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The conductivity of a quasi one-dimensional metal is found with account of scattering of electrons from 
impurities and phonons at T )  w, and w , T * < ~ ,  where 6.1, is the Debye frequency and . 

T* = ( T ~ - ' + T ~ ~ ~ - ' ) - '  is the effective collision time. The scaling hypothesis is applied. As a result, we get u 
=ae  'S -'wDv -11p;11*3, where a -  1 ,  S is the area of the xy cross section of the cell, v is the Fermi 
velocity, and 1 = VT. It then follows that u a T  at l,(lph and u a T  -' at l,)Iph. The experimental 
situation is discussed. 

PACS numbers: 72.15.Nj 

1. INTRODUCTION A s  in Ref. 1, we limit ourselves to the Born approdma- 

A method was developed in previous papers of the au- 
thors which made it possible to calculate the conductiv- 
ity of quasi one-dimensional metallic systems at T 
= 0. "-41 The only resistance mechanism in this case i s  
the elastic scattering of electrons from impurities. At 
T# 0, inelastic scattering from phonons appears, to 
which the methods applied in Refs. 1-4 are  no longer 
suitable. 

The problem of the conductivity of a quasi one-dimen- 
sional metal with account taken of the scattering of elec- 
trons from phonons and impurities was considered ear- 
lier by Gogolin, Mel'nikov and Rashba. '5-71 They used 
a rather complicated method based on the ~erez insk i r  
techniquec8' and the Keldysh theoryc9' for nonstationary 
problems at T# 0. In view of this the authors restricted 
themselves to the simpler case (h= min(Q~,, WT*,,) >> 1 
where E is the average frequency of the phonons, .ri and 
T,,,, are the impurity and phonon scattering times. This 
corresponds to low temperatures T << wD (or a small 
electron-phonon interaction constant) and very pure met- 
als. At the same time, those well-known quasione- 
dimensional materials which preserve a metallic con- 
ductivity at T << w, possess large internal disorder, such 
that in them in all probability WL,7, << 1. 

We develop here a method which is a generalizationof 
the method of Ref. 1, and which allows us in principle 
to consider the conductivity at finite temperatures and 
at any GT. In order to avoid corlsideration of the quan- 
tum field of the phonons, we limit ourselves to temper- 
atures T >> wD. The transition from the impurity-phonon 
mechanism of conductivity to the purely phonon mecha- 
nism is of most interest. Inasmuch as  the case 3 7  >> 1 
was considered in Ref. 5, we limit ourselves to the case 
& << 1. The results recall qualitatively the behavior of 
u(T) obtained in Ref. 5, but the detailed temperature de- 
pendence turns out to be different. 

2. METHOD OF CALCULATION OF THE 
CONDUCTIVITY AT T+ 0 

tion, which corresponds to averaging with a Gaussian 
functional. The difference lies in the fact that this time 
the potential is time-dependent. 

The method of finding the single-electron physical 
quantities in an arbitrary varying external field at T# 0 
was developed by Gor'kov and ~ l i a s h b e r ~ .  'lo' The ex- 
pression needed for the current has the form (the two 
spin projections are  taken into account) 

2eu 
z- 

de  A 
- [G,,.-. ( z ,  z )  n ( e )  -G:,.-, ( 2 , ~ )  n (&--a) 1 s s p ~ ( I 2 n i  

where S i s  the area of the cell section perpendicular to  
the filaments, & and cR are the advanced and retarded 
Green's functions, and h,,(zl) i s  the total variable field, 
consisting of the external electromagnetic field and the 
phonon field: 

i Since we a re  seeking the linear conductivity, this ex- 
pression should be expanded in A with accuracy to first 
order. Here we obtain 

As has already been noted, at. T>> w,, the phononfield x th---f--th- ( I T  Ei;,a' ) } . 
becomes classical dN, >> 1) and j.t can be considered a s  a 

(3) 

random external field acting on the electronic system. The Green's function in Eq. (3) contains in principle 
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the terms of all orders in the interaction with impurities 
and phonons. They satisfy the equation 

where *(z) is the time-independent potential of the im- 
purities, and @,l(zl) is the potential of the phonon field. 
The boundary conditions in z depend on which function 
we determine, GR or G ~ .  In principle, we can find also 
the "causal" function G, but it does not enter into the 
formula (3). 

