
2. The interaction of stars with extended gas clouds­
the products of the disruption of stars in tidal or colli·· 
sional interactions-leads to an even more rapid filling 
of the loss cone with stars, i. e., it increases their flow 
through the tidal sphere. This can be further enhanced 
by the collective interaction of stars, the importance of 
which has been pointed out by A. M. Fridman. These 
questions warrant a separate investigation. 

llFor bound stars with orbits lying within the radius rcoll 

""r*M/m, at which the kinetic energy of a star -GMm/r is 
comparable with its binding energy - Gm2 /r *' disruption as 
a result of direct collisions of stars may become an impor­
tant process. [2J However, comparison of rcoll and rorlt (Eq. 
(37» shows that in real clusters roall < rerlt, i. e., a star re·· 
mains in the region r < r coli for only a small fraction of the 
time and collisions of stars, being very rare, will not change 
the dependence n(r) in the region r<reall' 
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Self-similar motions of a gas with equation of state p = (/3 are considered. It is shown that all solutions 
with a weak discontinuity have a nonsingular horizon. The Friedmann solution belongs to a one-parameter 
family of solutions that are continuous at the symmetry center; these are described. The solutions with 
strong shock waves correspond to the problem of initial focusing of the gas toward the center in the case 
of a supercritical intensity of the discontinuity. The results of qualitative and numerical investigations of 
the corresponding dynamical system are presented. New cosmological solutions with strong and weak 
discontinuities are obtained. 

PACS numbers: 98.80.-k 

In the early stages in the expansion of the Universe, 
the dominant contribution to the matter energy was made 
by electromagnetic radiation, which follows almost un·· 
ambiguously from the discovery of the microwave black­
body radiation with temperature 2.83 OK. [1J The sim­
plest model of a radiation-filled Universe-the Fried­
mann-Lemaftre model with flat comoving space-admits 
a simple analytic expression for the metric and the en­
ergy density in Lagrangian coordinates[2]: 

ds'=d-r'-TUo[dR'+R'(dS'+sin' Sd<p')], 

e=3c'/32nGT'. 
(1.1) 

This is a self-similar (similarity) solution. It is 
therefore natural to consider the status of the Fried­
mann solution among the other self_similar spherically 
symmetric solutions and also study the physical and 
analytic properties of other self-similar solUtions, in­
cluding those with shock waves. 

In the present paper, spherically symmetric self-sim­
ilar motions are studied in the orthogonal coordinate 
system of an observer: 

ds'=c'e'dt'-e'dr'-r' (dS'+sin' Sd<p'). (1. 2) 

Self-similar spherical motions of a gravitating gas in the 
framework of general relativity were conSidered for the 
first time by Skripkin. [3] Because of a not entirely for­
tuitous choice of the variables, the correct conditions 
on the gas-dynamic shock waves in the framework of 
general relativity lacked the simplicity of these condi­
tions in special relativity, [2] but Skripkin succeeded in 
deriving a condition on the discontinuity after which the 
gas goes over into a state of rest: E =3(7xr 2t 1• Skrip­
kin reduced· Einstein's equations to an equation of second 
order with radicals. [3] From the fixed velocity of the 
shock wave, he calculated the parameters of the gas after 
the discontinuity and used these data to construct numer-
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ically the integral curve outside the static region. In [4] , 

Stanyukovich, Sharkhekeev, and Gurovich obtained a 
system of ordinary differential equations for self-simi­
lar motions. In a comoving coordinate system, Guro­
vich[5l investigated the self-similar problem for the 
maximally hard equation of state p =E. In the framework 
of the theory· of small perturbations of the Friedmann 
models developed by Lifshitz, [6l self~similar perturba­
tions have been considered by-Ruzmaikina. [7] In a co­
mOving coordinate system, the system of ordinary dif­
ferential equations for self-similar motions of a gravi­
tating gas in general relativity was investigated by Ca­
hill and Taub, [8l who showed in particular by means of 
the junction conditions at the discontinuities that known 
solutions could be jOined. 

