrices (34) by five-dimensional orthogonal 
transformations and form two 6-parameter families: 

(35) 

By a further iteration of Eqs. (15) in the region (25) 
one can easily verify that their solutions should be 
sought in the form 

1 el ' 

..4,= (_e.,)".Ij,j%,-a(s). Y=(_2ii.")".Ill(s). 

.=(z1.)'=Ij<;Ij"Z,z •. 

where a(s) and <I>(s) satisfy the equations 

-4. (1-.) a" +2 (7 s-2-n1.) a' + (6-1ll') a=O. 

-4. (1-.) Ill" +2 (5s-n.L) Ill' + (2-sa'-xlll') III =0. 
x=g,j2e.'. 

These equations can be obtained from the action (10) 
which in the case of solutions (36) has the form 

8nz f. ds 8 n~/Z_t 
s= ---;::z I-(1-s)'" (-) [2s' (1-.)a"+3sa' 

e. n.L 1-8 
o 

+ 28(1-s) \11"+\11' - ~a'Ill' - ~ Ill'] 
24' 

(36) 

(37) 

(38) 

We must select the solutions of the system of equations 
(37) which are regular at s = 0 and s = 1: 

a(.) I._o=a,+a,s+.. .• \II(s) 1._0=\11,+\11,8+.... (39a) 
a(.) 1._I=a,+a,(1-s)+.... Ill(.) 1._,=Ill.+\II,(l-s)+ ... (39b) 

The greater part of the boundary conditions (39) follows 
from the requirement that the action (38) be finite. Only 
the condition (39b) for n.L =4 requires the use of formula 
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(23) for its justification. Choosing the matrices 1] in the 
form (34b) and setting i = 5 in (23) we satisfy this relation 
in the case when H is an even function of zs, i. e., a(s) 
and cl>(s) do not have a singularity - (1 _ s )l/Z which can 
be present in the general solution of Eqs. (37). 

One can qualitatively demonstrate the existence of 
solutions satisfying the boundary conditions (39) if in 
formula (38) one makes the replacement: 

a=uls, (b=u/s''', s=1/ch's, (40) 

as a result of which it assumes the form 

s = I ds(sh S)'··· [(:; )' + 2(nJ.-2)u' + (:; ). 

+(nJ.-3)u'-u'u'- ; u'] (41) 

(the constant factor is omitted). In this case conditions 
(39a) mean that as ~ - co the functions u and v must de­
crease: 

while for ~ - 0 they are bounded and, moreover, are 
even functions of ~. 

(42) 

For nJ.=4 (this case with Y..=O is discussed in Ref. 16) 
the action (41) describes the Newtonian motion of a ma­
terial point in a two-dimensional potential 

V(11, u) =-4u'-v'+u'u'+xv'/2, (43) 

which does not explicitly depend on the time~. This po­
tential has the form of a hump near the origin surround­
ed by "walls" for large I u I and I v I. The desired solu­
tion corresponds to such a motion of the point when it is 
at rest at the origin for ~ - - co, then rolls down the 
hump, is reflected from the wall at the instant ~ = 0 and 
returns over an infinite time over the same trajectory. 
For large values of x the walls, roughly speaking, are 
parallel to the u axis, and therefore the trajectory which 
has the described properties must be directed along the 
v axis (the potential is even with respect to u and v and 
increases as lvi-co; consequently, such a trajectory 
always exists as long as x >0). In other wordS, the de­
sired solution of equations (37) in this case has the form 
a = 0, cl> = const. As x decreases the walls begin to be­
come more strongly curved and other trajectories arise 
for which u *0 (i. e., a *0). The first such trajectory, 
as can be seen from equations (37) appears near the value 
x =1/3. 

