
during plastic deformation. At the present time the de- 
tailed mechanism of this processds being investigated. 

 he ZnS crystals were kindly provided by M. P. Kulakov, to 
whom the authors express their sincere gratitude. 
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Helicoidal and sinusoidal spin ordering in quasi-one- 
dimensional magnets 

S. P. Obukhov 
L. D. Landau Institute of Theoretical Physics, USSR Academy of Sciences 
(Submitted May 16, 1977) 
Zh. Eksp. Teor. Fiz. 73, 1470-1479 (October 1977) 

Using as an example a chain of spins interacting via the conduction electrons, the possibilities of helicoidal 
and sinusoidal ordering are considered. Expressions are obtained for the correlation functions and for the 
structure factor. Substances in which observation of this order is possible are indicated. 

PACS numbers: 75.25.+z 

1. INTRODUCTION other via direct exchange, and also indirectly via the 
conduction electrons. The last interaction is long-range 

By now there are  a large number of known substances 
that are  quasi-one-dimensional in their magnetic prop- and therefore, even it  is small, can substantially alter 

erties (see the re~iews'''~'). The properties of most the properties of a quasi-one-dimensional system. 

of them are satisfactorily described by a model with ex= 
change interaction between the nearest spins that a re  
arranged in a chain. The interaction between spins of 
different chains is assumed to be small. Depending on 
the type and magnitude of the single-ion anisotropy, the 
system is described by the Heisenberg model, by the 
XY model, or  by the Ising model. If the interaction 
along a chain of spins that are not nearest neighbors be- 
comes substantial, then more complicated states with 
helicoidal and sinusoidal magnetic structures are pos- 
sible. We consider the properties of such systems us- 
ing as  a model spins interacting via conduction electron. 
The simplest example of the realization of such a model 
is a chain of atoms of transition elements. The s-shell 
electrons become collectivized, and they can be re- 
garded as  free, while the f or d electrons a re  localized 
on the sites. The localized spins interact with one an- 

Assume first that there are  no fluctuations. We re- 
gard the functional of the free energy of the system as  a 
function of the wave vector of the spin structure. The 
functional of the energy of the direct interaction of the 
spin i s  of the form 

where 

st exp (iq+,), J (q) = exp [iq (z,-zr) ] 
f 

If only the nearest spins interact, then the characteris- 
tic scale of the variation of the quantity ~ ( q )  is of the 
order of the period Qo of the reciprocal lattice. The 
electrons a re  acted upon by a spin field with wave vec- 
tor q and with an amplitude proportional to (S) . If q is 
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have SX = S cosQx, SY = S sinQx, Sb = 0 or.  (x) = SG (x) = S. 
The electron Green's function is 

FIG. 1. 

close to 2p,, then the energy of the interaction of the 
electrons and the spins has a logarithmic singularity: 

where V is the matrix element of the electron-spin in- 
teraction. 

If the logarithmic peak at q = 2pF is near the minimum 
of Fs[q], then even if it is small compared with I;,, it 
can determine the position of the absolute minimum and 
also the form of the free energy in the vicinity of this 
minimum (Fig. la). We shall henceforth assume through- 
out that the interaction is antiferromagnetic and that 
&(q] has a minimum at q=  Q0/2. Then the conditionthat 
the absolute minimum be determined by the logarithmic 
peak at 2pF can be written in the form 

It is convenient to write the Bamiltonian of the bound 
system of electrons and spins in a form such that the 
electron momentum be reckoned from *pF: 

where $*,k = $*fip+k is the operator for the annihilation of 
electrons with momentum close to k p ,  5" and bf = (ox 
* fiY)/2 are operators acting on the column $(x), 8 are 
Pauli matrices acting on the spin variables of the elec- 
tron operators, 

Assuming that the electron subsystem is situated in a 
field of a fixed spin configuration, we obtain an expres- 
sion for the electron Green's functions. We assume 
here that S>> 1, so that the spin operators in (2) can be 
replaced by their mean values. We shall subsequently 
calculate the contribution made to the spectrum by the 
long-wave excitations that determine the form of the 
correlation functions and of the structure factor. 