For a photon gas in the framework of special relativity, 
one of the present authors[9l investigated all self-similar 
motions with axial and central symmetry; self-similar 
dynamical systems in the case of a central symmetry 
were considered by Stanyukovich and Skripkin in [lOo11l. 

In connection with the problem of multiparticle produc­
tion, Khalatnikovtl2l reduced the problem to the analysis 
of a linear equation in the case of one-dimensional non­
stationary motions of an ultrarelativistic gas. 

In the present paper, which is based on[l3l, we derive 
a closed system of two first-order ordinary differential 
equations that is convenient for qualitative investigation 
(Sec. 1). We show that the conditions on shock waves 
for a gas with equation of state p =E!3 for special vari­
ables in general relativity have the same form as in 
special relativity. We establish the existence of a non­
singular horizon, which we call a light horizon, for cer­
tain solutions, outside which the coordinate system (1. 2) 
becomes meaningless. For the cosmological solutions, 
this is due to the fact that, relative to the symmetry cen­
ter, the particles outside the light horizon have a super­
luminal velocity. The integral curves on which the gas 
velocity is zero at the symmetry center form a one­
parameter family, which includes the Friedmann solu­
tion. Therefore, all solutions that do not have a source 
or a vacuum at the symmetry center must go over to 
this family either by means of a shock or by means of a 
weak discontinuity. It is interesting to note that all the 
solutions with weak discontinuities have a light horizon, 
on which the gas velocity with respect to the system 
(1. 2) is equal to the velocity of light but the pressure is 
finite. In these solutions, the complete spacetime mani­
fold cannot be covered by the coordinate mesh (1. 2). 

The situation with regard to the solutions that have 
shock waves is very different. We show that there exists 
a critical intensity of the shock which is such that if a 
distontinuity with subcritical intensity is realized in the 
solution then the solution has a light horizon. If the 
amplitude of the discontinuity is super critical, the solu­
tions do not have a horizon and, qualitatively, have all 
the properties of self-similar Cauchy problems of the 
focusing of a gas toward the center described by Sedov 
in his book. [al In the case when a static region is 
formed, none of the solutions with a shock wave have an 
event horizon in the system (1. 2), but all of them with 
a weak discontinuity do have one. We find out what are 
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the initial data for which the problems of expansion and 
focusing have a physical meaning. We describe the phase 
portraits of the self-Similar curves near the light hori­
zon, the sonic line, and the coordinate origin. The fol­
,lowing results of numerical calculations are presented: 
,1) solutions with spherical shock waves with subcritical 
and supercritical intensities having within them either a 
piece of the Friedmann-Lemaftre Universe or a static 
region; 2) solutions with a weak discontinuity along the 
sonic surface, which contain either the Friedmann solu­
tion or a static region; 3) numerical solutions for inho­
mogeneous cosmological models, which also have a light 
horizon. 

§1. DERIVATION OF A CLOSED DYNAMICA SYSTEM 
AND THE CONDITIONS ON THE SHOCK WAVES 

For our purpose, it is convenient to introduce a radial 
velocity (normalized to the velocity of light) defined at a 
point as the ordinary velocity with respect to the local 
Lorentz coordinate system with basis vectors directed 
along the coordinate lines (1. 2). The velocity V is ex­
pressed in terms of the components of the four-velocity 
u' and the metric coeffiCients e"l and eV as follows: 

For self-Similar solutions, the unknown functions lI(r, t), 
y(r, t), V(r, t), and p(r, t) have the form 

v=v(J.), 1=,,{(1..), xp=P(I..)lr'; I..sqlct_ 

We introduce a new self-Similar variable l:, which is 
the velocity of the surface .x = const with respect to the 
local Lorentz coordinate system: 

(1. 3) 