In the case nJ. = 2 the Euler-Lagrange equations 

ii+2 cth sti+uu'=O, ;;+2 cth sv+v+vn'+xu'=O (44) 

describe the motion of the point in the potential 

V(u, u) =u'+u'v'+xu'/2 (45) 

with damping proportional to coth~. The form of the 
potential (45) shows that an arbitrary solution of equa­
tions (44) for ~ - co has the form u - const, v - O. Since 
for ~-O the conditions u(O) =v(O) =0, which follow from 
the fact that u and v are even in ~, must be satisfied we 
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have at our disposal two constants: u(O) and v(O) by the 
choice of which one can satisfy the condition u(co) =0. 
This condition determines a certain set of initial posi­
tions of the point from which it arrives at the origin. In 
such a case, as can be seen from equations (44), we have 

(46) 

In order that conditions (42) be satisfied one must also 
require that Cz =0 in formula (46). This can be accom­
plished utilizing the remaining arbitrariness in the 
choice of the initial position of the pOint. Just as in the 
case n J. = 4, one can verify that for x ;;. 1/3 the only de­
sired solution is u = 0, while for Y.. < 1/3 a solution with 
u * 0 appears. For still smaller values of x other solu­
tions also arise; we shall return below to a discussion 
of them (cf., Sec. 4). 

The parameters Y.. and e ~ in (37) are determined from 
the relations (24) which taking (36) into account can be 
rewritten in the form 

8n' 'ds ( s ) "./2., (b' 
k=--::-::-xj-(1-s)'" - -, e. nJ. . 1-8 4 

o 

(47) 
8n' 'ds ( s ) _./2.' 8a'(b' 

m=--j-(1-8)'/ - --. e,,' n, ·1-,< 2 

whence for the determination of x we obtain the equation 

k' 8 ) _./2.' / 1 ( S ) ft.".' 
;;-=xjds(1-S)'''(1_S (b' 2jds(1-s)'" 1-8 sa'Ill'. 

• • 

(48) 

We examine within what limits does x vary as the ratio 
m/k is varied. From (48) it follows that 

x-O as mlk-oo. (49a) 

In the opposite limiting case (25) we have in virtue of 
(27) 

x-'I, as mlk-O. (49b) 

Thus we have 

O<x<'/,. (50) 

Under this condition, as we have seen, Eqs. (37) have 
at least one nontrivial solution. 

4. THE GREEN'S FUNCTIONS IN HIGH ORDERS OF 
PERTURBATION THEORY 

With an accuracy up to the factor preceding the expo­
nential the saddle-point contribution to the asymptotic 
behavior of the coeffiCients of expansion Gkm of the 
Green's functions is determined by the expression 
(_l)"'m e-1, where j is the value of the functional J (22) 
along that solution of Eqs. (37) and (4'i) for which this 
value is minimal. Taking into account the relations 

, ( s ) _./2.' [ 8] 
j d8(1-8)'" 1-s 2s'(1-s)a"+38a' - T a'Ill' =0, 

• 
(51) 
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JI d8 (1-.) '" (_S_) ,./"-1 [28 (1-s) cP "+CP' - ~ a"CPI - ~ cp.] =0, 
1_ ·2 2 

-~~-

which follow from Eqs. (37) and the boundary conditions 
(39), and taking into account formulas (38) and (47) we 
obtain 

G .. l .. ___ (-1)0+ .. (_k_)o(~)mr C(!!!:.)]M.+l 
16n'e 16n'e ~ k ' (52) 

where the function C(m/k) has the form 

(m) ( k )-o/(Hm) [ t • S n.12-1 -. 
C k = 2x-;; ~ J d8(t-s)'f' (t=;) sCP'a']. 

. . 
(53) 

From the two possible types of solutions of (33) one 
must choose such a solution for which C(m/k) will be 
the greatest for a given m/k. 

It is convenient to obtain an approximate solution of 
Eqs. (37) by the following method. We expand A, and Y 
in terms of spherical harmonics over the five-dimen­
sional sphere (cf., (36»: 

a(s)= tAZl+lPI(I), <1J(s)= t B21Q' (I), (54) 
1_0 '_0 

where the polynomial pI and Q' are determined by the 
equations 

(55) 

Here {z, z, .. . z, } is the traceless part of the product 
1 2 " • z, ' ... Z f ; it is an eigenfunction of the operator - ~ L ~i 

1 " which coincides with the angular part of the five-dimen-
sional Laplacian[ZOl: 

-l/aL./{z.,z ..... z .. }=n(n+3) {z •• z ..... z .. }. (56) 

Formula (56) means that Q'(S) and pl(S) satisfy equations 

[-4&(1-s) !. + 2 (5,-n.L) ~ + 2] Q' (8) = (2l+t)(2l+2)Q' (I), 

(57) 
[-4,(1-,) !. + 2 (7s-2-n.L) ~ + 6 jPI (s) = (2H2) (2l+3)pi (s). 

