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The frequency dependence of the magnetic susceptibility of ferromagnets in the paramagnetic phase near 
the Curie point is considered. The asymptotic form of the susceptibility at high frequencies is obtained 
both for the case of pure exchange interaction and when account is taken of the dipole forces; in all the 
considered cases, the real part d the susceptibility was found to be negative and larger in absolute'value 
than the imaginary one. The last section of the paper deals with the possible form of the frequency 
dependence at intermediate freq~lencies. 

PACS numbers: 75.30.Cr, 75.30.Et 

1. INTRODUCTION 

The critical dynamics of ferromagnets is presently 
investigated experimentally by two methods that comple- 
ment each other: with the aid of inelastic neutron scat- 
tering and by studying the magnetic susceptibility in an 
alternating magnetic field. The main result obtained at 
the present time with the aid of neutrons is the confir- 
mation of the dynamic-similarity hypothesis at temper- 
atures not too close to the Curie point and at not too 
small momentum transfers i. e., in the region where 
the dipole forces and the associated demagnetization ef- 
fects can be neglected (see, e .  g., C1'21). In addition, 
~ynn"' recently observed, in the spectrum of neutrons 
scattered in iron above the Curie point, peaks whose po- 
sition depended on the momentunl transfer in almostthe 
same manner a s  the position of the spin-wave peaks a t  
room temperature, although their intensity was much 
lower. Lynn interpreted these peaks a s  spin waves 
above the Curie point. It should be noted that a conclu- 
sion that spin waves exist  above T, was deduced back in 
1969 by Okorokov et  al. ['I from data on small-angle 
scattering of neutrons in iron and in nickel; at the same 
time, no such waves were observed in EuO. 

Investigations of the frequency dependence of the mag- 
netic susceptibility a re  devoted naainly to the relaxation 
of the homogeneous magnetization. The data obtained 
thereby determine therefore the role played in the criti- 
cal dynamics by forces that violate the total-spin con- 
servation law and a re  therefore ~mesponsible for this re-  
laxation. These a re  primarily the dipole magnetic 
forces. They a re  evidently most. significant in the tem- 
perature region where the static magnetic susceptibility 
x is large ( 4 q  >> I), and therefore magnetization-rever- 
sal process play an important role. At present it is still 
too early to draw final conclusio~is concerning the agree- 
ment between the experimental datac5-'] and the predic- 
tions of the various theories. C'lZ1 This is connected to 
a considerable degree with the falct that the experimen- 
tal prerequisites without which no quantitative compar- 
ison of experiment with theory it; possible have become 
clear only recently; the corresponding analysis can be 
found in the paper of Luzyanin and Khavronin. It turns 
out, in particular, that owing to the critical slowing 
down of the relaxation the reciprocal time of the homo- 
geneous relaxation r tends to zero and unless special 

measures a r e  taken, the condition w < r is violated, 
where w is the frequency of the external field The ex- 
perimental data can then no longer be interpreted with 
the aid of the simple Lorentz for mula x - r (- iw + I?)-' 
with a frequency-independent r. In the present paper, 
on the basis of the dynamic-similarity hypothesis pro- 
posed inc1", the behavior of the dynamic susceptibility 
is investigated in the high-frequency limit. In particu- 
lar,  asymptotic formulas a r e  obtained for the homoge- 
neous high-frequency susceptibilities; it appears that 
these formulas can be verified relatively simply in ex- 
periment. The last  section of the paper is devoted to a 
discussion of the possibility of a resonant behavior of 
x&, w), which might be interpreted in terms of relative- 
ly dampled spin waves above T,. 

The present paper is a direct continuation of earlier 
papers, [ I ~ P I O .  "1 referred to  hereafter a s  I, 11, and III, 

and the same notation is used. 