In this case, Einstein's equations have the form 

(xT,'=Ro') , 4PV = X-'~i;2(1-L) X_eT; (1. 4) 
i-V' di;· , 

( XT '=R '-~R) -P (SV'+!) =i-~-~(l-L)~· (1. 5) , , 2' i-V' X X di; , 

(XT,·=R.·- ~R)' p(:~~)=i-~+X-'~~~; (1.6) 

L-2(X-i) (V'~+i;-2V)/[i;(S+V')-4Vl. (1. 7) 

From Eqs. (1. 3) and (1. 5) we can calculate the self-sim­
ilar part of the pressure explicitly if we know the solu­
tions X(l:) and V(l:): 

X-i (1-V')i; 
P(i;)= X . (S+V')i;-4V (1. 8) 

The coefficient 1I(l:) can be found from known X(l:) and 
V(l:) by means of quadrature from Eq. (1. 5) if P(l:) is 
replaced by the expression (1. 8): 

dv 4V(X-t) 
i;df{1-L) = ;(S+V')-4V· 

If the function P(l:) is eliminated from Eqs. (1. 4) and 
(1. 6), we obtain 

dX 4V(X-t)X 
i;df(t-L)= ;(3+V')-4V· (1. 9) 
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Eliminating the pressure from the equations of mo­
tion T:U = 0 and T~;f = 0, we obtain 

C~(1-L)= (1-V') [2V-~V'12-3C/2+Q] 
dC -(1-V~)'+3(V-C)" 

(1.10) 
Q= 4(X-1) [V'C-3VC+3t'/2+V'- V'CI ] 

t(3+V')-4V 2 . 

The dynamical system of equations (1. 9) and (1.10) for 
xW and Vet) is closed. The connection between the 
variables t and ~ can be obtained by integrating the equa­
tion 

dinA 
tT(1-L)=1, 

which follows from Eq. (1. 3). 

(1.11) 

Conditions at the discontinuities. The definition of 
differentiable manifolds includes a fixed class of coor­
dinate meshes within which the transition from one sys­
tem to another must satisfy given smoothness conditions. 
In order to cover the possibility of occurrence of gas­
dynamic shock waves, the coordinate transformations 
within a distinguished class of coordinate systems must 
be doubly differentiable with piecewise smooth third 
derivatives. Then in the absence of a medium, the dis­
continuities of the second derivatives of the metric 
across nonisotropic surfaces can be eliminated by means 
of the choice of the discontinuities of the third deriva­
tives of the coordinate transformations. The differen­
tial operator (Ru. ... tg,,,R) n" contains only the first deriv­
atives of the metric along the normal to the surface of 
the discontinuity, and is therefore continuo~. It then 
follows from Einstein's equations that the energy and 
momentum flux through the shock wave is continuous, 
[T,,,]~=O. 

When a coordinate system is distinguished by means 
of a certain four additional restrictions on the form of 
the metric it may happen that the resulting coordinate 
mesh does not belong to the privileged family of coor­
dinate systems. Therefore, in such coordinate sys­
tems the metric and its first derivatives may have a 
discontinuity. In this case, as Sedov shows, [15] both the 
first and the second quadratic form of the surface of the 
discontinuity must be continuous across a nonisotropic 
discontinuity surface. For the coordinate system (1. 2) 
there follows from this continuity of the metric and en­
ergy-momentum flux through the discontinuity surface. 

Suppose the equation of the shock wave has the form 
fer, t) =0. We denote by ct the velocity of the shock wave 
with respect to the orthonormal frame constructed from 
the local coordinate basis (1. 2): 

ct=e(T-Y)/1 of / ~. 
ot or 

The four-normal to the shock wave has the components 

n,=-eTl'1 (1-1') 'I., no=eY/~1 (1-f') 'h. 