Equations of the type (4), with corresponding boundary 
conditions (of course, with a displacement in the mo- 
mentum rather than frequency) were already solved in 
Refs. 2 and 3. We can write out the finished formulas: 

where 

d o  dz 
z z T e x  { [ i -  z  - t ~ ~ [ - m . . ( z ~ ) p . . ]  $1, (6) 

2 n  

P,, is  the operator for the frequency shift by w,. The 
a and P components of S,, remain operators acting on 
the variable w. We must understand, for example, 
[sZ2(~, - ~0) I - l  in just this sense. The factors in the ex- 
pressions (5) are non-commutative. 

The processes of "forward" impurity scattering are 
unimportant in the longitudinal conductivity, as  in the 
foregoing. In view of this, we can assume that 

As to the phonon field, we start  from the usual model 
of Frahlich (see, for example, Ref. 11) and therefore 
take the phonon operator in the form 

where 

( ~ t + c t . ) = N t 6 r r . - [ e x p  ( o r / T )  - l ] - ' G t r . .  

In the case considered, those processes are signifi- 
cant in which either k,  = 0 or  k ,  3 * 2po. We shall assume 
that the corresponding vicinities are  small, so that in 
all the factors of Eq. (8) we can set k ,  = 0 or k, = + 2po 
with the exception of e"'r. For example, we consider 
the case k,  = 0. We denote 

C Ctef~r=Ck, ( z )  . 
5 

In accord with (Q), we have 

-s ( 2 n )  ' 6  (k,-k,') 6  ( z -z ' )  N ( k d ) ,  (10) 

where S is the area of the cell section perpendicular to 
the filaments. If T >> w,, then Nk- Nk + 1 -- T/W, >> 1. In 
view of this, the phonon field operators become the clas- 
sical components of the random potential. 

On the basis of everything given above, we can take 
as  the phonon operator in (6) 

where 

2x dk,  
@,. (z)  = :j - { c L ( z ) ~  ( w + o t )  + c k * ( z ) 6 ( o - - o t ) } ,  

1 2  (2n) '  

k = (0, k*) and 

(T;:, = AIT, where A1 is the dimensionless constant of the 
electron-phonon interaction); 

2 n  dk, 'J+ Q,. ( z )  - -[ ( l [ a k ( z )  6 ( u + m d  f bk ' (z )  6  (u-w.)  I - 
1 2  ( 2 4  2  

( a k  ( z ) a r . ' ( z r )  )=(bt  ( z )  b t * ' ( z l )  ) = v ~ t ~ ~ : 6 ( z - z ' )  (2n)26(k,-k, ' )  (1 5) 

(r;h = &T, where & is a dimensionless constant). 

We shall first show that certain terms in the formula 
(3) are unimportant. If, as  in Ref. 1, we add and sub- 
tract an expression corresponding to the integral tern; 
in j without impurities and phonons, we can then substi- 
tute in the difference the expressions (5), which are 
suitable for the vicinity of the Fermi boundary. In ad- 
dition, the "free" expression with the integrals taken in 
correct order, vanishes, while the free expression in 
the difference cancels the first term in (3). Thus, the 
integral term (3) remains with the G functions in the 
form (5). Upon substitution of these expressions in the 
first integral term in (3), which does not contain the 
products @@, we obtain terms with the unequal num- 
ber 5 and t;* (or a and 8, and b*) (see Ref. 1). There- 
fore, zero is obtained upon averaging. 

Further, we can obtain the following relation from 
Eq. (5): 

The integral over z, gives the following in this case: 
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The situation i s  similar for GA. 

We now consider the last tern1 in (3). If the vector 
potential A did not depend on the time, then w2 = 0 and, 
taking the integral over z2, we would have obtained zero. 
This is natural, because the current should be propor- 
tional to E =  (iw/c)&. Further, transforming to the 
representation of the interaction in u and recognizing 
that in the averaging over the impurity and the phonon 
fields only factors of the type exp[iz1(wl - w2)/v] can al- 
ways appear, we see that the point from which the fre- 
quencies are reckoned is unimportant, i. e., we can al- 
ways set one of the c equal to zero in the products of G 
functions. If we set c1 = 0 in the last term in (3), there 
is left 

where w1 corresponds to the fie1.d a,,. 
Since. the last term in (3) vanishes in the case of a 

time-independent A, we can then expand in w2 and keep 
the term of first order. Then, applying the relation 
(16), we immediately obtain the contribution to the con- 
ductivity 

It was shown in Refs. 1 and 2 that differences in the 
coordinates of the order of l* are  significant in the in- 
tegrals. Here I* is the total path length: l* = (l& 
+I:)-'. We can therefore make the following substitu- 
tion: 

Substituting the results in (12), we get zero as  a re- 
sult. 2' 

Thus, only the second term irk (3) remains, corre- , 

sponding completely to the expression in Ref. 1 for T 
= 0. We can again set c l  = 0 in the product G and obtain 
the integral (17). 