We consider two possible types of structures with 
wave vector Q # QJ2: helizoidal and sinusoidal. For 
the helicoidal structure, in the absence of fluctuations 
and for a proper choice of the coordinate system we 

where A = VS, tfl, 82 and also sl, s2 are matrices in the 
form ('o 00) and !). For a sinusoidal structure we have 
SC = S cosQx, S = SY = 0 or SZQ ,,, = ~ / 2 . ,  The electron 
Green's function is 

where A = vS/2, and and I are unit matrices. 

If the direct exchange exceeds the indirect one, then 
the helicoidal state is energywise favored. In the op- 
posite case, when the indirect exchange is larger than 
or of the same order as  the direct exchange, the situ- 
ation is not clear. The configuration energies cannot be 
compared by using the molecular-field theory, since 
this theory is certainly not applicable for a sinusoidal 
structure. We do not know the ground state of this struc- 
ture, and the term "sinusoidal" means only that there is 
a corresponding harmonic of the localized spin, which 
causes a restructuring of the electron spectrum (4). 

We shall not consider effects connected with allowance 
for single-ion anisotropy. We point out only that the 
anisotropy, just a s  an external magnetic field, would de- 
crease the number of Goldstone modes and would change 
correspondingly the low-temperature correlation func- 
tions. 

2. HELICOIDAL STRUCTURE. CORRELATION 
FUNCTIONS 

Let the direct exchange interaction J be much larger 
than the indirect one Jes. Then, in the temperature in- 
terval JS2/3 >> T >> ~ , ~ $ / 3 ,  the system "does not feel" 
the true energy minimum. The correlation function of 
a one-dimensional antiferromagnet 

K (x ,  T )  = ( S  (x ,  z ) S  (0 ,  O) )=SZ(n  ( x ,  T )  n ( 0 ,  0 ) ) c o s  (Q,x/2)  (5) 

can be calculated if we know the spin-wave spectrum 

We write down the Lagrange function of the long-wave 
oscillations : 

Using Berezinskii's resultscs1 we obtain for ux<< P and 
r<< B 

and for ux>> p 

K ( x ,  7 )  =exp (-4nT 1x [ l u )  cos (Q ,x /2 ) ,  (6) 
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where u = US, v = 8nJS2, P= T", 5 ,  is of the order of the 
interatomic distance, which we shall hereafter assume 
equal to unity. We note that u/v = 1/411S << 1. 

At temperatures T << Jes9/3 the state of the system is 
determined by fluctuations within the logarithmic peak. 
If 2p, is close to the boundary of the Brillouin zone, so 
that I 2pF- ~,,/21 < VS/vF, then the energy minimum is 
as before at Q = Qd2 (Fig. lb) and the correlation func- 
tions are described by formula (6), but with different u 
and a, which we shall calculate below. The ratio u/v 
will as  before be much less than unity. If 1 2pF - Qd21 
> VS/vF (Fig. la), then the magnetic ordering is heli- 
coidal. Such a state is characterized in the generalcase 
by a normalized complex vector R= q + z&, whose real 
and imaginary parts are perpendicular and equal, so 
that 

The orientation of R in space is determined by three 
angles. The Lagrange function in the absence of single- 
ion anisotropy depends only on the derivatives of these 
angles. 