The solutions (55) of these equations have the form 

( n.L 1 1 ) Q'(S)=S'F -1,-1+1-2"; -21- 2 ;--;-

= (-1) I Llr«n.L -1)/2) (cos e) n.12-' CCn.-Il12(cos e)' 
2l'r(2l+'I,) L ' 

( n.L 3 1) PI(s)=,'F -I -1--' -21--'-
, 2 ' 2 ' s 

(58) 

= (_1)' Llr( (1J.L+ 1)/2)·(cos e).!'."-" C(n.+!)!I(cos e)· 
2Lr(2l+'/I) L ' 

s=sin' e, L=2l+2-n.J2. 

Here F is a hypergeometric function, C! are Gegenbauer 
polynomials. [211 

Substitution of (54) into (37) with (57) taken into ac­
count gives the follOwing system of equations for the 
determination of the coeffiCients A, and B ,: 
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(Hi) (l+2)A, = L,A,)/,.B"CI""'" 
'ii II, 

(59) 

(l+1) (H2)B, = L, (A,.A,.B"+xB,.B,.B")C,:,,,,, 

',',I. 

where the summation is carried out over the integral 
values of ll1 l2' ls, which satisfy the conditions II + l2 + ls 
;;'l, with A,. being taken different from zero only for odd, 
and B, only for even values of the subscript l. The coef­
ficients C~ I' which are analogous to the Clebsch-Gor­
dan coeffic\~n\s for three-dimensional space are deter­
mined by the follOWing formulas 

Q' Q'J)I ~ C "+1 pi 
I \( '= ~ 2l121s2h+l t 

, 
(60) 

Sp1lplzQ't = L, C'l.~~+t Zh+1 2l1Q'. 

I 

The method of evaluating the coeffiCients C~ I I is dis-
d · th A d' 123 cusse 10 e ppen lX. 

Equation (48) for the determination of x can be rewrit­
ten with the aid of Eqs. (51) in the form 

1 + : = {J ds(1-s)"i ( 1~S) n.12-1 [2s(1-s)<1J"+CP') } 

X {Jds(1-s)'!' (1~8) .. 12-
1[28'(1_s)a"+3sa') r: (61) 

Substituting into it expressions (54) and utilizing the 
orthogonality relations for the functions pI and Q' (cf., 
Appendix) we obtain 

2k {~ nL!(2l+n.L12)! } 
1 + -;;;- = "",B,,' (l+1) (21+1) 2"f(2H'I,) f(2l+'I,) 

1=0 

{ ~ nL! (2H2+nJ./2) ! }-' 
X LA 2/+I(I+1) (2l+3) 2HHf(2H'I,)f(2l+'/,) . (62) 

1=0 

In a similar manner formula (53) for C(m/k) can be writ­
ten in the form 

nL! (21+2+nJ./2) ! ]-1 
X 2"+<f(2H'I,)f(21+'I,) . (63) 

Thus, for the evaluation of the function C(m/k) we 
must find the coefficients A, ,B, as functions of x from 
the system (59), and then determine )i. from equation (62) 
and utilize formula (63). 

For an approximate solution of the system (59) we as­
sume that the prinCipal contribution is given by the low­
est harmoniCS; this is justified by the subsequent calcu­
lation of corrections. In the lowest approximation we 
retain in the system (59) only Al and Bo: 

6A."'Bo'A" 2Bo""/,n.LA ,'Bo+xBo'. (64) 

From this we obtain 

[ 10 ]'J, 
Bo""6'\ A, "" nl. (1-3x) ; 

(65) 
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TABLE 1. Values of the function C(m/k) in formula (52). 

elm/h) 

Exact values 

According to 
formula (67) 

! n ~ ! 0 I 0.2 I 0.5 liT 
!