Since the changes in the frequency are cancelled upon 
averaging over the phonons, it follows that w1 = U. This 
makes it possible to transform :immediately to the static 
conductivity: 

We could have written any c1 ,in place of the frequency 
argument zero and consequently, 

1 
l i i -  ds,  as Q+-. 

2 0  S 
- 0  

But at large a, the integral gives Sp,. If we now 

substitute Eq. (5) there, we obtain 

Finally, taking it into account that even this expression 
does not depend on cl, we can cross out the result 

1 
lim-J de,  as Q-+-. 

2 P  
-Q 

Thus, we obtain, in complete analogy with Ref. 2, 

We transform here to the finite interval (L - 0) in place 
of (-, - 00). 
3. INTERSECTING AND NONINTERSECTING 
DIAGRAMS 

Equations (20) and (21) can be described by means of 
diagrams. Naturally, just as  in Refs. 2-4, the problem 
arises as  to the role of "nonintersecting" diagrams. We 
find the phase factors of the series of intersecting dia- 
grams shown in Fig. l, where the impurity averages 
( I  tiz) are  indicated by the dashed lines and the corre- 
sponding phonon averages by the wavy lines. The re- 
sults are  

a) e x p [ 2 i o k ( z 1 - - z , ) l u I ,  b) e s p [ 2 i o k  ( z , - z m ) l u l ,  

c )  e x p [ 2 i o k ( z 1 - - z ~ ) l u ] ,  d )  1 ,  e) e x p [ 2 i o k f z r - z , ) l u l ,  

f) exp  { 2 i [ o k , ( z , - z , )  - o k z ( z m - Z I )  l l u ) ,  

g) e x p  { 2 i [ o t ,  (zr-2,)  + okz(z,--b,) + o k J ( z m - z , )  l l u )  . (22) 

Thus, it is seen that any interaction, with the excep- 
tion of the intersection of the c-phonon lines with one 
another (and, of course, of the impurity lines with one 
another), give factors of the type exp[2iwk(z, - zl)]. Such 

1 2 1 2 1  2 1 

FIG. 1. 
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a result is quite natural. If we transform in the S ma- 
trix to the representation of the interaction in w, then 
the c-operators transform to c, exp[- i(r?psz,/v], i. e., 
to expressions that do not contain w and therefore com- 
mute with one another. All the remaining operators 
will contain factors of the type exp[* 2iuz, /v], which 
change under the action of the shifts P,,. 

The significant distances are I z, - z ,  l - I*. There- 
fore, two limiting cases a re  possible. 

1) If Gl*/v >> 1, then averaging over the small inter- 
val Ak, leads to vanishing of phase factors of the type 
(22). Consequently, in this case, we do not need to take 
into account any intersections other than the intersec- 
tion of the impurity lines with one another. ') The limit 
Gl*/v >> 1 was considered in Ref. 5, but from the view- 
point of real objects this case is evidently not of inter- 
est. Actually, taking into account the equality l* = (1;' 
+ I;:,)", we obtain the result that the condition El*/v 
>> 1 means that (E/v)min(l,, 4, >> 1. Consequently, at 
any rate, it is necessary to have wDlt/v >> 1, i. e., a 
sufficiently pure material. Since the free path length 
1,- (V/XT)(W,/T)~ and 5- T at T<< wD,  and at T>> w, we 
have Is- v/xT, w= w, , where X is the dimensionless 
constant of electron-phonon interaction, and usually 
A- 1, it follows that the condition (z/v) I,,>> 1, is feasibll 
only at T<< w,. This means that the material should not 
experience a Perierls transition to a dielectric at T, 
-oD. But in experiment, such a transition is absent 
only in materials with internal disorder, for which the 
condition wDI ,/v>> 1 is most readily violated. 