From the conditions nk[T~l,;=n,,[T~]=O there follow, re­
spectively 
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[ P+e P+e -] 
--+P---~ =0, 
1-V' 1-V' 

[ P+e - -] -(t-V)-Pt =0. 
1-.l" 

(1.12) 

(1.13) 

It is remarkable that these conditions have the same 
form as in special relativity. [8] 

Eliminating the pressure for an ultrarelativistic gas 
from Eqs. (1.12) and (1.13), we obtain 

VI=(3~'-1-2V;t)/[V,(t·-3)+2t]. (1.14) 

Here, V1 and Va are the velocity of the gas particles be­
fore and after the discontinuity in units of the velocity of 
light. In the coordinate system moving with the dis­
continuity, the condition (1.14) means that the product 
of the velocities before and after the discontinuity is 
equal to the square of the velocity of sound in the photon 
gas. ta] 

§2. THE FRIEDMANN SOLUTION AND QUALITATIVE 
INVESTIGATION OF THE SYSTEM (1-9)-(1.10) 

The Friedmann solution can be readily transformed to 
the coordinate system (1. 2) from the system (1.1). One 
transformation is obvious: ao TRa =r2; the other trans­
formation is found from the condition of orthogonality of 
the metric (1. 2), for which it is convenient to seek it in 
the form 

,,==rl/(J..), A-rlct. 

After simple calculations we obtain for the functionf(~) 
and the velocity V(~) 

V=/12=AI[1+(1-J..')"·]. (2.1) 

The metric coefficients e" and e" in the Friedmann solu­
tion are equal to each other: 

eT=eY=[ 1 + (1-A') '1']/2 (1-A') 'I,. (2.2) 

The pressure as a function of the coordinates is given by 

p=c't' (1- (1-A') 't.) I/&tGr'. (2.3) 

The coordinates (1. 2) can cover only part of the Fried­
mann solution with infinite comoving space. 

Phase portraits of the singular points. A. We linear­
ize the system (1. 9)-(1.10) around the straight line t ' 
=0, V=O. We denote V!t =q. Then the system (1.9)­
(1.10) can be reduced to the form 

dt 2dq[3-4q-2(X-1) (1-2q) ] 

y= (3-4q) [3(1-2q)-4(X-1) (1-q) ] 

dX[3-4q-2(X-1) (1-2q) ] 

4q(X-1)X 

(2.4) 

It follows from this that in the first approximation in V 
and t the integral curves around the straight line t = 0, 
V = 0 will lie on the surfaces XCV / t, a), where X( q, a) is 
an integral curve of the equation 

dXldq-Sq(X-1)XI(3-4q)[3(1-2q) -4(X-1) (1-q) ]. (2.5) 

The qualitative picutre of the integral curves of Eq. (2.5) 

N. R. Sibgatullin and O. Yu. Dinariev 842 



x 

FIG. 1. Integral curves of 
Eq. (2.5). The singular points 
have the coordinates A(7/IO, 0), 
B(3/4,O), C(3/4,I), D(O, 7/4), 
E(I/2,I). 

is shown in Fig. 1. If, as we move along an integral 
curve, we are to attain a zero value for l; with direction 
V / l; =qo, it is necessary, in accordance with (2.5), that 
the point Xo, qo be a Singular point of Eq. (2. 5). An ad­
ditional investigation shows that one of these pOints has 
the coordinates Xo=l, qo=i-, and the other Xo=7/4, 
qo=O. 

The one-parameter family of integral curves that enter 
the point Xo = 1, qo = 0, has the asymptotic behavior 

V=~~+ (~_~) ~,+~(~_ 2P,' _ 5P, )~.+ ... 
2 40 5 14 40 5 2 ' 

xp=P,t-'[H(i-2P,)t'+··. ]. (2.6) 

X=1+P,~'+P, (i.._ PI) ~.+p,(~_!?.p, +i..P.')~'+'" 
5 5 2803535 

For the parameter value Pi = t, the expressions (2.6) are 

V-I 

1;-1 

FIG. 3. Integral curves of the system (2.7) projected onto the 
V,I; plane. 