2. ASYMPTOTIC PROPERTIES OF THE 
SUSCEPTlBl LlTY 

Consider a cubic ferromagnet, situated in a zero mag- 
netic field, a t  temperatures higher than T,. The mag- 
netic susceptibility of such a system is described by a 
single scalar function ~ ( k ,  w), where k is the momentum 
and w is the frequency. The properties of x which will 
be needed subsequently follow directly from the spectral 
representation for this quantity, and reduce to the fol- 
lowing (see, e. g., Landau and ~ i f s h i t z " ~ ~ ) :  1) ~ ( k ,  0) 
> 0.2) ~ ( k ,  w) is analytic in the upper w half-plane; 3) 
~ ( k ,  w) assumes no real values anywhere in the upper 
half-plane, apart from the imaginary axis, where i t  is 
positive; 4) on the real  axis the sign of Imx coincides 
with the sign of w; in addition, x(- w*)  = X* (w) if w is 
complex. It follows directly from these properties that 
x decreases not faster than w-2 as W-  m. We reckonthe 
phase q~ of the frequency w in the usual manner from the 
positive real  axis in a counterclockwise direction, and 
assume that ~ ( w )  decreases in power-law fashion asl  wl - 03. The requirement that x be positive on the imagi- 
nary axis fixes the phase of this expression, and we have 
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the quantity r can be written in the form1' 

FIG. 1. Regions with different critical dynamics: 1-critical 
exchange region; 2-hydrodynamic exchange region; 3-critical 
dipole region; 4-hydrodynamic dipole region. 

cos (nz/2) & ( a )  
R e X ( k , o ) = ~ . . ( k ) ;  I m ~ ( k , o ) = ~ - ( k ) -  

lol= 2 

where x,(k)> 0; Rex and Imx are written out on the real 
axis, and E ( W )  is the sign function. 

The condition 3 leads directly to the restriction x c  2; 
if 1 < x S 2  we have Rex<O. 

When account is  taken of the demagnetization effects 
considered in 11, there are four temperature and mo- 
mentum regions with different critical dynamics (Fig. 
1). We determine x and X, for each of these region. If 
dynamic similarity obtains and there is no need to take 
into account additional weak interactions (regions 1 and 
2 without dipole forces, and regions 3 and 4), this can 
be easily done with the aid of the usual similarity-theory 
assumption that if one of the variables is very large then 
only the dependence on this variable remains; but this 
should leave in regions 1 and 2 an additional factor k2 
that ensures conservation of the total spin. We, how- 
ever, shall use a more detailed analysis with the aid of 
the Kubo formulas. As explained in IT, it is  more con- 
venient to replace x by a Green's function G (designated 
G, in 11) connected with x by the relation 

ooG (k, o)  =4nx(k, o ) ,  o,=Qn (gp)'u,- ' ,  (2) 

where w, is  the characteristic dipole energy. With the 
aid of the Kubo formulas we can rewrite G in the form 
(see I and 11) 

G(k, o )  =G(k)r{k,  o )  [ - io+r(k,  ")I-'=G(k)F(k, o ) ,  (3a) 
r ( k ,  o )  =G-'(k) (iw)-'[Q)(k, o )  -0 (k, 0)  I ,  (3b) 

i -  
(D (k, o )  = -J dt ex"'( [Ska(t) ,  S-ra(0) ] ), 

0 

(34  

where Sk is  the Fourier transform of the spin density. 
If the exchange and dipole forces are taken into account, 
we have 6 = (s), + (b),, with 

Here Vk is  the Fourier transform of the exchange inte- 
gral. 

We consider first the case of pure exchange interac- 
tion. It is that in this case we have dynamic 
similarity with an index z, = $(5 - 7). This means that 