To determine this derivative we use the known expres- 
sion for the spectrum of the spin waves in a helicoidal 
structurec41: 

The frequency becomes equal to zero at q = 0 and q = *Q. 
The oscillations with q = 0 correspond to rotation of all 
the spins through a certain angle in the (q ,  Q) plane, 
while the oscillations with q= * Q corresponds to rota- 
tion of the plane itself. We denote by a,, A,, and a, the 
angles of rotations relative to the axes of a coordinate 
system whose axes 1 and 2 lie along 111 and Q. From 
(8) we know the connection between the temporal and 
spatial derivatives of the angles al, h,, and c3. In the 
approximation quadratic in these derivatives, we obtain 
for the Lagrange function 

Expression (8) was obtained by starting from the as- 
sumption that the interaction between the spins is of the 
Heisenberg type: 

and that J(q) has a minimum at q = Q. The interaction 
via the conduction electrons, generally speaking, can- 
not be described with the aid of an effective Heisenberg 
Hamiltonian, since the effective exchange integral is it- 
self a functional of S, in this case. We therefore denote 
by 4' quantities that in the case of a pure Heisenberg 
Hamiltonian would be equal to 

The electron contribution to these quantities will be cal- 
culated separately. To this end we introduce new 
Green's functions 

g(- x ,  x -, ) - -exp [ -'JziQ(2)s]9 (5, 2') exp ['/,Q(f ')el, 2= (x, z), 

where n(Z) ={n1(Z), a,(%), Q,(z)} is the aggregate of the 
rotation angles that make R(0) congruent with R(Z). This 
corresponds to a changeover to a coordinate system that 
rotates with R(x), and in which the order parameter is 
constant. From the equations of motion for S(T, If) it is 
easily seen that the effective electron Hamiltonian takes 
in the rotating coordinate system the form 

The last two terms, expressed in terms of the local ro- 
tation angles A,, a re  equal to 

Regarding them as  a perturbation, we calculate the cor- 
rection, quadratic in the derivatives of the angles 0, 
(Fig. 2-the solid lines a re  the Green's functions (3)). 
Integrating with respect to the coupling constant or, 
equivalently, with respect to the gap in the electron 
spectrum: 

we obtain for the electronic contribution to the value J:' 
of the Lagrangian (9): 

The electron contribution to the terms with the time de- 
rivatives in (9) is small, like J / v ,  in comparison with 
the exchange contribution. We note that for an antiferro- 
magnet (Fig. lb) the electron contribution to J"S is de- 
scribed by the diagram of Fig. 2 with a scattering po- 
tential AEXsL, where the solid lines a re  the Green's 
functions (4), and is equal to vF/87r. ~ h u s ,  at T<< J,,@/ 
3 we have i n  formulas (6) v =up. and u = (~v,/2n)"~. 

The correlation function of the spins in a helicoidal 
structure is expressed in terms of the order-parameter 
correlator: 

aiii . - , ~ a g  a2 FIG. 2. 
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~(~)-t~(z)~(O)>=~hS~cosQx(R*(~)R(o)) 
=l/2S2 cos Qz(cos 8, (5) cos Q's(L) ). (12) 

Assume first  that the Lagrangian (9) is isotropic rela- 
tive to the axes 1,2, 3, i. e., ui = u and v, = v. Then the 
fluctuations about each angle can be regarded a s  inde- 
pendent and the problem reduces to the calculation of the 
independent mean values (cos51(~)) with the Lagrangian 

The corresponding Gauss integral was calculated a 
number of times (see, e. g., '51): 

G(f)== <cosB(Z)) 

(13) 

Let the "anisotropy" of the Lag~angian (9) be small. 
Since u/v << 1, we shall assume! the correlation function 
to depend only on x. We separate the isotropic and an- 
isotropic parts of the Lagrangian, expressing the ve- 
locities in the form 

Substituting in (14) the mean values cos2CAl(x) and cos251, 
X (x), calculated with the isotropic Lagrangian, and cal- 
culating the correlation function with x-dependent veloc- 
ities (14), we obtain 

"'"I ) ( '"'TI"' )]] 
-A[4exp(---;-- t e x p  --- 

u' (15) 
32 

, a=--; 

at x << v/2r T we have 

and at x >> v / h T  

The expression for GlS2(x) is obtained by making the sub- 
stitution a-  - a/3. We note that the effective shift of 
the origin over large distances in (15) does not depend 
on the temperature. 

