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Theory of tunneling in crystals at arbitrary ratios of the 
widths of the forbidden and allowed bands 
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A quasiclassical theory of tunneling in crystals in an electric field is developed. The theory takes into 
account the finite widths of the allowed energy bands. The two-band Slater-Koster model is used to 
calculate the tunneling probability. It is shown that for crystals with narrow allowed bands, the 
customarily employed Kane model yields an erroneous estimate of the tunneling probability. Criteria are 
obtained for the applicability of the Kane model, and a correct tunnel probability is calculated for the 
case when these criteria do not hold. Tunneling accompanied by photon absorption in a crystal is 
investigated with account taken of the f ~ t e  widths of the allowed bands. The dependence of the tunneling 
probab'fty on the angles between the electric-field intensity vector and the symmetry axes of the crystal 
is investigated; this dependence does not appear in Kane's model. It is demonstrated that this dependence 
can yield additional infomation on the crystal symmetry and crystal structure. 

PACS numbers: 73.40.Gk, 61.50.Em 

The investiwion of tunnelina in crystals in an exter- E (k) =(A2C~h'kE/p)'b. (1) 
nal electric field is of considerable &rest for solid- - electronics. lnterband tunneling in a constantelec- Here A is the half-width of the forbidden band and p is 

mc field determines, for eexample, the current flow in the reduced effective mass of the electron and hole. The 

Esaki diodes. ~ 1 ' 2 1  Theoretical descripUons of the tun- results of expression (1) are greatly limited in scope. 

neling process in crysw are contained in many pawrs Kane's model (I), the allowed energy bands are as- 

for the case of c ~ n s t a n t ~ " ~  and time-alternating (laser sumed to be infinitely broad in comparison with the for- 

emisston)m.a elecMc field, b most cited papers bey bidden band. This assumption can be justified for tun- 

m e p s  h0-b- which corresponds to the "el* processes Only for the 'peeid Of 

following dispersion law (the dependence of the energy band crystals (e. g. , of the InSb type). 

E on the quasimomentum ah The decisive circumstance for the quasiclassical tun- 
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neling theory that is natural for our problem is that the 
electron energies in the valence and conduction bands 
constitute two branches of a single analytic function & (k) 
of the complex quasimomentum Mr, which are connected 
by a branch point k*. C"41 In Kane's model (I) we have 
k* = k$= i(pA)lf2/3i, i. e., the position of the branch point 
is determined only by the width of the forbidden band and 
does not depend on the widths of the valence and conduc- 
tion bands. It will be shown below that allowance for the 
finite widths of the allowed bands alters significantly the 
positions of the branch points (F E* kt), and this prede- 
termines an exponential e r ror  in the quasiclassicaltun- 
nel-probability estimate based on (1). It can be verified 
that if the width of the forbidden band turns out to be of 
the same order as the widths of the allowed bands, then 
allowance for the finite widths of these bands is of fun- 
damental importance, and the use of the dispersion law 
(1) leads to erroneous results. In addition, the tunnel- 
ing probability becomes dependent on the angles between 
the electric-field intensity vector and the crystal sym- 
metry axes, a dependence that does not exist when the 
spherically symmetrical dispersion law (1) is used. A 
band model with an allowed band of finite width, based 
on the tight-binding method, was considered as  applied 
to tunneling problem The results ofC51 pertain 
only to crystals with a very broad forbidden band and 
with weak coupling of the narrow allowed bands (i. e., to 
a situation that is the inverse of the one described by 
Kane's model (1)). The results ofCB1, furthermore, per- 
tain to a special configuration of an inhomogeneous field 
in a tunnel diode (in the form of a rectangular step), and 
consequently is likewise not general in character. 

The question thus arises of constructing a consistent 
theory of tunneling in a crystal in an electric field for 
arbitrary ratios of the widths of the forbidden band and 
the allowed bands. This makes it possible to establish 
definite criteria for the applicability of the existing re- 
sults that pertain to the alternate limiting cases dis- 
cussed above, and to obtain an estimate of the tunneling 
probability in the intermediate situation. 