o k r. (k, o )  - ~ ' - ~ k ' . l  (x,. _) . 
where x = d '~"  is the momentum and is equal to the re- 
ciprocal of the correlation radius, a is a length on the 
order of the lattice constant, and T = (T - T=)G'. The 
factor @ is automatically separated in this expression 
by virtue of (4a); it is a consequence of the conservation 
of the total spin in exchange interaction. On the basis 
of (3c) we can represent r as  a product of two factors, 
one of which is independent of o, namely l? 
=[k2~-1(k)]p(lc, w). The diagram series for r is shown 
in Fig. 2; it was investigated in detail in I for k << x and 
w- 0. We now want the result for large w. To this end 
it suffices to note that in the limit a s  w-=, after sepa- 
rating the factor #G-', all the diagrams cease to depend 
on k and x, i. e., p is a function of w only. That this is 
indeed the case is easiest to trace with the first diagram 
of Fig. 2 as  an example. As shown in I, the corre- 
sponding contribution to p is proportional to the integral 

dz, dx2 Im F(k+q, 2,) Im P(q, z,) 
x,z,(z,+z2-o-is) 

(6) 

In this expression we took into account the renormaliza- 
tion of the bare vertex with the aid of the Ward identity, 
and this led to the appearance of the additional factor 
qeq; this renormalization was discussed in detail in I. 
The Green's function satisfies the well-known sum rule 

by virtue of which the integral with respect to xi and x, 
converges well. But if we neglect q + % in (6) in com- 
parison with w and take (7) into account, then the factor 
q2  in the numerator gives rise to an integral that div- 
verges in the region of large q. This means that as  w- * 
the characteristic quantities of q under the integral sign 
are determined by the value of o. and dynamic similar- 
ity gives for them the estimate q- ollLe.  As a result, 
the entire integral is  proportional to w"*'"e. Because 
of the dynamic similarity proposed by us, a similar esti- 
mate is obtained also for more complicated diagrams. 
A s  a result we obtain for r as  w- w: 

If this expression is written in the form (5), then we de- 
termine once more the dynamic exponent z,. Thus, as  
W- 03 we have 

FIG. 2. 
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The phase was chosen in this expression to satisfy the 
requirement that r be positive on the upper part of the 
imaginary axis. This requirement can be easily ob- 
tained from the spectral representation that follows for 
r from the definition (3a). Formula (9) is valid at  k <<x 
if w >> Tc(xa)de- DX', where D is the spin-diffusion coef- 
ficient introduced inclsl in the theory of dynamic similar- 
ity. On the other hand if k >>x, then for (9) to be valid 
we must satisfy the condition w>:> Tc(ka)ze. In these two 
extreme cases we have 

4' 8~4-?1)1(5-n) 

c ( k o )  = - (ka)  a (5) 
T, o 

rp T 2('-")1(5.-n) n 
~e ~ ( k ,  o )  =- - (2) cos - , 

T .  1 0 1  5-rl 

where I)- 1 and we have used the well-known formula 

As shown in 11, in the temperature region 47r,~(0,0) 
>> 1 and a t  momenta k << go = a - ' ( ~ , ~ ' ) ' ~ ~  (regions (3,4) 
the critical dynamics is determined by the dipole forces 
and a new dipole dynamic-similarity regime sets in, with 
an exponent zd = z ,  - l / v ,  where 1, is the index of the 
correlation radius. If k > q, then the dipole forces have 
little effect on the dynamics, andi exchange dynamic sim- 
ilarity takes place a s  before, while at k- go the two re-  
gimes a re  joined together. The characteristic energy 
in the region of dipole similarity is given by 

In the right-hand side of this expression, use was made 
of the approximate equation v =%. At nonzero w we have 
in lieu of (5) 

Now, by virtue of (4b), the bare vertices of the diagram 
series of Fig. 2 no longer depend on the momentum, but 
only on its direction. This leads, a s  shown in 11, to 
suppression of the fluctuations polarized parallel to the 
momentum. It turns out a s  a result that the dynamics 
is determined by diagrams with :rescattering (the second 
and more complicated diagrams of Fig. 2), and the spe- 
cifics of the rescattering are  such that (see 11) the inte- 
grals of type (6) contain in place of g-* the factor 
[q'"1vvcp(q/~)]2. If 3 - 2/v > 0, then the corresponding 
expression at  large w and at zero k and x ,  just as in the 
exchange case, remains finite arid we obtain instead of 
(8) 