The integral curves lie (in the first approximation) on 
the family of surfaces X =X«V-l)/(l; -1), a), where 
X(q, a) is an integral curve of the equation 

dX/dq=2 (X-1)X(q'+1-4q) /q (2-q) (3q-q'+1). (2.8) 

In Fig. 2, we show the qualitative picture of the integral 
curves of Eq. (2.8), the arrows indicating the direction 
of increasing l;. Figure 3 is the qualitative picture of 
the integral curves for X> 1 and fixed value of the con­
stant of integration in Eq. (2.7) in the projection onto 
the V, l; plane. The direction q = 2 is singular. 

The asymptotic behavior of the ends of the loops (Fig. 
3), which approach the straight line V = l; = 1 as X - 00 

with finite slope qo * 0, is 

ci 
X=-+O(l) 

1-~ , 
V-1-q.(t;-f)+O[ (~-1)'], P-....!!!­

q.-2 . 
(2.9) 

the first terms in the expansion of the Friedmann solu- If the slope l'S 0 th as t ti b h' f th q=, e ymp 0 c e aVlOr 0 e curves 
tion (2.1)-(2.3). The ~xact solutionXo=7/4, V=O, P is 
= (7 xr 2>-1 corresponds to a static configuration of the gas. 

The complete set of solutions of Eqs. (1. 9)-(1. 10) de­
pends on two parameters, while the solutions (1. 6) de­
pend on only one; therefore, all the remaining solutions 
must go over to one of the curves (2.6) or the static solu­
tion by means of a weak discontinuity along the sonic line 
or by means of a strong discontinuity (if, of course, there 
is neither a source nor vacuum at the center). 

B. We now study the behavior of the integral curves 
of the system (1.9)-(1.10) near the light cone V=l, l; 
= 1. If the system (1. 9)-(1.10) is linearized with re­
spect to l; -1 and V -1 and we write (V -1)/(l; -1) =q, 
then we can reduce the system to the form 

~ _(4-q-2X) (q'+1-4q)dq 
~-1 q(2-q) (3q-q'+1) 

~ 
. I 

J-YIJ 
--z-

(4-q-2X)dX 
2(X-l)X . 

FIG. 2. Integral curves of Eq. (2.8). 
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(2.7) 

Z+ ff '1 

X-l=a(~-1)+O[ (1-~)'], V-l=-~(~-l)'+O[ (~-1)'1. 
p=1/2Clo~(~-1)', a>O, ~>O. 

It is necessary to consider separately the asymptotic 
behavior of the curves as q - 00. Analysis shows that 
there exists a one-parameter family which does not be­
long to the two-parameter family of curves (2. 7) and 
which has the asymptotic behaviors 

V=1-Cloil-~+(·/.+Q:'I16) (1-~)+ ... , 

x(a"+2)=a(1-~)-"'+(a·-36)/16+ ... ; P"'1. 
(2.10) 

When a =.f'2, the expressions (2.10) are the asymptotic 
behavior of the Friedmann solution as l; -1. Numerical 
calculations show that the one-parameter family having 
the asymptotic behaviors (2.6) in the limit l;- 0 has the 
asymptotic behaviors (2.10) as l;-1. These solutions 
can be appropriately called "submanifolds" of the inho,­
mogeneous cosmological models bounded by the light 
horizon. It is interesting that for the Friedmann solu­
tion the coeffiCient a/(a Z +2) in the asymptotic behavior 
for X has the maximal value. 

c. We now investigate the structure of weak discon­
tinuities near the sonic lines, which are defined as the 
zeros of the numerator and the denominator on the right­
hand side of (1.10): 

~,=(Vot'3+1) (V,+1'3)-" 
X~-1=(V,-1'3)2[4(1-v.') ]-'. 
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As t varies from ..fi/3 to ..fi/2, we obtain the sonic lines 
in the different inhomogeneous cosmological models de­
scribed above. When to is eq~ to ..fi/3, we obtain 
from (2. 11) the sonic line in the static solu.tion: Xo = 7/4, 
Vo =0, to =..fi/3. Near this line, the curves from a de­
generate nooe, at which they arrive on the sonic line 
tangent to the straight line V=O, X=7/4. 