The basis for the construction of this theory, in our 
opinion, can be the two-band model of Slater and Kos- 
ter, 'I1 which takes into account both the analytic con- 
nection between the dispersion laws in the valence and 
conduction bands, on the one hand (just as  in Kane's 
model (I)), and the finite widths of the allowed energy 
bands, on the other. For a primitive cubic lattice, con- 
fining ourselves in the tight-binding method to the over- 
lap of the wave functions of the nearest atoms in the unit 
cell of the crystal, and assuming for simplicity that the 
widths of the valence and conduction bands are  equal, we 
can obtain according toC1'] for & (k) 

E ( k )  = (uZ (k )  +vZ ( k )  ) Oh,  

u ( k )  =A+A[3-cos k,a-cos kp-cos k,cr], 

v ( k )  =B[sina k&+sin%kp+sin2 k,a]'". 

Here a is the lattice constant. The parameters A and B 
can be determined by a direct quantum-mechanical cal- 
culation. It is preferable, however to determine them 
by identifying (2) with a dispersion law obtained by us- 

ing more accurate numerical methods of calculating the 
band structure, o r  by comparing the experimentally ob- 
tained values of & (k) in high-symmetry points of the 
Brillouin zone with the corresponding values that follow 
from (2). The parameters A and B are  connected with 
the effective mass p by the relation 

We direct the external electric-field intensity vector 
F along one of the edges of the unit cube (say along the 
x axis). Then the vector k has a component k,= (k, k,) 
perpendicular to the direction of F, this component is 
conserved in the transition, and an important role in 
what follows is played by the positions of the branch 
points @ of expression (2) at kL= 0 (see, e. g., '*'''). 
Let us find 

A a = -  B 
A ' p = - x,=Archlz,l, %,=Arch z,, 

A ' 
$ [ ( l + a ) Z - ( a z - p ' ) ] "  

aZ-$' a ( a + l )  

The position of the branch points of &(k) in the com- 
plex k, plane at k, = 0 is shown in Figs. la and lb. A s  
follows from (6) and from Fig. 1, at a < j3 the minimal 
distance between the points kZt1, and k&) (gto and @(# ) 
is r/a.  Under the condition 

the pairs of points k:(,,, and kS2,,) can be considered in- 
dependently. If at the same time 

then each of the branch points & (k) can be considered 
independently. The two inequalities above signify in 
essence the possibility of using the quasiclassical ap- 
proximation to estimate the transition probability. We 
use the quasiclassical "imaginary time" method, mlac- 
cording to which the probability amplitude R of an inter- 
band transition, with account taken of one isolated 
branch point, is given by 

The dependence of k,  on t is determined by the equation 
of motion 3ikX = eoF, and the time ti" is determined by 
the condition k,(tiO') = ix2. In (9) it is taken into ac- 
count that at a! < j3 the point in2 is closer to  the realaxis 
than in1, and accordingly the #: = in2 is exponentially 
larger than the contribution k: = in,. A contribution of 
the same absolute value is made to the transition prob- 
ability by the points tia' determined by the condition 
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FIG. 1. a) Arrangement of 
the branch points of the dis- 
persion of ~ ( k )  in the com- 
plex k, (k,= 0) plane at a 
< p.  b) Arrangement of the 
branch points of the disper- 
sion of ~ ( k )  in the complex 
k,(k,= 0) plane at a >j3. 

The contributions of all these points must be summed. 
The existence of an infinite number of equidistantbranch 
points of &(k) is obviously due to  the appearance in the 
allowed band, following application of a homogeneous 
electric field, of Wannier-Stark levels. Their ap- 
pearance is a direct consequence of the use of the Slater- 
Koster model, in which account is taken of the periodic 
dependence of the energy on the quasimomentum. This 
circumstance constitutes one more advantage of the dis- 
cussed model over Kane7s model, in which no Wannier- 
Stark levels appear and they must be introduced a s  an 
additional fact that does not follow from the theory (for 
example, in the calculation of the probability of the in- 
terband transition per unit timecs1). 