where a = 2-3v is the heat-capacity exponent. Writing 
down the expression for I' in the form (8), we can deter- 
mine z, once more. We see that xd < 2 only if ff < 0, a s  
was already assumed in tbe derivation of (13). Accord- 
ing to calculations by Fisher and Aharony, c'61 we have 
in the dipole region or: - &, i. e . , actually x, < 2, al- 

though this inequality is satisfied "at the limit." It 
should be noted in this connection that in 11, in the deri- 
vation of the dipole similarity, we used in fact a corre- 
lation-coalescence rule that is valid precisely if a < 0. 
The point is that, for example, for the four-particle 
vertex r(p, q) a t  p >> q >> x this rule must be written in 
the form 

where q,,- 1, and for > 0 the principal term is the sec- 
ond one, while a t  a! <O it is the first, which we used in 
fact in 11. If we use the second term, then at  k < x  the 
characteristic dipole-similarity energy will be the same 
a s  in 11, and at k >> -A we have 

where g- 1; we then have in place of (13) 

It should be noted that in the variant with a > O ,  owing to 
the factor in (15), there is no natural matching of 
the dipole and exchange energies at k- go; moreover, at  
these values of k the dipole energy depends on the tem- 
perature and turns out to be much higher than the ex- 
change energy. It appears that this circumstance is an 
indirect confirmation of the correctness of the sign of a! 
obtained in (16). We assume below that ff < 0; then 

It is convenient to write down formulas analogous to (10) 
directly in approximate form, by setting r]  equal to zero, 
putting v =$ where possible, and expanding in terms of 
ff. AS a result we have a t  k < x and ~ ~ ( ~ ~ / w ~ ) ' / ~ ( x a )  
<< o << T,(qoap = W ~ ( O $ T ~ ) " ~  and at k >> n and 
wo(~c/wo)114ka << w << 

3nlal 
Re G (k, o)  =- (o.T,) -'!'r 

It is easy to verify that at  k - qo and w - = oo(wo/ 
T,)'" formulas (18) become joined to (10). 

It is of interest to note that both in the exchange and 
in the dipole cases the susceptibility is independent of 
temperature in the limit a s  w - m. In both cases, i ts  
real part is negative and is larger than the imaginary 
part in absolute magnitude. 

It remains to explain the role of the dipole forces in 
the exchange regions 1 and 2, where these forces canbe 
taken into account by perturbation theory (cf. and II). 
Principal interest attaches in fact to the homogeneous 
high-frequency susceptibility (k = 0), since it is deter- 
mined fully by the dipole forces. In the limit of small 
w, the corresponding result was obtained by Huber. 
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As shown in II, to this end it suffices to estimate the 
first diagram on Fig. 2 with the dipole vertices, inwhict 
the internal lines correspond to the Green's functions of 
the exchange similarity theory. 

We obtain here the same estimate in the high-fre- 
quency limit: 

As follows from I and 11, at finite w and at k=O the ana- 
lytic expression for the first diagram of Fig. 2 with the 
dipole vertices is of the form 

This expression differs from (6) in the absence of any 
power of q in the numerator, as  a result of which it  be- 
haves like w-' at large w. This can be easily verifiedif 
we neglect the sum xl +xz in comparison with w and use 
the sum rule (7). As a result we get for rH 

ioo r ~ " = ~ o ~ -  (xa) Itq, 
0 

(20) 

where A- 1. G(0, w) decreases here like w-', and its 
imaginary part i s  equal to zero, so that we must deter- 
mine in the expansion of I?, the next term, which de- 
creases faster than w". To this end we represent (14) 
in the form 

r,,=r;;'+-~~~,-- 
3 G(0) (2n)'io J dq GZ(q) 

dx, dx, (l -!-I-) r- 

In the second term, the integrals with respect to x, and 
x, have a much worse convergence than in (19), and the 
sum x1 +xz cannot be neglected in comparison with w. 
Since F(q, x) - qZ, it follows that the integral with re- 
spect to x1 and xz vanishes2' as  g- 0, and the region q - x is not singled out in the integral. By virtue of the 
dynamic singularity, the characteristic momenta under 
the integral sign turn out to be of the order of o"'e, and 
the second term in (21) is proportional to W-~ ' ' ~ -~~ ' I ' ~ .  
The phase i s  chosen on the basis of the condition Rer  
> 0, which is a consequence of the spectral representa- 
tion for r (it i s  satisfied by formulas (19) and (21)); as  
a result we get 