There is one more important point. At T << WD the 
phonons are essentially quantum. This leads to the ap- 
pearance of diagrams of the type of Fig. 2, which, in 
contrast to the three-dimensional situation, are not 
small; however, they are not considered in Ref. 5. It 
is difficult to state to what consequences these diagrams 
lead; therefore, the calculation of Gogolin, Mel'nikov 
and Rashba is justified only at T >> w,. In principle, the 
simultaneous satisfaction of the conditions (CJ/v)&, >> 1 
and T >> WD is possible, but for this case it is necessary 
to assume, without special justification, that the dimen- 
sionless constant X << 1. Such a calculation would fur- 
thermore be valid only in the region of temperatures 
@,/A >> T >> w,. Thus, strictly speaking, the calcula- 
tion of Ref. 5 refers only to the exotic situation inwhich 
it is also necessary that wDl,/v<< 1. 

2) If T>>wD (and A-1), then t S l * / v - ~ ~ l * / v ~ l  al- 
ways, and the relation between l, and l* can be arbi- 
trary. We shall consider just this case. The phase 
factors in this case differ little from unity. 

We call attention to the great similarity of the case - 

considered here to that treated in Ref. 2. There the 
violation of localization takes place because of the non- 
one-dimensionality, and we could isolate two limiting 
cases. In the case of "large non-one-dimensionality" 
we could neglect diagrams with intersection and the 
kinetic equation turns out to be applicable. In the case 
of "small non-one-dimensionality," the effects of local- 
ization were significant, and we used the similarity hy- 
pothesis C'scaling"). In the considered problem, the 

a FIG. 2. 

role of non-one-dimensionality is played by inelasticity 
and there are also two limiting cases. 

4. CONDUCTIVITY AT T>> a,, o,l*/v<<l. 

Thus the case considered is similar to the situation 
studied in Refs. 2-4. Consequently, we must expect 
that the conductivity will be nonanalytic in the delocal- 
ization parameter in the vicinity of zero. In order to 
get around this difficulty, we again apply the similarity 
hypothesis, but in a different variant. A finite sample 
along the z direction was considered in Refs. 2-4 and 
it was assumed that a = qf(y/gV), where k = em(-~/41  e), 
and y is the delocalization parameter. But it is clear 
physically that the transition from a finite sample to an 
infinite one is not a neutral procedure and it is desirable 
to avoid it. Also suspicious is the fact that the expan- 
sion of a in y in Refs. 2-4 does not have a "scalhg " 
form. ' In view of this, we consider the infinite sample, 
but we shall find the static conductivity as  the limit of 
a(wo) a s  wo - 0. This leads to the transition Go- @fowo 
in for mula (20); formula (2 1) is inapplicable in this case. 

We now make the assumption that scaling holds in the 
theory and a has the self -similar form 

Here a, is the value of a at. y= 0, i. e., the result'for a 
purely one-dimensional case (see, for example, Ref. 1). 
Taking the two spin projections into account, we have 

The function f possesses the following properties: f (0) 
= 1, and a s  w,- 0 the conductivity a should not depend on 
w,. For this, it is necessary that f (x- o o ) a  xl", and 
then ~ ( 0 ) -  (81 */TS)"~. 

We must now find the delocalization parameter y and 
determine the exponent V .  Here we must distinguishlxvo 
cases. 

a )  If I, >> I,, then I* = h,,. '' Since the reason for the 
delocalization is the inelasticity of the scattering, the 
only quantity which can serve for y is y= wD1*/v. 

We determine the exponent v from the expansion of o 
in a series in y (at w0Z 0) a is an anUytic function of y 
as y- 0). However, there is no need of completing this 
complicated calculation. The exponent v can be found 
with the help of a qualitative discussion. For example, 
we consider the first term of the expansion. For this 
purpose, we isolate a single phonon line corresponding 
to some z. The Green's functions inside this line have 
a frequency greater by u, than those which are located 
outside this line. In the expansion in wk, we must take 
terms of even order, because wk enters symmetrical- 
ly. At T >> wD, we can assume w, - WD. 
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Just as in Ref. 1, the result is expressed in final 
analysis in terms of the functions B, (see Ref. 1, for; 
mula (52)). These functions satisfy the set of equations 
(57) of Ref. 1 (we need only the part of B, which does 
not depend on z): 

where 8= 2w01*/v. The boundary condition is Bo= 1. At 
8<< 1, the large n will be significant; we can transform 
to the continuous variable n and from the difference 
equations to the differential equation 

A solution is 

- 
B.-uK, (u ) ,  u=ZI-ifin, 

where Kl is the Hankel function of imaginary argument. 
Thus, we can assume that the ns- (T1 are significant. 