If a > 8, a situation is possible in which 

whereas (7) and (8) are  satisfied. as before. The inequal- 
ity (10) is the result of the coalescence of the points 
ixl and in2 a s  p- 0. (At p- 0, i x l -  in+, ix2- in,. ) Sat- 
isfaction of (10) means that the point k:(,, = in1 cannot be 
considered independently of the point ks, = in2 (or k?&, 
= - in, independently of k:(4 = - in,). Satisfaction of (8) 
makes it possible to separate the point pair #C,(l,z, from 
the pair k:(,,,. In this situation formula (9) is wrong 

to obtain the tunnel probability we can resort to the 
equations of motion based on the adiabatic approxima- 
tion for the transition amplitudes. Cs17'81 The wave func- 
tion for the electron in the crystal i s  represented in the 
presence of an electric field in 1:he form 

Here k,vr(r) are the Bloch functions corresponding to 
the conduction (C) and valence (V) bands, and k t= k 
+ e,Ft/~. The amplitudes a,@, t) and +@, t) satisfy the 
system of equations 

Equations (12) should be solved with the initial condi- 
tions 

The transition probability amplitude R is given by I RI 
= I a,(+ -)I . Near an isolated branch point, following 
Dykhne, '14] we can put in (12) u = iv, recognizing that 
near its zero & (t) is a steep function of t, whereas u and 
v are  individually smooth functions of t. The determi- 
nation of a, (+ w) from (12) then reduces to the problem 
of above-the-barrier reflection, and 

which agrees with the result (9) of the "imaginary time" 
method. To consider also a situation wherein the in- 
equality (10) is satisfied, we introduce two new functions 
XI and X2: 

which satisfy the equations 

d u 
~ : ~ = e ' ( t )  * ihu- - -h2{u,  t ) .  

d t  ( u )  

Here {v, t} = $(6)2/9-ij/2v is the so-called Schwartz de- 
rivative, and XI,, satisfy the initial conditions (t - - w): 

Here t' is an arbitrary point on the real time axis. Far  
from the branch points & (t) we can use the quasiclassi- 
cal approximation for the solution of Eqs. (14) (the 
Schwartz derivative (v, l )  can in this case be omitted[15] 
since it makes no contribution to the principal term of 
the asymptotic solution of the solution of (14)). The re- 
mainder of the calculation program consists of obtain- 
ing for (14) an analytic solution which is the same in the 
entire small region of the complex k,(k,= eoFt/E) that 
spans the close branch points e(l, and %(,,. It i s  then 
necessary to join together the obtained solution to the 
quasiclassical solutions, valid a s  t- i w, of the same 
equations, with account taken of the initial conditions 
(16). 

We consider first the case of sufficiently broad al- 
lowed bands, when u and v can be written in the form 
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The transition to the Kane model (1) in Eq. (17) means 
Z = 0, i. e., the requirement that the effective mass (see 
(5)) be formed only by the interband coupling (B+ 0). 
Formula (17) thus corresponds to a situation more gen- 
eral  than (1) (including also the case A> B). Near the 
pair of branch points tl and tz of the function E (t) = (u2 
+L?)"~, which are located in the upper half-plane (case 
A> B), we can put approximately v =  i & ( ~ / @ ~ ) l ' ~  (since 
as & - 0 we have tl - t+, tz - t+, t+ = i ( ~ /  q,)'" and in this 
case v(t) is a much smoother function of t than u(t)). The 
equations for XI,, take the form 

Equations of the type (18) were considered in a num- 
ber of papersc16.17 in connection with the problem of the 
quasiclassical spectra of molecules in the approximation 
where the terms a re  linear and a r e  not coupled adiabat- 
ically. Near the pair of branch points s l , ~  = ib(6 1)'12, 
Eqs. (18) take the form 

Equations (20) have solutions in the form of the parabol- 
ic-cylinder functions D-(,l,[* ~ - ~ ' ~ ( s - s , ) ]  for Xl and 
D,,[& ~ " / ~ ( s - s + ) ]  for X2. It is these solutions that must 
be joined to the quasiclassical solutions, valid respec- 
tively a s  t- koo, of the initial equations (14). The de- 
tails of the calculations in accord with the program de- 
scribed above can be found in"7"81. Leaving out the de- 
tails, we find 

(2nv) '" 
IRI =- exp ( v  ln v - v )  exp 

r ( i + ~ )  

Here r ( l +  V )  is the gamma function. To find the con- 
tribution made to the transition probability by a pair of 
close branch points of c(k) in the general case (formula 
(2)) we can use the associated-equation method. C'5*'91 

The equations associated with (14) can be chosen to be 
in the form of (20). The parameter v is then determined 
from the condition 

Formula (22) then remains valid for I RI , wherewe must 
put 

At v >> 1 Eq. (22) leads to (9). At v << 1 we have 

The last result can be obtained in the first  nonzero order of 
perturbation theory in  terms of the interband coupling 
(seecsland formula (22) of Keldysh's papercs'). To ob- 
tain the transition probability per unit time it is neces- 
sary to sum the contributions of all the branch points 
located in the upper complex t half-plane at equal dis- 
tances from the real  axis. 