4.376!4.832!4.595! 
4.368 4.796 4.515 
4.367 4.789 4.500 

Substitution of (65) into (62) yieWs 

1+ 2k 
m 

Bo' 5·4 

AI' (nJ.+2) (nJ.+4) 1-3x 

3.780 
3.657 
3.634 

2.574 
2.439 
2.414 

1.103 
1.016 
1 

(66) 

Here we have utilized the fact that according to (33) nJ. 
asswnes two values. Thus, in the approximation under 
consideration Y. does not depend on nJ. . From (63) we 
obtain 

( m ) _ ( 2k ) ('O+m)/(O+m) ( 3m' ) O/(O+m) {3, m<.k 
C - - 1+- -.... . 

k m 4k' 1, m»k 
(67) 

Both saddle pOints (33) give the same contribution in this 
approximation. In order to calculate the corrections to 
expression (67) one must substitute expressions (65) into 
the right-hand side of (59), the values of A, and B, ob­
tained in this step must again be substituted into the 
right-hand side of (59), etc. utilizing then formulas 
(62) and (63) one can calculate C(m/k) with any given 
prescribed accuracy. 

In Table I we have given the function C(m/k) for two 
cases: nJ. =2 and nJ. =4. As can be seen from Table I 

(68) 

for all values of m/k (except for the zero value). This 
signifies that the asymptotic behavior of the coefficients 
of the perturbation theory series in scalar electrodynam­
ics is determined by the saddle-point function (36) with 
n J. = 2. The solutions of the classical equations with n J. 
= 4 give only exponential corrections to the asymptotic 
formulas. 

At the same time the table shows that the difference 
in the values of C(m/k) for the two cases is not great. 
This is associated with the fact that the determining fac­
tor is the contribution of the first approximation (67), 
while the difference is determined only by corrections 
to it. To make the point explicitly, the table contains 
values of C(m/k) given by formula (67); comparison of 
them with the exact values shows that the iteration pro­
cess being used converges fairly quickly. The closeness 
of the values of C(m/k) for the two cases shows that al­
though in a strictly asymptotic sense (k, m - 00) the con­
tribution of the saddle-point with nJ.=4 is exponentially 
small, at the same time there exists a fairly broad re­
gion of not very great values of k, m in which the contri­
butions of both saddle-points are comparable. There­
fore for a comparison of the asymptotic formulas with 
the exact calculations of lowest orders of perturbation 

. theory it makes sense to consider the fluctuations near 
both classical solutions. 

In the region m «k, where x -1/3, the difference be­
tween the values of C(m/k) in the two cases becomes 
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negligibly small. In this limit one can develop a pertur­
bation theory with respect to the small parameter (1/3) 
-.X -m/k. Writing a and ~ in the form of the series 

(69) 

we obtain from (37) the following recurrence equations 
for the coefficients ar , ~r : 

• • 
-4s (1-s)a,"+2 (7s-2-nJ.)ar' = ~a,_p E \J).illp-" 

1'_1 q_O (70) 

,-1 
-4s(1-s)\J)."+2(5s-nJ.) <llr' -4<ll,-<ll0 E <llp<ll,_. 

r-l 1'-1 r-t P +f E<ll,-· E<ll.<llp-.- E\J)'-l-. E(<ll·<ll·-·-sa,a.-.). 
1'-1 q_1 1'-0 q_O 

Solving them sequentially taking into account the boundary 
conditions (39) we obtain' 

<110=6'/', ao=3 (~)'/'; <lll =~ (s- nJ.+2) 
;)nJ. -4 6'/' 7' 

ao' ( 32-5nJ.) 
a1=7 s-1- 27.28 ; (71) 

6'/' ao' [91,s (113 ) 1 (241 )] <ll,=-- -s -- -nJ.+92 +- -nJ.-101 
9·49 8 9. 2 18 2 

etc. From this one can find, using formulas (48) and 
(53), the expansion for C(m/k): 

[ C ( ~ ) ] Hm = ( ;k) -m 3' exp { m ( 1 + 27k (:7 + n~) + ... ]}. (72) 

From this formula it can be seen that also in the limit 
m «k the inequality (68) holds, but the difference be­
tween its parts turns out to be of the second order of 
smallness in terms of m/k. 