In the expansion over w, we obtain one extra Green's 
function for each degree of w,. These functions are ex- 
pressed by the formulas (5). Consequently, each of the 
degrees of W, corresponds to an increase in the degree 
of 4, or S, in the denominator. In the reduction of the 
general expression to the functions B, we make use of 
the formula 

where 

and a similar formula for h. Evidently, the increase 
in the degree k by unity leads to the appearance of an 
extra degree of the number n under the summation sign, 
and this latter leads to the appearance of the factor 8". 
We can then conclude that to each degree of w, in the 
denominator there corresponds a single degree of w,$ 
consequently, in the formula (23), v = 1. 

The following question can arise here: is not the in- 
crease in the degree of B i n  the denominator due to the 
isolation of the phonon line? In fact, for example, when 
a single phonon operator is isolated 

i. e., the number of the Green's functions increases. We 
can immediately answer this question in the negative. 
Actually, imagine that we have somewhat renormalized 
the phonon operators. This leads to a small change in 
I* and, in accord with formula (24), this cannot lead to 
the appearance in a of terms with another degree of w,. 
On the other hand, in first order, the result of renor- 
malization is obtained by the isolation of the phononline 
for z,, by multiplication by the renormalization, and by 
summation over all 2, .  Consecluently, the isolation of 
the phonon line does not lead to a change in the degree 

of 8. The validity of the given discussion can be dem- 
onstrated directly by calculation of the lowest order in 
wD/wO, i. e., (wD/wo)'. 

It  follows from formula (23) with v = 1 that the static 
conductivity at I, >> 1, has the ordera 

b) The situation is more complicated at I, << h. Since 
the inelasticity is connected with the phonons, it follows 
that in spite of the fact that >> 1;' and I* =I,, all the 
kh are significant and two small parameters I,/&, and 
wDl*/v enter into the theory. In this case it is nolonger 
so simple to write down the similarity relation. 

We again consider the lowest order. Isolating the 
phonon line, we do not obtain an increase in the degree 
of wo in the denominator, but then performing the ex- 

' pansion in w,, we establish the fact, a s  before, that this 
is in fact an expansion in (wD/wo)e. Thus, in first order 
in l& we get 

1' io, 
oi=ooi;f (--) . (29) 

At first glance, it appears that this is not the same 
function f as in formula (23) for the previous case, be- 
cause there we had the entire sum of diagrams with 
many phonon lines and in the given case there is only a 
single phonon line. However, we can have recourse to 
the following reasoning. If we carry out a small renor- 
malization of the phonon operators in the previous case, 
then this does not affect the function f, which depends 
only on wD/w, and, on the other hand, this reduces to 
the isolation of a single phonon line. This means that 
the function f in (29) must be the same a s  in the previous 
case. It then follows that  a t  wo << wD we have f- i(wD/w0), 
and consequently, 

We can consider the obtained ~ ~ ( 2 3 )  and a1(30) a s  
terms of the expansion of o in the quantity q =  (I*/l,) 
X (iwD/w0). This expansion holds for WD >> Wo >> ((I*/&,)wD. 
Since, by assumption, I* = 1, << h,,, such a region does 
exist. An now we again make an assumption of the type 
(23). Comparing (30) and (24), we find v = 1 and 

The expression for a at wo= 0 turns out to be of the order 
of 01: 

This formula for the static conductivity is a general one 
and is suitable at arbitrary relation of I, and 1,. 

As has already been noted, only l', enters into I*. 
So f a r  as  qi is concerned in (32), this quantity is aZ& 
+ bl&, where a, b- 1, but a# b. This can be seen by cal- 
culating Eq. (29) in lowest order in w,/w, i. e., (wD/ 
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w0)2. However, a t  T >> wD we can assume &,- lev,. 
Equation (32) can be given a "diffusion" interpretation. 

In the localized state, the electron executes a finite mo- 
tion with frequency of the order of v / l *  and amplitude 
I*. The decay probability of this state, o r  the level 
width, is proportional to the probability of capture of the 
phonon during the period of the oscillations, i. e., 7*/~,, 

' =  l*/Zph and the smearing out of the line due to inelastic- 
ity, i. e. , wD.  Consequently, the mean lifetime of the 
state is 

Applying the diffusion formula, we obtain 

i. e . ,  Eq. (32) ( ~ ( p )  is the density of states on the Fermi 
boundary). We also note that at  w D l * / v -  1, Eq. (32) 

, joins together with the formulas of Ref. 5, obtained un- 
der the assumption wDl*/v>> 1. 

