
c= 16-P"P. 
16 (P ... P.) '. ' 

In these experiments 8 cOincides with (1, 1/= Wo88/8E, 
and Wo is the imaginary part of the potential. 

4. The proposed experiment for the detection of quasi­
stationary neutron states in matter has, apart from its 
scientific interest, also a practical Significance. A 
large volume of work with ultracold neutrons is planned 
at present, [3] and the problem arises of measuring ener­
gy spectra of neutrons with energies ;510-7 eV. It is seen 
from Figs. 2 and 3 that one can use for this purpose the 
three-layer target described above, which transmits 
selectively neutrons with definite energies. Placing such 
a target in the path of the neutrons toward a detector, we 
record neutrons of definite energies. A set of calibrated 
three-layer targets made of various materials, with dif­
!erent or even variable thickness, will make possible 

measurements of energy spectra in the neutron energy 
range:::; 10-7 eV. We note that the principle of operation 
of the proposed neutron spectrometer is analogous to 
that of the widely known Fabry-Perot optical interferom­
eter. [4] 

One can hope that a neutron spectrometer utilizing the 
wave properties of the neutron will have better charac­
teristics with respect to the resolution dE =liw(P A +PB)/ 

4 and small dimensions and will prove more convenient 
in operation than a gravitation neutron spectrometer. 
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Equations have been obtained for the polarization density matrix for muonium for the case of anisotropic 
hyperfine interaction which may, occur in impurity hydrogen (and muonium) in strongly doped 
semiconductors. Expressions have been obtained for the precession of muionium in a transverse field and it 
has been shown that the anisotropic characteristics of the hyperfine interaction can be obtained from the 
variation of the temperature dependence of the amplitudes and the frequencies of muon precession. 

PACS numbers: 36.IO.Dr 

An experimental study of the anisotropy of the hyper­
fine interaction of impurity hydrogen and semiconductors 
has not been possible until now. In the present paper a 
theory has been developed of the muon method of investi­
gating such anisotropy in those cases when it must be 
most strongly pronounced. 

In order to have a shift in the muon preceSSion fre­
quency, it is necessary to have a sufficiently high density 
of conduction electrons. [1] In principle, this is possible 
both in metals and in strongly doped semiconductors. 
However in metals one should expect either that the mu­
onium is ionized, or that its dimensions increase greatl:y 
and thereby weaken the hyperfine interaction constant. 
As will be seen from the following, this makes it prac­
tically impossible to observe effects associated with 
anisotropy. Therefore everywhere in the following we 
shall speak only of strongly doped semiconductors, hav­
ing in mind at the same time that formally the theory is 
also applicable to metals. 

We consider a strongly doped semiconductor at a low 
temperature and a situation in which the muonium either 
has not formed a diamagnetic compound at all or has en-

tered into a chemical reaction only partially (for exam­
ple during slowing down). 

Strong doping gives rise to a relatively high density of 
conduction electrons. This leads to two consequences. 
Firstly, the conduction electrons will be scattered by the 
electrons in the muonium atoms and therefore the situa­
tion arises of "rapid electron spin exchange" in the mu­
onium atom. Secondly, the considerable density of elec­
trons of the medium leads to an increase in the dielectric 
constant which in a semiconductor, even without this 
occurring, differs from unity even at distances of the 
order of the Bohr radius. This leads to a swelling of 
muonium, whose dimensions become comparable with 
the characteristic dimensions of an atomic cell. At the 
same time the spherical symmetry of the hyperfine in­
teraction of muonium and the electron disappears. We 
first consider the case when the hyper fine interaction 
preserves the symmetry of an ellipSOid of rotation but, 
as will be seen later, our results will be valid also for 
the general case. 

In the case of rapid electron spin exchanges the muon 
precession occurs as if the muon were free. However 
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at low temperatures in an external magnetic field the 
electrons of the medium are magnetized and the weak 
magnetization of these electrons leads to a quite signifi­
cant magnetization of the electrons in the muonium gJ 

- /-La HlkT. It is well known[1] that with this is associated 
the appearance of temperature dependence of the muon 
precession frequency. However, attempts to find such 
a shift in metals have not led to positive results, [1] and 
from this it follows that no atomic muonium exists in 
metals that have been investigated. Muonium exists in 
many pure semiconductors. It would doubtless be of 
interest to determine the limiting electron density for 
which the singly charged impurity center forms a bound 
state. The method of studying the temperature depen­
dence of the frequency in principle enables us to do this, 
but even in order to attain such a limited goal the inter­
pretation of experiments requires a theory which takes 
into account anisotropy which may not be small. 

We first obtain the temperature dependence from semi­
quantitative arguments. If the hyperfine interaction of 
muonium is anisotropic, then the field produced by the 
electron of the muonium will be directed at a certain an­
gle a to the external magnetic. field Hex since the magne­
tized electrons in muonium in this case are distributed 
over a certain nonspherical volume. Thus, the total 
field at the muonium will have the form 

(1) 

where H" is the field produced by the magnetized elec­
trons. It depends on the temperature according to liT. 
Therefore the temperature dependence of the total field 
(and consequently of the precession frequency) will have 
the form 

Htot = [{Hext + C1IT)Z + C1IT2]1/2 • 

If the constants C1 and C2 are small then we have 

Htot == Hext + c1lT , 

(2) 

(3) 

and the anisotropy will not affect the nature of the tem­
perature dependence. But in doped semiconductors one 
can select such a degree of doping that the value of C1 

would not be small compared to HT. In this case the 
dependence (1) will be realized and in order to observe 
it we shall not require the criterion for a strong anisot­
ropy. 