Here B- 1, and in the formulas for ReG and ImG we have 
put r ] =  0 and Z - T, '~ .  It is easy to verify that at finite k 
the dipole corrections to l? a s  w- .o decrease in the 
same manner a s  (22a), and a re  therefore negligibly 
small compared with the corresponding expressions in 

(9). The rapid decrease of r, (like w-') is due to the 
fact that the integrand in (19) is very "rigid" at small q, 
i. e., i t  contains no additional powers of q. In the cases 
considered above, the analogous expressions containthe 
"softening" factors $-a in the exchange case and 
(q21"1v)2 in the dipole case. 

Thus, to estimate l?, we have considered the simplest 
diagram of Fig. 2. As shown in II, all  the remaining 
diagrams make a contribution of the same order and do , 
not change the estimate. This, however, is correct if  
there is no cancellation similar to that occurring in the 
case of the Ward identity (see, e. g., the book of Pata- 
shinski: and ~okrovskif  u71). To this end it would be 
necessary to cancel a contribution on the order of unity 
not in the scalar vertex, but in the pseudotensor ex- 
pression, which takes in the static limit the form 

where r"' i s  the coefficient of P2(cos9) in the expansion 
of the four-particle vertex in Legendre polynomials, 9 
is the angle between the vectors p and q, and m = pp-'. 
In the experimental study of r, at 4iq < lC8' in the T re- 
gion where the usual behavior X- T-'" takes place, r is 
practically independent of T, in contradiction to Huber's 
theory. It is therefore reasonable to analyze the ques- 
tion of the homogeneous susceptibility in the "cancella- 
tion" region, i. e., in the case when the estimate F - 8 ~ - ' / 8 ~  holds for the vertex part of (23). The corre- 
sponding calculations a re  perfectly analogous to those 
made above, and we present only the final results. For 
the reciprocal time of the homogeneous relaxation we 
have 

where C- 1; this is smaller by a factor ?Is thanHuber's 
result, which becomes, a s  shown in 11, joined to the 
homogeneous damping in the dipole region at tempera- 
tures 4 n ~  - 1. Now there is no such joining. In general 
this is not surprising, for when T is decreased the re- 
structuring of the critical dynamics is due to the sup- 
pression of the critical fluctuations that a re  polarized 
along the momentum, and this mechanism is turned on 
quite rapidly on passing through the temperature region 
where 4 n ~ -  1. In the region of high frequencies, the re- 
sult depends on the sign of a, inasmuch a s  for 8 ~ " / 8 ~  
we have at k >> x the formula 

and it is necessary to use the second term at a > O  and 
the first  at a<Oo The final result can then be repre- 
sented in the form 

where C1 - Cz - 1. It is of interest to note that in this 
case, regardless of the sign of a, we have x = 2 - 1 a! /v 
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< 2, i. e. , the situation here is very similar to the one 
obtained in the dipole region. 

It should be noted that if cancellation does take place, 
a change takes place in the preriously obtained results 
(seeC1" and 111) for anisotorpic magnets. It is then nec- 
essary in III to replace x3I2 and T by x1I2 and 71r3 in 
formulas (31), replace xi t2  by %.:I2 in the second term 
of (32a), and replace x i t 2  and x,:" in the second term 
of (32c). The formulas for the characteristic energies 
a t  large anisotropy take in the case of the easy plane the 
form3) 

r,,=T, (x2+k')  aZ [ (ka) ' (xoa)-:"ahL (klx,) +$,xdh], 
(27) 