We note that in the region m «k the functional inte­
gral (20) contains many other saddle-points the nwnber 
of which increases without limit as m/k - O. This is as­
SOCiated with the fact that equations (37) for small x 
also have other solutions different from (69). Indeed, 
near the pOints xn = 1/n(2n + 1) we can seek the solution 
in the form of an expansion analogous to (69) in powers 
of (xn -x), setting ~o=[2n(2n+1)]1/2. In this case we 
obtain 

[C (m/k) j'+m"" (m/k) -m3'em(6/n(2n+1) )m. 
(73) 

Comparing this with (72) we see that the additional solu­
tions lead to lower values of C(m/k), i. e., the corre­
sponding saddle-pOints are not significant in the continual 
integral. 

5. CONCLUSION 

The principal result of the present paper is formula 
(52) which gives the asymptotic behavior of the expan­
sion coefficients of the Green's functions in perturbation 
theory series with an accuracy up to the factor in front 
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of the exponential. The latter is determined by the 
quantum fluctuations around the saddle-point values of 
the fields A,., qJ and of the parameters e~, g ,,; we expect 
to investigate them in the near future. However, one 
can note from formula (20) that sinceA,,-;P-kl/a, e~-g" 
-l/k the factor in front of the exponential must be of the 
form 

canst- kH.(Jf+JN+r}-t t 

where M + 2N is the total number of the tails of the 
Green's function, while r=12 is the number of parame­
ters on which depends the solution of the classical equa­
tions (they are the parameters ~, (xo)" X and 1/11 in for­
mulas (18) and (36». Thus it is necessary to take quan­
tum fluctuations into account only for the exact deter­
mination of the constant (depending on the ratio m/k) and 
of corrections which diminish as k - co. 

In the present paper in order to find the form of the 
solutions of classical equations a method based on a 
special form of perturbation theory was utilized. In the 
general form this method consists of the fact that for an 
interaction containing two constants high orders are con­
sidered with respect to one constant and relatively low 
ones with respect to the other constant (of the type e in 
scalar electrodynamics). In the lowest apprOximation 
the interaction proportional to the second constant is 
omitted. If the resulting equations have a solution then 
in the next approximation one finds such a critical value 
of the second constant for which a nontrivial solution 
exists for the homogeneous equation for the case of a 
field interacting only because of the presence of this 
constant (cf., the first of equations (15». The solution 
obtained in this case enables one to determine the form 
of the solution in the general case. 

If one applies this method to the theory of the Yang­
Mills fields interacting with a scalar selfacting field 
solutions are found for which the projection of the vector 
potential A1 on the first five-dimensional harmoniC rflJ 
- f tLS5A~zJ is a generator of the group of isotopic trans­
formations in a certain subspace of the five-dimensional 
space. Nontrivial realizations of these real antisymme­
tric matrices 1/1J are the cases for nJ. =3, 4,5 corre­
sponding respectively to the representation with isospin 
T = 1, the reducible representation derived from two ir­
reducible representations with isospins T = t and, finally, 
the representation with T = 2. The form of the matrix 
1/~J uniquely characterizes the solution for the fields Aj 
and Y which in these cases can be expressed in terms 
of functions of a single variable. In order to choose 
the solution determining the asymptotic behavior of the 
perturbation theory series it is necessary to intercom­
pare the numerical values of the action along these 
three solutions. 

The authors are grateful to A. A. Belavin and V. N. 
Gribov for useful discussions. 

APPENDIX 

The functions pi (s), QI(S) (50) satisfy the recurrence 
relations 
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PI(S)=Q'(s)-b21P'-'(S), . Q'(S)=sP'-'(s)-b,I-iQ'-'(S), (A. 1) 

where 

b .- 21 (2l+3-nJ.) b = (2IH) (21-2+n.J (A 2) 
21 - (4l+1) (4t+3) , 2/-' (4/-1) (4/+1)' • 

The orthogonality relations for them have the form 

r ds(1-s)," (_,s_) " .• /2_' QIQI. =_2-S' ds(1-S)'I. (_S_) "./0-1 

• 1-8 1 (2l+3) 1-8 
o 0 

I' I' nL! (2l+nJ./2) I 
Xs(1-s) (Q) (Q') = Ii". 2"+'f(2l+'I,)f(2l+'I,) 

L=2l+2-nJ./2; (A. 3) 

1 ( 8 ) "./2-1 2' Sds(1-s) 'I. - SPlp l • = ---S ds(1-8) 'I, 
1-8 1 (2l+5) 

o 0 

( 
8 ) "./.-, , I' I.' _ nL! (21+2+nJ./2)! 