When ..fi/3 < to < ..fi/2, the curves near the sonic line 
(2.11) form a node lying in the plane 

X-X.-8(V-V.), 
6- V,(S-V.')(1'3+V,)(7-2V.l'3-SV.') 

2(i-V.")'(l'S-SV,'l'S+4V.) (HV.l'S) 

Finally, if to =..fi/2, we obtain from (2.11) the sonic 
line in the Friedmann solution (2.1)-(2.3): Xo=3/2, 
Vo =..fi/3, to =..fi/2; near it, the curves form a de­
generate node.- All curves arrive on the sonic line tan­
gent to the straight line 

X-'I,=21'3(t-1'3J2) , 
- 4 -

V-l'S/S- g (t-l'S/2). 

D. The investigation of the system (1. 9) and (1.10) 
gives the following asymptotic expressions for X(t), 
V(t), aDd pm: 

X-X.+0(1/t), V=V.+0(1/t) , P=P.+0(1/t) , 

p,-(1-v.') (X.-l)IX.(S+V,'). 
(2.12) 

(The concrete expressions for the coefficients of 1/1: 
are given inUll; for Xo -1 = (3 + V~)[2(1 + V~)]'·1 the solu­
tions can be expanded in powers of t-1/Z). 

At large t, the self-similar variable :\ is related to 
the variable t (1.11) as follows: 

.5.._1-(1 2(Xo-1)(V,I+1»). 
d1o. A. . s+v.' 

To large positive t there correspond :\» 1 for (l-L»O 
or 

X,«5+SV.') [2(HV.') 1-'. (2.13) 

Then in the limit t - co we obtain a restriction on the pos­
sible value of the constant Po in (2.12): 

P,«1-V.') (5+3V.')-'. (2.14) 

Thus, the self-similar Cauchy problem for focusing 
or expansion for a gravitating photon gas has a solution 
under the restrictions (2. 13) and (2.14). The actual in­
tegration of the system (1. 9) and (1.10) may restrict 
these inequalities further. Other singular points are 
investigated inUSl. 

f3. DISCUSSION OF RESULTS 

To investigate the possibility of analytic continuation 
of the solutions beyond the light horizon, let us consider 
the connection between the comoving coordinate system 
and the observer's coordinate system for the self-simi­
lar motions. Suppose the metric in the comoving coor­
dinate system has the form 

ds'=a'd't'-b'd,'-rdQ'. 
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In the comoving coordinate system, the momentum equa­
tion gives p =a-~(T) and from the energy equation we ob­
tain p3/f.y zb =f/'W. [2l We fix the choice of the time T 
and the Lagrangian coordinate in such a way as to obtain 
/(T)=A'T2, f/'W=A3~1/2. 

Self-similar solutions in the comoving coordinate sys­
tem are distinguished by the requirement 

a=a(m), b=b(m), r-Vl(m), p=a-'A''t', (3.1) 

where m = ~/T. By definition, the velocity four-vector 
in the comoving coordinate system has only a nonvanish­
ing fourth component: ul(O, 0, 0, a-I). By the rule for 
transforming vectors in the coordinate (1. 2), we have 

at u· __ a- t • 

~'t 
(3.2) 

Dividing the first equation by the second and using the 
definition of the velocity V from (3.1), we obtain 

ar I at I (V-"I ) - -V--. exp -. 
a't I 1/'( I 2 

(3.3) 

From the condition of orthogonality of the comoving co­
ordinate system, we obtain by means of (3.3) 

V~I _exp(V-"I)~1 . 
1/; • 2 1/;. 

(3.4) 

Substituting r = ~(m) and t = ~(m)/:\ into Eqs. (3.3) and 
(3. 4), we obtain from them 

dInR V 
~(1-L)- (V-m' 

dinm 1 L 1-V' 
(3.5) 

~( - )= - (V-t)(1-Vt) 

For the coefficients a and b, using (3.5), we obtain 

m'R'X (i-Vt)' a'------t' '1-V' , 
b'- RtX (t-V)' . 

t' 1-V' 
(3.6) 

Equations (3.5) and (3.6) determine R, a,. artd b as a 
function of m in the parametriC form in terms of t. 