If inequality (8) is satisfied, the transition probability 
a s  a function of k2, is a sharp maximum kl= 0. This is 
why the foregoing analysis was carried out for a = 0 .  To 
obtain the probability W of generating an electron in the 
conduction band per unit time and unit volume of the 
crystal it is necessary to take into account the depen- 
dence of the parameter Q on k2,. It suffices here to  ex- 
pand Q in a series near k2,= 0: 

where C( is determined by formula (5). It is then neces- 
sary to  integrate the transition probability with respect 
to kL in the volume of the f i rs t  Brillouin zone. We ne- 
glect the weaker dependence of the transition probability 
on kf via the parameter V. We obtain 

(If a<f~  we can use fo r  W also formula (24), in which we 
must put formally v = =J. ) 

We present the result of the calculation of the princi- 
pal parameters of (24) in the Slater-Koster model (dis- 
persion law (2)): 

(here (K(x), E(x), and n(n, x) a re  complete elliptic inte- 
grals of the first, second, and third kind, B(x)= 1, x>O; 
O(x)=O, x<O); 

asa+1) +$I-azz 
Q,=2A 1rnJ dz, z=cm kp, (.+BY (1-z2)'"e (2) 

Q1 is also expressed in terms of the elliptic integrals 
K(x), E(x) and n(n, x), but since Q1 is contained only in 
the pre-exponential factor of (24), the corresponding 
cumbersome expression is not written out here for the 
sake of simplicity. 

Let @= 0 (in this case the width of the allowed band in 
the section kL= 0 is (a2 + B~)"~-A)  
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4 6  1 1 
w-~xP{-~(~+P~)"[K(--)-E(~)]). ( l + p ) v '  (28) 

- 

For a narrow forbidden band and broad allowed bands 
we have p> 1. Then 

If 5/8fi2 < 1, we obtain for the tunneling probability the 
well known expression corresponding to the Kane mod- 
el[', s I. 

For allowed bands of finite width at 5/8P2 > 1, as  follows 
from (29), Eq. (30) leads to an exponential error,  and 
for a reliable estimate of the transition probability it is 
necessary to use the general forlnulas (24)-(28). 

In the opposite limiting case of' weakly coupled (@<< a)  
narrow allowed bands we get 

Substitution of (31) and (32) in (24) gives a result close 
to that obtained incss5', in the first nonzero order of per- 
turbation theory in the interband coupling (P<< a). De- 
viations from this limiting result, which set in at b- a, 
are described by the general formulas (24)-(26). 

The dispersion law (2) has no spherical symmetry, 
and therefore the probability of the interband tunneling 
in an electric field, with allowance for the finite widths 
i of the allowed bands, exhibits a strong dependence on 
'the angles between the direction of the field-intensity 
vector and the symmetry axes of the crystal. This de- 
pendence disappears, of course, on going to Kane' s 
spherically symmetrical dispersion law (1). Assume for 
simplicity that the electric field intensity vector lies in 
the plane of the face of the unit cube and makes an angle 
cp with one of its edges. We choose the coordinateframe 
such that the x axis is parallel to the intensity vector. 
In this frame, the dispersion law (2) is rewritten in the 
form 

We write down two principal terms of the expansion of 
the quantity Qo, which determines the tunneling prob- 
ability, in terms of the parametr!rs a'' = A/A and 13" 
= A/B (the case a-' < 1,~- '  < 1): 

Here 

4 ( r )  2a(ro2+r,') - %- - 51 -9ar,zro'. [ 

If Q,(cp) > 1, the tunneling probability exhibits a strong 
(exponential) dependence on the angle cp. We consider 
directly the deviation from the result obtained with the 
aid of the dispersion law (1). To this end we put CY = 0 
in (34)-(36). We get 

Thus, the tunneling probability acquires an additional 
exponential factor 

which is maximal at cp = 0 and sr/2 and has a minimum at 
cp = r/4, i. e., when F is directed along the diagonal of 
the face of the unit cube. The ratio of the maximum and 
minimum tunneling probabilities is 

If we take parameter values that are  not extremal Qoi 
= 20 and A/B= i, then this ratio is equal to 1.4. This 
difference between W,, and W,,, can be observed inex- 
periment. 