X 1-8 8 (1-8) (P) (P) -lill' 2"+' f(2l+'I,)f(2l+'I,) . 

If we denote 

(A. 4) 

then formulas (52) assume the form 

(A. 5) 

The coeffiCients e:llal3 are symmetric with respect to a 
permutation of the lower indices and differ from zero 
only when the sum of the four indices is even. They can 
be represented in the form 

(A.6) 

where the coefficients ellia are determined by the formu­
la 

(A. 7) 

The coeffiCients e:1la are also symmetric with respect 
to their lower indices and vanish when the sum of all 
the indices is odd, and moreover when the triangular 
condition: III -lal.;;l .;;ll + l2 is not satisfied. 

The explicit form of the coefficients e: I can be ob­
tained from formulas (50) and (A. 3) with life aid of the 
relations (cf., Ref. 21, 22) 

, 
S dz(1-z')'-'''C,;(Z)C,:(z)C1;(z) 

2'-"nf(0+2v) f(o-I,+v) f(o-l,+v) f(o-l,+v) 

r'(v)r(o+vH) (o-l,) I(o-l,) !(o-l,)! 

20=l,+I,+l.; 

(A. 8) 

nr(l+v+'/,) r(l,+v) 
(_1)'-" r'(v)l,! r(I+'I,) • I~l, 

j :Z(J.-Z2)'_'·'C,:+,(Z)C,~.(Z)= 
-, 

0, l<I, (A. 9) 

We shall not write out the expressions thus obtained 
since they are quite awkward and not convenient for use. 
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It is simpler to calculate the coefficients Cl11a with the 
aid of the recurrence relation 

(A. 10) 

which follows from formulas (A. 1), (A. 4) and (A.7); to 
this one should add the initial condition C:o = 1. In par­
ticular we obtain from this the following expressions 

etc. 

c,;+'= 1, C12'=b,+b,+,-b" C,~-'= b,b,_,; 

C,!+'= 1, c,!+'= b,+b,+,+b'+2-b,-b" 
(A. 11) 

I)The authors are grateful to A. A. Belavin who suggested the 
use of the five-dimensional formulation of scalar electro­
dynamics. 
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Mobility and chemical bond of hydrogen in titanium and 
palladium hydrides 
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I. A. Yutlandov 
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The probabilities for 7T- meson capture by hydrogen are measured at 25, 155 and 200'C in the hydride 
TiHw at 25-120 and -196'C in the hydride PdHo.67• An analysis of the results shows that, within the 
accuracy of the measurement (-10%), a sharp change (up to 1012) in the mobility of hydrogen in the 
hydrides, induced by temperature changes in the ranges indicated, does not noticeably affect the 
probabilities for 7T- meson capture by bound hydrogen, i.e., does not lead to appreciable changes in the 
Me-He bond. A comparison of the capture probabilities for palladium hydride and the hydrides of 
neighboring transition metals shows that there are no pronounced anomalies in the Pd-H bond. 

PACS numbers: 35.20.05 

At the present time there are two oppOSing hypotheses 
for explanation of the character of the hydrogen bond in 
transition metal hydrides tl•21; the proton hypothesis (the 
hydrogen in the hydride is prinCipally in the form of the 
proton H+) and the hydride hypothesis (existence of hy­
drogen in the form of the hydride ion H-). The hydride 
hypothesis is successfully used for the calculation of 
crystalline lattices and interionic distances. The proton 
hypothesis in turn allows us to explain the behavior of 

the hydrogen in diffusion and relaxation processes. [1] 

There is no single experiment at the present time which 
would disprove one hypothesis or the other. [21 
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Earlier, it was shown experimentally that the proba­
bility of capture of pions by bound hydrogen is sensitive 
to the features of the chemical bond of the hydrogen in 
the molecules. [8-51 In the present research, we made an 
attempt to discover the effect of a change in the hydrogen 
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