Substituting in (3.5) the asymptotic behaviors (2. 10) of 
the inhomogeneous cosmological models near the horizon, 
we obtain expressions for R(t), m(t), a 2(t), and b2(t) as 
series in powers of (1-t;V /z : 

R '+2 
_= 1 +_a_, (1-~)"'+0(1-t), 
R. 2a' 

a' 
a'-m 'R '---+O«f_~)'I') 

• , 2 (a'+2) .., 

m a'+2 , 
-= l--,-(l-t) 1'+0 (1-t), 

mo a . 
(3.7) 

a' 
b'=R.'---+ O((1-t),/,). 

2 (a'+2) 

Expressing (1- t)1/8 in terms of m - mo, we obtain for 
R/Ro, a 2, and b2 analytic series in powers of m =mo that 
contain no singularities on the light horizon. Formally, 
the continuation through the horizon corresponds in this 
case to a change in the sign in front of (1- t)1I2, 1. e., to 
the transition to a different branch, l; formally remaining 
less than unity outside the light horizon as well. 

The solutions with the asymptotic behaviors (2.9) can 
also be continued analytically through the light horizon. 
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FIG. 4. Graphs of V= VIA) for solutions with weak and strong 
discontinuities in the presence of static core: a) typical solu­
tion with weak discontinuity, b) typical solution with strong 
discontinuity . 

For the functions R(b), m(b), a 2 (b), and b2 (b) we obtain 
in this case expansions in powers of b-l: 

!!...= l-~(~-l)+O[(~-l)'], 
R. (q.-l)a 

~ = 1 + 2q.(q.-2) (~-1) +O[ (~-1)'], (3.8) 
m. (q.'-1)a 

.- 'R' (q.+l)· + O(~ 1) a-mo o(X.--- ~-. 

2q. 

Expression b - 1 in terms of m - mo, we obtain analytic 
series in powers of m =mo for the unknown functions. 
The solution outside the light horizon is given by Eqs. 
(3.8) for b>1. 

Thus, the continuous and discontinuous self-similar 
motions of an ultrarelativistic gas described above indi­
cate that all the continuous self-similar motions of the 
gas have a cosmological nature since in accordance with 
(3. 7) they can be analytically continued outside the light 
horizon. This one-parameter class of solutions, which 
includes the Friedmann-Lemaitre solution, is, generally 
speaking, a set of inhomogeneous expanding cosmological 
models (see (2.6) and (2. 10». The parts of the curves 
of this class up to the sonic line (2.11) occur as central 
cores in the larger two-parameter class of solutions 
that have weak discontinuities. (In the b, X, V space the 
sonic spheres are represented by pOints on the sonic 
line (2.11).) To every central core one can join any 
solution of the two-parameter class of solutions across 
the sonic sphere. The analytiC continuation beyond the 
light horizon of each such solution with weak discontinu­
ity in the comQving coordinate system is given by Eqs. 
(3.8). These solutions are cosmological inhomogeneous 

o 

P=1!7 

o 
FIG. 5. Graphs of P=P(A) for solutions with weak and strong 
discontinuities in the presence of a static core. 
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v 

V=-T 

FIG. 6. Graphs of V= VIA) for solutions with weak and strong 
discontinuities in the presence of a homogeneous Friedmann 
core. Typical curves with strong discontinuity: 1) Oa, a solu­
tion with light horizon, 2) Ob, in which V-O as A - "', 3) Oe 
corresponds to focusing toward the center as A - "'. On the 
Friedmann curve 001 there is a point of weak discontinuity 
S (,{3/2, 1/13); OSB is a typical curve with weak discontinuity. 
Inhomogeneous cosmological solutions: OA(PI = 0.125), Oe(PI 
= 0.75). 

models with w~ak discontinuity across the sonic charac­
teristic. They have greater generality than the class of 
regular cosmological solutions (2.6) and (2.10) since 
they depend on two parameters. 