In concluding this section, we make one more remark. 
The critical absorption of EuS was investigated inCB' in 
a magnetic field and it was obsei-ved that the critical 
damping r, regarded not as a function of the tempera- 
ture but a s  a function of the susceptibility x(H), is inde- 
pendent of the field. From the point of view of similar- 
ity theory this is natural, since all the critical-dynam- 
ics formulas a re  expressed in terms of the quantity x 
-x- '12(~).  A special situation ciin ar ise  only at the reso- 
nant frequencies due to the fact that a magnetic moment 
that can precess around the fielcl exists in a nonzero 
field. 

3. DYNAMIC SUSCEPTIBILITY I N  THE 
INTERMEDIATE REGION 

We shall examine the possible behavior of G(k, W) a t  
intermediate frequencies. In al.1 the cases considered 
we had ReG < 0 a s  w - 00, and consequently this quantity 
reverses sign somewhere at w- I?&). This means, in 
particular, that if we investigate ReG(0, w) a t  a fixedfre- 
quency a s  a function of the temperature, then this quan- 
tity first  increases a s  T decreases, owing to the in- 
crease of G(O), reaches a maxirnum at r (0)-  w, and then 
decreases and becomes negative a s  r - 0. Next, the 
asymptotic value of r was obtained above in the form 
y(k)(i /~)~".  If this expression is substituted in (3a) and, 
in contrast to the procedure above, r is not neglected 
in the denominator, then we get 

y (7- lo 1%-"0s (n6/2)) 
Re G (k, o).=G (k) . 

(I o 12-'-y cos (ntiil2))'f yZ sin2(nS/2) ' (28) 

y l o l Z - ' ~  (c9)sin (n6/2) Im G (k, o )  =G (k) 
(IoI2-'-7 cos ( ~ c 6 / 2 ) ) ~ +  yZ sinZ(n6/2) 

where 6 = 2 - x is the deviation of x from the limitingval- 
ue. This Green's function has all the necessary analyt- 
ic properties, is correctly normalized by the condition 
G(k, 0) = G(k), and can be easily shown to satisfy the sum 
rule (7); it can therefore be regarded a s  a possible vari- 
ant of an interpolation formula. At 1 01 2'6 - y the func- 
tion ImG takes a resonant form because the Green's 
function has two symmetrical poles w, in the lower w 
half-plane (Fig. 8). The expressions for them and for 
the corresponding residues r, are  of the form 

In addition to these poles, the function G has along the 
negative imaginary axis a cut with a discontinuity 

1 y l o 1'-%in n6 
A G ( o ) =  - [G(o-8) -G(o+.?) ] = - 

2i yZ+2y I o I Z - '  cos n6+ I oI'-'' ' 
(30) 

It is interesting to note that a s  6 - 0 the poles approach 
the real  axis and the discontinuity vanishes. In the pure 
exchange case at k <<%(region 2) we have ?IX - ~x ' (k /x  )'I4 
<< Dn2, and formula (28) can certainly not be used at w 
- +IX. At these values ordinary diffusion takes placec"' 
subject to the small corrections considered in I. In ex- 
actly the same manner, in the case of homogeneous 
damping, the resonance frequencies in region 2 a re  
small compared with the characteristic value Dx2, 
whereas the dispersion should begin with w-  DH' (this is 
easily seen from (19)). Therefore the frequency depen- 
dence at w < Dx2 is determined by the usual Lorentz for- 
mula, with the width taken from Huber's paper, Is' o r  
else with the modified width (24), and at w >> DxZ the 
asymptotic behavior discussed above sets  in. These two 
cases a re  special in that the frequencies at which the 
damping dispersion begins a re  high in comparison with 
r(0).  In all the remaining cases (regions 1, 3 and 4 of 
Fig. 1) the characteristic dispersion frequencies coin- 
cide with I'(k). Of course, formulas (28), (39) and (30) 
cannot be used literally, if only because they a re  not ob- 
tained following substitution in the diagram series of 
Fig. 2. Thus, if (28) is substituted in the integral (6)at 
x =0, the resultant expression has in the lower w half- 
plane several branch points a t  I wl - kze, a detailed anal- 
ysis of which is hardly of interest, while formula (8) 
holds only in the limit I wl >> k'e. 