Substituting in (32) 

we obtain 

In particular, '' o(0) a T at I ,  << 4, and o(0) a at I ,  
>> I*,. 

It  is seen from Eq. (34) that the phonons play a double 
role. At 1, >> 4, the basic role of the phonons is the de- 
localization of the electrons a s  a consequence of the in- 
elasticity of the collisions. Here uincreases propor- 
tionally with T .  Upon further increase in the tempera- 
ture, when Gk - h T / v  >> Z;' the phonons form an additional 
random potential, strengthening the localization. Here 
o falls off a s  T*. This situation is also similar a t  w,l*/ 
>>1 (see Ref. 5), although the detailed laws for this case 
are different (oa  T a t  I ,  << 4, and o a  Ti a t  I ,  >> 4 , ) .  

We note that if the material is very pure, so that 
wDl,/v>> 1, or undergoes a phase transition into a di- 
electric at not too low temperatures, then our theory 
gives a good description of the high-temperature region, 
where oo: p. , 

The formulas obtained also make it possible to trace 
the dependence of o on the frequency wo. We have found 
that in the "richest" case I ,  << I,, there are  three regions. 

a )  If wo >> w,, then a = oo and is given by Eq. (24). The 
real part of o in this case is the same a s  for the purely 
one-dimensional metal: 

Actually, this region corresponds to infrared light and 
at such frequencies there a re  many other mechanisms 
of interaction of radiation with matter. 

b) If w,l*/l,,<< wo<< wD, then o=uo+ol where ol is 
given by Eq. (30). 

c)  Finally, if wo << wDl*/ lv ,  then 

where 

q=(l'/lph) (ioD/o,), c,, cz-I. 

Consequently, in this region, Reo and Imo a re  the same 
type a s  in the previous case; however, the numerical 
coefficients are different. 

At I ,  >>I,,,,, the region b) is missing. We note that at 
wDI*/v>> 1, Z,,,>> I ,  and at low frequencies (wol* /v  << 1) 
u is simply oo with the replacement wo- oo + i v /&,  (see 
Ref. 5), i. e., i t  corresponds qualitatively to our re- 
sult for the regions (b) and (c) a t  w D l * / v -  1. 

5. COMPARISON WITH EXPERIMENT 

In a comparison of the obtained formulas with experi- 
mental data, we must f i rs t  look out for the satisfaction 
of the criteria of applicability of our calculation: 

If we speak of a real substance with .large number of 
branches of the vibrational spectrum, then the condition 
T>> w, means, strictly speaking that the temperature 
should be greater than all the limiting frequencies, some 
among which can be rather high. Taking it into account 
that real substances decompose at high temperatures 
and possibly, therefore, all the experimental data refer 
to T < 300 K, we see that the criterion T >> wD may not 
be satisfied. 

At T < wD the quantum nature of the photons begins to 
appear and diagrams of type of Fig. 2 begin to be signif- 
icant. But, even if we make the assumption that these 
diagrams a re  unimportant, then at not too low an im- 
purity path length the second condition wD7* << 1 can be 
violated. 

In view of the fact that it is very difficult to  tellahead 
of time with what case one is dealing in any given ex- 
periment, we shall attempt to understand what follows 
from the experimental data themselves. 

The clearest statement is that in the range 100 K < T 
< 300 K we have 

where the constant a depends on the sample, but the 
second term is identical in both samples of the given 
material. This fact was established in the materials 
TTF-TCNQ ([= 2.33), ''I HMTSF-TCNQ ([ = 2. 39)11" 
and TTT,I, (f = 2). 'lB1 

This result can be interpreted as follows. We have 
seen that, in accord with formula (34), the phonon and 
impurity resistances add up in a far from simple man- 
ner. It is then clear that the first  term in (36) is due 
not with the impurities but to some three-dimensional 
resistances, connected in series with the sample. Wheth- 
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e r  there are some breaks in the principal chains of the 
sample or the effect of the measurement contacts-only 
the authors of the experiment can decide. But, one way 
or the other, the effect is apparently constant and it is 
necessary to consider only the second term in (36). The 
independence of this term of the sample indicates that 
under the experimental conditions, the impurity scatter- 
ing is small in comparison with the phonon scattering? 
But in this case,our theory predicts 5 = 2 while experi- 
mentally, this quantity is sometimes larger, although 
not by much. 