In order to make the derivation given above rigorous, 
it is necessary to take into account the process of rapid 
relaxation of the spin of the electron in the muonium. 
For this we shall utilize the density matrix apparatus in 
the following discussion. 

We choose the coordinate axies (of the primed system 
associated with the crystal) in such a manner that the 
symmetry axis of the ellipsoid of the hyperfine interac­
tion would coincide with the direction z ' • The muonium 
can occupy different positions in the crystal cell. Even 
if muonium occupies, for example, only the tetrapore 
position there are still several such positions in a cell. 
We assume that the muonium does not move from one 
position to another (there is no diffusion) and we consider 
only some one pOSition. In a real situation the results 
obtained will have to be applied to all possible poSitions 

862 Sov. Phys. JETP 46(5), Nov. 1977 

of the muonium. Thus, we begin our investigation with 
the hyperfine interaction of the form 

d(ghf=lIa." (0.-.0.-,+0,-.0,-.) +lIa,o,-.o,-. + I 1'.1· (o,H) -!'.( 0.H). (4) 

Here a", ,a. are hyperfine interaction constants, H is the 
magnetic field intensity vector. 

But the laboratory coordinate system is determined by 
direction not aSSOCiated with the direction of the crystal 
axes: by the direction of the initial polarization of the 
muons in beam Po, by the magnetic field H and the vector 
orthogonal to these two directions. In the case of the 
interaction (4) the directions x' and y' are physically 
equivalent and therefore a rotation about the z ' axis is 
not Significant. The x' axis can be brought by such a 
rotation into the x, y plane. Then the position of the 
ellipsoid in space is specified by two angles: £) = Po' z' 
and cp-the angle between the projection of the z' axis 
on the plane perpendicular to Po (the z axis) and the di­
rection of the transverse magnetic field H (or, in the 
case of an inclined field, with the direction [[ PoXH] 
x Pol-the y axis. Going over in (4) to the laboratory co­
ordir.ate system we obtain 

d(ghf=' 1,1100. (0.0,) +lIb {sin' 6 (0 .. 0 .. sin' q>+o ... a ... cos' q» +cos' 60,.0 .. 
+sin6[sin q> cos q> sin 6 (o .. o,.+ouo ... ) +sin <p cos 6(0 .. 0 .. +0,.0 .. ) 

+cos q> cos 6(0 ... 0,.+0,,0 ... ) I}+ I 1'.1 (0.H) -I'.{a.H). (5) 

Here we have changed the notation to wo=4a , b =a.-a",. 
Following the work of Nosov and Yakovleva[~ we repre­
sent the density matrix in the form 

(6) 

Then the equation for the density matrix operator is ob­
tained by USing its commutator with the Hamiltonian 

iltiJp/ot=[d(g, pl. (7) 

Substituting (5) into (7) we obtain the right-hand side in 
which in addition to the terms appearing in the equations 
of Nosov and Yakovleva there are also additional ones 
corresponding to the violation of the spherical symmetry 
of the hyperfine interaction. It can be easily seen that 
the whole difference between the "nonspherically-sym­
metric" Hamiltonian and the "spherically-symmetric" 
one can be represented in the form 

(8) 

where 

A;.=A .. and 
All=2b sin' 6 sin' q>, A,,=2b cos' 6, An=2b sin' 6 sin q> cosq>, 

A,,-2b sin' a cos' <p, A,,=2b sin 6 cos 6 sin q>, 
A,,=2b sin 6 cos 6 cosq>. (9) 

But if we do not introduce specific expressions for A,,, 
then expression (8) is the most general expression for a 
deformed hyperfine interaction. 

The modification of the Nosov and Yakovleva equations 
for the case of scattering of magnetized electrons by 
muonium was obtained in Ref. 3. Using these equations 
and substituting (8) into (7) we obtain the following sys­
tem of equations: 
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dp.,! dt=_1/2Cil•e .... p .. -\;e • .,.Cil.' p" 
-1/2A .. [e ... p •• +e ••• pp.] , 

dp .. ldt=I/2Cil,e ... p ... +eAm/Cilm'p,,-2Vp .. +2vfP. 
_1/2A., [ e'A.p .. +e'APp,.], 

dp .. 1 dt= 1/2Cil, [e .. ,p .. -e .. ,p,,]-\;e..,.Cil.' PM 
+e,../Cilm'p",-2vp .. +2vp.,9'.-A .. e.APP .. 