We consider next interband tunneling accompanied by 
photon absorption (the Keldysh-Franz effect). The prin- 
cipal exponential factor that determines the coefficient 
p ( a )  of absorption of light of frequency 51 in the crystal, 
in the presence of an electric field and under the condi- 
tion 2A - E51> 0, is of the formc201 

where ko is determined from the condition 2s (kO) - tin= 0. 
We use for the crystal dispersion law c(k) the expres- 
sion (2) in which we put for simplicity B= 0 (in this case 
the width of the allowed band is 2A). Then 

Under the condition 

(38) leads to the known r e ~ u l t ~ ~ ~ ' ~ "  

4(2~-hsapp"l 
P ('1 -  ex^ {- S c r $  1' (39) 

which is-obtained in the model of simple parabolic bands. 
At ( 2 ~  - E51)/2A 2 1 formula (39) is incorrect, and the ab- 
sorption coefficient p(Q) is determined by formula (38). 
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FIG. 2. Angular dependence 
of the relative change of the 
light absorption coefficient in 
an  electric field. Curve 1 
correspond to a primitive 

-01 
cubic lattice of the crystal, 
and curve 2 to a face-centered 
cubic lattice. 

Consider the case when the vector F is in the plane of 
a face of the unit cube and makes an angle 9 with one of 
its edges. For a primitive cubic lattice we then obtain 
((2A - EQ)/2.4 < 1) 

For comparison we present in the same approximation 
the result for a face-centered cubic lattice(&(k) = 41 
+ 8 ( ~ ( 3 -  cosk,a coskya- cosk,acosk,a- coskyae cosk,a)]): 

It i s  seen from (40) and (41) that the angular dependence 
of p(a)becomes particularly strong in the region of the 
absorption "tails" that lie in the forbidden band when 

Figure 2 shows the angular dependence of the relative 
change of the absorption coefficient 6p/po(6p =p(a, p )  
-PO@), P O ( ~ ) = P ( ~ ,  Q =o)). 

The parameter q was chosen equal to unity. It follows 
from Figs. 2 that the dependence of 6p/po on is quite 
strong and differs substantially for different types 
of crystal structure. Thus, an investigation of the ab- 
sorption of light in the presence of an electric field in 
crystals with broad allowed bands can yield important 
information on the crystal symmetry and on the struc- 
ture of its unit cell. The latter circumstance is quite 
interesting if account is taken of the high sensitivity of 
the modulation-spectroscopy methods based on the 
Keldysh-Franz effect. 

It follows from the foregoing that to estimate the tun- 

neling probability in a crystal in the quasiclassical ap- 
proximation with allowance for the finite widths of the 
allowed energy bands, it suffices to know the dispersion 
law a&)  in the two-band approximation and the analytic 
properties of E (k) as functions of the complex quasimo- 
mentum lik. To clarify the qualitative aspect of the 
problem and to obtain lucid results, we used here a 
primitive cubic lattice model, for which we wrote out in 
turn the simplest dispersion expression that follows 
from the method of Slater and Koster. However, as 
shown by Slater and ~ o s t e r , [ ' ~ '  the method yields ana- 
lytic expressions for the dispersion laws for lattices 
with more complicated symmetry and unit-cell structure, 
with a larger number of phenomenological parameters, 
and approximating more flexibly the dispersion laws of 
real crystals. Estimates of the tunneling probability by 
the quasiclassical method described in the present paper 
can be obtained without difficulty also in these more 
complicated cases. Naturally, it i s  advantageous to do 
so in comparison of the theory with actual experiment. 

The author thanks V. A. Kovarskii for interest in the 
work. 
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