It remains to assume that the effective Debye temper- 
ature lies somewhere inside the investigated range or 
near it. The question arises: is it impossible toC'touch 
up" the theory, so a s  to keep Te- WD. If we assume that 
diagrams of the type of Fig. 2 are unimportant, we could 
take the value 

Lph7'= (XuD/v) [exp ( u d T )  - I ] - ,  (37) 

for instead of the value G=AT/V used earlier. Such 
a form for corresponds to the assumption that pro- 
cesses with p,- -Po are essential in phonon scattering 
aad that there is no substantial transverse dispersion 
(i. e., w(2p,, t) = wD). 

However, the condition i3.r << '1 is violated at T < wD, a s  
has already been noted. But processes with p, - po and 
with Po- - po are insufficiently sharply distinguished 
there. A more precise treatment of the derivation given 
in Ref. 5 shows that if &,, << I, ,  then o = e2lS(nS)". Con- 
sequently, p is proportional to the number of phonons 
with k, = 2p, i. e., at  T << WD it depends exponentially on 
the temperature. It appears that at T << wD and without 
account of the diagrams of Fig. 2, the assumptions wD 
<< 1 and wDr >> 1 give qualitatively the same result: in 
the first case, paexp(-2wD/'Z'), in the second, fi 
a exp(- wdT). Since, on the one hand, the quantity wD 
used in our model does not acquire a very definite char- 
acter, in comparison with experiment, while, on the 
other hand, under real conditions of experiment, we have 
more readily wD-T rather than any of the limitingcases, 
it is reasonable to write down the simplest interpolation, 
which gives the dependences w, - T~ at T >> wD and p 
a em(- awJT) at T<< oD (where a- 1). The formula (34) 
obtained by us with I, >> &,, and &,, in the form (37) canbe 
used a s  such an interpolation. 

For comparison with experiment, we can write 

where a = wD/300 K, T = T/300 K. Rewriting Eq. (36) in 
this form, we obtain 

In the comparison of the curves obtained from both for- 
mulas, we must keep it in mind that the breakup of p by 
p,, and p1 is not single-valued, because p, can include an 
arbitrary constant (identical, inaturally, for both sam- 
ples). Hence formula (36') should be compared not with 
(38) but with the formula 

p, (T) (eal'-1)-'+c -- - 
p, (300K) (em-1)-'+c ' 

By choice of the two constants a! and c, we can make the 
curves (38') and (36') congruent at 5= 2-2.4 and T 

30.25-1 with accuracy to within 2-3%1, which corre- 
sponds to the accuracy of the congruence of the curves 
for different samples and their description by Eq. (36'). 
We note that the constant c was necessary for us only 
in the comparison of Eqs. (38) and (36'). Actually, for 
treatment of the experiment, we set up the dependence 
I d 1  - p(T)/p(3OO K)]. Here the curves with different po 
turn out to be identical, but shifted along the vertical. 
They can then be made coincident by means of a shift. 
Consequently, the experimental data can be compared 
with (38). 

It seems to us that  we can then draw the followingcon- 
elusions. First, one must not attach to Eq. (36) the 
meaning of an accurately established physical law, be- 
cause the completely different formula (38), which de- 
pends, a s  does (36') on a single adjusted parameter, de- 
scribes the high-temperature data with the same accu- 
racy; a formula of the type (36') can serve only a s  a 
convenient empirical formula. It seems that the formu- 
la (38) has two advantages in this sense. First, it is 
exact at T >> wD; second, the determination of (Y from 
comparison with experimental data makes it possible to 
find w,, i. e., some measure of the limiting vibrational 
frequency. 

Comparison shows that 5 G 2.4, which corresponds to 
wDG 150 K; this is quite reasonable. 

Of course, it would be far more interesting to com- 
pare formula (34) with the data for such objects for 
which the criteria of its applicability are satisfied and, 
in particular, to trace the role of the impurity scatter- 
ing. Without speaking of searches for new materials, 
one should advance in the already existing materials, so 
far as this is possible, towards higher temperatures 
and, in addition, to try to introduce additional "impuri- 
ties" for example, by the method of disturbing the stoi- 
chiometry. 

APPENDIX 

The relations (32)-(34), (36) and (37) connecting the 
components of S with the components of S" and C(z, 2 ' )  

with G(ztz), and also the transformations of S and G in 
the substitution 5 = 5*, were all established in Ref. 1. 
All these referred to the impurity potential, which is 
time-independent. We can generalize these relations 
for the phonon potential (11) of the present work (see al- 
so (12) and (14)). 