-Aq,EqxpPpO. (10) 

Here we have utilized the notation generally accepted in 
muon physics: the first subscript in the density matrix 
refers to muonium, the second to the electron, Wo is the 
frequency of hyperfine splitting, related to the spherical­
ly symmetric part of the hyperfine interaction, Wi - eH/ 
me c is the vector representing the Larmor precession 
frequency of the electron spin, t is the ratio of the ab­
solute values of the magnetic moments of muonium and 
of the electron, g;" is the polarization vector for the 
electrons which exchange their spins with the muonium 
electron or, what is the same: the polarization of the 
spins of the electrons in muonium. In the problem under 
consideration w; =eH6~ /m" c, fP" = fP6z". The initial po­
larization of the muonium is given by pg =P06"3' 

We consider the situation in which spin exchanges with 
the medium occur so frequently that even during short 
times, much smaller than those which can be observed 
experimentally, all the processes associated with the 
relaxation of electron spin can be regarded to be estab­
lished. But then some of the components of the polariza­
tion density matrix can be taken to be equal to zero: 

(11) 

The components P02-the polarization of the electron spin 
in muonium along the y axis becomes equal to the sta­
tionary polarization: 

p,,=fP= exp(Il.HlkT)-exp(-Il.HlkT) ""-IIl.I!!.... (12) 
exp(Il.HlkT)+exp(-Il.HlkT) kT 

Because of this the components of the matrix correspond­
ing to the correlations of the spin of the muon with the 
y-component of polarization of the spin of the electron in 
muonium become equal to 

(13) 

Substituting expressions (11)-(13) into the system of 
equations (10) we obtain the following system of three 
equations: 

dP30/dt= [\;Cil.' - (I/2Cil.+ A,,)fP]p,,+A,.ii'p .. , 
dp,,1 dt= -A "fPPso +.4 ,,[f'p 10, 

dp,,/dt=- [\;Cil,'- ('/,Cil.+A")fP]p,,-A,.ii'p .. +A,.ii'p,,. (14) 

The system (14) must be solved with the initial condi­
tions: 

p .. (O) =p.,(O) =0, p,,=P •. (15) 

Here Po is the initial polarization of the muon directed 
along the z axis. Solving the system (14), (15) we ob­
tain 

p=p A,,'fP'+ (oo.+A,,'fP') cos[ 00.'+ (A,,'+A,,')fP'] "'t 
, 00.'+ (A,,'+A,,')fP' . (16) 
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Here 

iil.=\;Cil.'+('/.Cil.+A,,) \fP\. (17) 

Under the conditions of relatively high temperatures, 
at which it is possible to neglect terms quadratic in the 
polarization rJ>, the quantity wI' becomes equal to the 
whole shifted frequency of muon precession. 

From (16) it can be seen that violation of the spherical 
nature of the hyperfine interaction leads to two effects, 
firstly, to the appearance of a nonprecessing part of the 
polarization, secondly, to a quite complicated tempera­
ture dependence of the muon precession frequency. In 
this case the situation is such as if we were observing 
the muon precession in an inclined field the magnitude 
and the direction of which vary with temperature, as is 
represented in formulas (1) and (2). The precession 
frequency as can be seen from (16) varies with tempera­
ture in accordance with 

Q-[ (A+BIT)'+C'IT'j"'. (18) 

Thus, we have shown that a rigorous calculation carried 
out under the assumption of rapid relaxation leads to the 
same formula (2) as the qualitative arguments. It is -
clear that one can extract from experiment the values of 
all the quantities A z,,' In such a situation these quanti­
ties must vary as the crystal is rotated. 

It must be emphasized that formula (16) describes the 
polarization of the muon situated at a certain given posi­
tion in the crystal. If there are several positions non­
equivalent with respect to the laboratory system of coor­
dinates (momentum of the beam, magnetic field), then 
the polarization will be described by a sum of several 
terms analogous to (16) with coefficient proportional to 
the problability of the muonium being situated at definite 
sites. In such a case the complexity of the Fourier piC­
ture will increase. All this makes it very promising and 
interesting to conduct experimental searches for such a 
region of concentration of doping by donor impurities, at 
which muonium still exists, but the probability of scatter­
ing by the electrons of the medium becomes very large. 

The application of the density matrix apparatus enables 
us to draw conclusions already from the very form of 
Eqs. (9) and (10) that each Fourier-component of the 
polarization will have its own width related to the fact 
that the precession frequencies corresponding to different 
positions of muonium in the crystalline lattice have dif­
ferent damping rates the magnitudes of which will also 
depend on the rotation of the crystal. 

IV. G. Grebennik, I. I. Gurevich, V. A. Zhukov, I. G. Ivan­
ter, A. N. Manych, B. A. Nikol'skil, V. I. Selivanov, and 
V. A. Suetin, Pis'rna Zh. Eksp. Teor. Fiz. 22, 36 (1975) 
[JETP Lett. 22, 16 (1973)]. -

2N. G. Nosov and I. V. Yakovleva, Zh. Eksp. Teor. Fiz. 43, 
1750 (1962) [Sov. Phys. JETP 16, 1236 (1963)1. 

31. G. Ivanter, Zh. Eksp. Teor. Fiz. 63, 1873 (1972) [Sov. 
Phys. JETP 36, 990 (1973) 1. 

Translated by G. Volkoff 

I. G. Ivanter 863 