In contrast to the solutions with weak discontinuity, in 
the solutions with shock waves of sufficiently high inten­
sity there is no light horizon. Within the shock wave, the 
solution is described by a piece of one of the solutions 
(2.6) and (2.10) or by the static solution. Thus, homo­
geneity and expansion of the matter around the observer 
do not by themselves guarantee homogeneity of the Uni­
verse as a whole. At a sufficiently great distance from 
the center, the shock wave may lead to a complete change 
in the structure of the solution with the matter pressure 
decreasing to zero at infinity. In other words, homo­
geneously expanding regions (pieces of Friedmann uni­
verse) can be formed as a result of the fOCUSing of gas 
toward the center of a star with a pseudo-Euclidean 
asymptotic behavior preserved at infinity. 

In their interesting paper, [18] Carr and Hawking inves­
tigated the problem of the self-similar formation of non­
stationary black holes in cosmological models that tend 
at large distances to the flat Friedmann model. They 
used the comoving coordinate system. They showed that 
the event horizon for the black hole is inside the light 
horizon if the latter eXists, and that the asymptotic ap­
proach to the Friedmann model occurs outSide the light 
horizon. Our investigation corresponds to the opposite 
case of solutions that are nonsingular within the light 
horizon. 

In the case of subcritical intensity of a strong discon­
tinuity, the solutions behind the shock wave have a light 
horizon. Such solutions correspond to self-similar in­
homogeneous universes with shock waves. Their ana­
lytic continuation beyond the horizon is given in Eqs. 
~.~. . 

Figures 4-7 show the results of numerical integration 
of the systems (1. 9) and (1.10) with the self-Similar var­
iable 1I.;:. r/ ct plotted along the abscissa. Figures 4 and 
5 show the solutions for the velocity and the pressure 
with strong and weak discontinuities that have a static 
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FIG. 7. The graphs of P=P(X) corresponding to the curves of 
Fig. 6. 

core. Figures 6 and 7 show the solutions for the velocity 
and pressure with strong and weak discontinuities that 
have a uniformly expanding core (a piece of the Fried­
mann universe). In the same figures we show the in­
homogeneous cosmological solutions (2.6) and (2.10) for 
the values of 0.125 and 0.75, respectively, of the param­
eter Pl' 
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The properties of particle-like solutions of the scalar Higgs equation are considered. These solutions 
should correspond in the Vinciarelli-Drell model to gIuon-type mesons that contain no quark-antiquark 
pair. 

PACS numbers: 11.10.Qr 

I. INTRODUCTION 

According to present indications, the effective mass 
of the quarks inside hadrons is small; in particular, for 
non-strange quarks it turns out to be of the order of 5-
10 MeV. [1] On the other hand, free quarks either do not 
exist at all or their concentration in matter and their 
production cross section are small. [2] 

This situation makes it necessary to resort to models 
in which the quarks interact with fields of the boson type, 
and this interaction is such that a small region -10-13 

cm is produced, in which the quarks move with velocity 
- c and with a mass on the order of zero, whereas in the 
remaining space they can either not be present at all, or 
have their very large effective mass. Models of the first 
type[S] correspond to absolute confinement, while in the 

model of the second type the free quarks should be ob­
servable. If the data of LaRue, Fairbank, and Heb­
bard[4] were to be confirmed, then we should give pref­
erence to the models of the second type. The simplest 
of these models is the Vinciarelli-Drell model, [5] in 
which the quark field q interacts with the scalar Hicks 
field u described by the equationl ) 

Du=4A'u(T)'-u'). (1.1) 

For (1.1), vacuum corresponds to u =± 1/. If the interac­
tion of the quark with this field takes the form/uijq, then 
the quark outside the hadron has a mass /1/, and if /1/ 
»1 GeV, then the free quark has a small effective mass. 

Since arguments exist favoring the assumption that the 
interaction of the quarks is due to colored Yang-Mills 
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