First of all, we connect the components of the matrix 
S' with the components of S. In the presence of the im- 
purity potential only, using expressions of the type (23)- 
(27) from Ref. 1, we can obtain the relation (32). Inthe 
case considered in the present work, the situation is 
somewhat different. There is no direct connection be- 
tween the components of S' and S. However we can do 
the following. In the function with which the averaging 
is carried out, there appear I cI2, I al and I bI2, inwhich 
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the latter enter symmetrically. If we make the substi- 
tutions c e c * ,  a* b* in all the averaged expressions, then 
the result does not change. On the other hand, taking 
the first terms of formulas of the type (23)-(26) from 
Ref. 1, we establish the fact that 

Further, transforming the left and right sides in the re- 
lation (z > z1 > z') 

according to Eqs. (A. I), we confirm the validity of the 
formulas (A. 1). And now, making use of Eqs. (5) of the 
present work, we obtain transformation formulas for 
GR and G" (they are identical): 

In order to obtain the transformation formulas similar 
to (36) and (37) in Ref. 1, we write down the equationfor 
s; 

We multiply on the left and right by ul, and a ta in  

where 3 = 02Sul and similarly for 

It follows from Eqs. ( l l ) ,  (12) and (14)that S,,,.(z, z') 
satisfies the same equation as S-,,-,,(z, z') if we change 
the signof wandtransforma--a*,b--b*, c - - c * .  
The same result i s  obtained if we write down the equa- 
tion for S(z, 2' )  relative to 2'.  Thus, this transforma- 
tion, yields the relations 

From Eqs. (5) we get for G 

 he corresponding momenta are  

(s i s  the speed of sound). 
the approximation (IS), two terms in (12) are  cancelled. 

Actually, using the G-function properties found in the Ap- 
pendix, we can show that the two terms in (12) a re  equal to 
one another and both vanish in the approximation (19). 

3 ) ~ ~  far as the c-lines a re  concerned, it  appears at first 
glance that their intersections with one another a re  admissi- 
ble even at Zl*/v >> 1. However, in actuality, this is  not the 
case. As has already been made clear, intersections of c- 
lines with a-, b- and 6-lines are  not admissible. Conse- 
quently, all the paired c-operators pertaining to intersecting 
lines always belong to Green's functions with a single pseudo- 

null and averaged Green's functions a r e  proportional to O(z) 
or  9( -  z ) ,  i t  is  easy to see that the intersections of c-lines 
are  impossible. 

4 ) ~ a k i n g  the above into account, there is  every reason for as- 
suming that the results obtained in Refs. 2-4 a r e  in error .  
The correct formulas for the conductivity in the models con- 
sidered in Refs. 2-4, obtained with use of the method devel- 
oped below, are  given in Ref. 12. 

5 ) ~ h e  effective path length I* i s  determined by scattering from 
impurities and phonons in the approximation w J * / v  = 0. Here 
the a- and b-phonons a re  similar to the g-field, while the c- 
phonons a re  similar to the 11-field, which, as  is well known, 
(see Ref. 1) does not take part in the scattering. Consequent- 
ly, ze' = 4' + &, * 

Owe note that the conductivity a t  wo- 0 i s  real, while all the 
terms of the expansion of o in wD have the form iwo(iwdwo)2h, 
i .e. ,  they a r e  purely imaginary. The appearance of the first 
degree of wD in formula (28) at  w o 4  0 and the change of the 
imaginary conductivity to real can take place if the function 
f contains a term of the type [ I -  ( W ~ / W ~ ) ~ ] ~ / ~ .  
 he case I, >>lgh, T>> wD, O $ ~ / V  << 1 was considered recently 

in the work of Madhukar and  ohe en^^^] where the result o m T* 
was obtained. Since the note['31 i s  short, it is  difficult to 
assess the accuracy of this calculation. Doubt i s  raised also 
by the fact that the authors throw away part of the diagrams 
while at wDl*/v << 1 all the diagrams are  essential. The final 
formula (15) in Ref. 13 contains a nontrivial coefficient of 
T' and even has an incorrect dimensionality. 

' ) ~ t r i c t l ~  speaking, this i s  not obligatory, since the "impuri- 
ties" frequently correspond to innate disorder in the crystal, 
and a r e  therefore the same in different samples. Neverthe- 
less, in the experiments under discussion, the form of the 
temperature dependence p(T) show more readily that the im- 
purity scattering is unimportant. 
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