At the same time, the character of the behavior of 
G(k, W) a t  intermediate w is obviously determined by 
those of i t s  singularities that a re  closest to the realaxis 
and lie in the lower half-plane of the variable w. By vir- 
tue of the property G(- w*)= G*(w) mentioned a t  the be- 
ginning of the preceding section, these singularities 
either lie on the imaginary axis a re  symmetrically dis- 
posed about it. Nothing is known at present concerning 
the character of these singularities. 

Let us discuss the simplest variant, when the nearest 
singularities a re  the poles of the function G&, w). It is 
obvious here that the pole lying on the imaginary axis 
corresponds to that contribution to w" ImG which has a 
maximum at w = 0, while the poles w Lo&) = i w ii) (k) 
-iw:"(k) lying outside the imaginary axis correspond to 
contributions made to ImG and having maxima at I w 1 
= 0:". The general picture of the behavior of the 
W" ImG is then determined by which of the poles a re  
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closer to the real axis, and the maximum due to the 
nearest pole can completely "smear out" the maxima 
due to the other poles. If w, < w1 for some pair of poles, 
then these poles should be perceived in the experiment 
as resonances corresponding to relatively weakly damped 
excitations. Thus if we consider by way of examples 
formulas (28), then the peak of ImG is well pronounced 
even in the exchange case, when 6 = 3, while in the di- 
pole case, when 6 = 1 al / V  - 0.1, one can speak of a 
rather narrow resonance a t  w = ~,(T, /W~)" 'q7 (k/ii)(n a), 
where ~ ( 0 ) -  1, q7(x)lx,, = c p , i l  and cp, - 1. It is not ex- 
cluded that Lynn's "spin-wave" peaksc31 a r e  due to the 
existence of such poles. It is of interest to note that 
Lynn was unable to describe his data on large-momen- 
tum spin wave, both below and above T,, with the aid of 
the dispersion law @(I-&'); a t  the same time it is 
easy to verify that they fit well the ~ ' k ~ ~ ~  curve. Here, 
however, the condition k >> x was not satisfied; the data 
were obtained at  k > x . We note also that the problem 
of spin waves above T, was discussed many times theo- 
retically (see, e. g., Hubbard's paper), b-ut no convinc- 
ing results have been obtained so far. 

The presence of poles in the lower half-plane leads to 
the appearance of more complicated singularities con- 
nected with the "pole-interaction" phenomenon. Thus, 
it was shown in I that the diffusion pole generates a 
branch point that is closer to the real axis than thispole; 
the influence of this branch point on G(k, w), however, 
turned out to be weak. 

Let us discuss the unusual situation that results from 
the "pole interaction" in the case of homogeneous relax- 
ation and leads to a very complicated nonmonotonic be- 
havior of the function ~ ( 0 ,  w). Assume that in the dipole 
region the function G(k, W) has poles at  the points W, 

= * Q(k) e x p ( ~  iQ (k)), and let 9 (k) << 1 (expression (29) 
yields in the dipole region 9(k)= 3nl al /8-0.1). In this 
case the function G(0, w) has a resonant peak at w- Q(0) 
with a width a (0)  sinQ(0) -a(0)9(0). At k <<n, the quan- 
tities 52 and Q can be expanded in powers of #: 

n(k)=9a+n,kZ, cD (k) =Qa+Q,k3, 

where Q1 - 5 2 , ~ ' ~  and x ' ~ .  We assume that 52, > 0 and 
neglect for simplicity the dependence of 9 on k. If we 
now substitute the corresponding pole expression in the 
diagram series of Fig. 2, then we immediately obtain a 
series of singular points of the function r (w)  at  wp' 
=rtn~2,,e"*. 

Let us analyze this question in greater detail, using 
as  an example a two-particle intermediate state. Re- 
calling the statements made in the preceding section 
concerning the structure of this state in the dipole re- 
gion, we obtain for the contribution from the two poles 
w, to r (w)  

where f (0)-1 and r+(q) is the residue of G(q, U) at the 
pole w,, it being assumed that r+(O) # 0. This expression 
has at w = 251,e"* a singularity near which, as  is easy 
to verify, we can represent r in the form 

Here rl is that part of r which is regular near w= 252, 
and is a complex quantity, while g- 1. Near this singu- 
larity we have 

G(O, o) =G(O) IF,(a)-2ir,-ZF,2(2Q,)r ( a ) ] ,  F,=F, (-i"+r,)-'. (33) 

If w = 251,, then y(w) = 0 and measurement of G a t  this 
frequency makes it possible to obtain Fl(2SZ,) and l?,, 
after which it is possible to determine the complex coef- 
ficient of y(w). As a result we can express the singular 
part of G(0, w) at  w- 2S2, in the form 

G(0, o )  =G(O) (A+iB)y(o), 

He G(O,o) =G(O)g[Q016)-252,1]'"[A cos $-Bsin*], 

It is clear from these formulas that 5 depends inarather  
complicated manner on w and on the magnitudes and 
signs of the constants A and B. 

The interaction of the two poles W, and w, gives r ise  
to a singular point o = - 2iQo sin* on the imaginary axis. 
Arguments perfectly analogous to those just presented 
yield 

r (2) (ol=rd2) - +- +- [Q,(2Qo sin Q - i o )  ]Oh ,  (35) sin Q (sin 0) " 

where is the regular part of r, which should be real 
near the imaginary axis, and go,, - 1. The complicated 
dependence of this expression on 9 is due to the factthat 
w, + w-- sin*. The value of 52, should be of the order of 
the static value r ( 0 )  = ro. It follows therefore from (35) 
that the dispersion of r (w) begins very early, a t  w- no*. 
The reason is that the sum w+ + w, l ies very close to the 
point w = 0, whereas w, are  not small. '' It is obvious 
that l?:? (0) = r0 - 52,; this means that gla = go and rf' 
= r,. As a result we have at  w << 252,9: 

It is interesting to note that the second term in the de- 
nominator is not small, so that the frequency dependence 
of w-ImG sets in very early. The remaining singular 
points, which a r e  connected with the interaction of a 
large number of poles, lead to weaker singularities in 
I?. Thus, when three poles o, are  taken into account, a 
factor [w+(ql) + w+(&) + w+(ql + q,) - w]-I appears under the 
integral sign and must be integrated with respect to ql 
and q,. As a result, the corresponding singular term in 
I' behaves like (w - 3510e-'*)2 ln(w - 3Qoe-'*). 

So far we have dealt only with singularities of G(0, w) 
a s  a function of the frequency, and the positions of the 
singularities were determined by the condition w,=&, - n ~ , ( ~ , / o , ) ' ~  '7". Obviously, if we fix the frequency and 
vary the temperature, then a s  a result of these singu- 
larities the temperature dependences of ImG and ReG 
will exhibit anomalies a t  
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It should be noted that Luzyanin and ~havronin'~' have 
observed a complicated temperature and frequency de- 
pendence of ~ ( 0 ,  w )  in the temperature region 4 7 ~ ~  > 1, and 
it turned out that the dispersion of x begins with very 
low frequencies. It i s  not excluded that these phenomena 
are connected with the mechanism discussed by us, but 
ofC6' are insufficient for a detailed comparison of the 
theory with experiment. In particular, this calls for 
measurements at much higher frequencies than used 

The author i s  grateful to I. D. Luzyanin, V. P. 
Khavronin, and G. M. Drabkin for numerous discussions 
of the problems connected with the critical dynamics, 
and for the opportunity of learning of the results ofCs1 
long before publication, and also' I. M. Babich for check- 
ing the calculations. 
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