We consider now the general. case of arbitrary anisot- 
ropy. We can calculate the correlation function at short 
distances, when the angles CA, a re  small and can be re- 
garded a s  independent. This approach is correct if G, (x) 
= 1. If this condition is violated, i. e., 51, - 1 (since the 
rotations do not commute, all the angles become of the 
order of unity simultaneously even in the case of strong 
anisotropy), we can take into account only the isotropic 
part of the Lagrangian (9). To calculate this part it is 
necessary to average the velocity ellipsoid vl = vz f vs 
over the rotation angles CAI, SZ,,, and CA, in the interval 
[O, 2~1. The result is 

The substitution v, - v,/u: in (16) yields an expression 
for the isotropic term with the time derivatives in (9). 
The correlator (12) thus breaks up into a product of cor- 
relators (13) with isotropic u and v: 

where a- 1 and does not depend on the temperature (see 
(15)). 

3. THE STRUCTURE FACTOR 

Just a s  the correlation functions, the dynamic struc- 
ture factors can be calculated in the limit of small or 
large frequencies compared with T(u/v,,. We consider 
first the case of short times and distances, when 51, << 1 
and the correlation function is equal to 

(17) 
where D, is the Green's function of the angles 51,; 

By analytically continuing K(x, 7 )  to real times t > 0, 
by the method developed in the book of Akhiezer and 
 eres stet ski^'^' (see also"?, we obtain for the retarded 
correlation function 

S' cos Qx - N , I L ,  

K.(x, t) = - 2 { [ ( ~ ) z s h ( n ~ t , + ) , ( , ~ t . - )  1 
(19) 

Xsin  ([:: n - 0  ( t-- :,I) +-0 i: ( t-- : ')I), 
where 

The condition for (19) to be valid is that the expres- 
sion in the curly brackets differ little from unity, i. e., 
t i  << ( u ~ T / v ~ ) - ~ ,  or  that the corresponding frequencies be 
equal to 

The system structure factor that determines the neu- 
tron scattering 

is equal to the imaginary part of K~ (k, w)(k = q - Q). The 
resultant expressions are  cumbersome, and we present 
only the formulas for the quantum region 4 >> T. We 
can then make in (19) the substitution sinh(nTt :) - nTt ;. 
By the same token, we neglect in the expressions given 
below the terms -e'WIT, which would cause some smear- 
ing of the step functions. 
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Strong anisotropy, ul/vl >> ug/v3: 

ua [ sin n ;. os-u:ka<~ * 

X l o l + l - ( l - u , ~ o , )  1 01-/-(l-u,/o,-2u,/v,l (2) """ sin [n (2 e (w-u,kl + 2 ; 
VI us " 11 

Weak anisotropy, ul,, = ur Au, Au << u: 

( 2 1 ~ )  
In formulas (20) and (21) 

In the classical region w"<< (u/v),,T the structure fac- 
tor i s  determined by analytically continuing the correla- 
tion function (12) calculated with an isotropic Lagrangian. 
Substituting ul = u3 = u and vl = v3 = v in (21), we get 

4. SlNUSOlDAL STRUCTURE 

The average spin density in a sinusoidal structure is 
described by expression (7) with R=nei*, where n i s  a 
unit real vector and cp i s  the phase. The correlation 
function breaks up thus into a product of the correlation 
functions of the vectors and of the phases: 

(R' (5) R (0) ) =(n (z) n (0))(e*'zl-"'ol >. (23) 

The expressions for the two correlators are  already 
known [Eqs. (6) and (13)], but in contrast to all preceding 
cases the velocities u, and v, in the phase correlator 
are of the order of the Fermi velocity. In the direction 
correlator, the velocities u,, and v,, are of the sameorder 

as  the velocities calculated with the aid of the diagram 
of Fig. 2 for the case of an antiferromagnet. The struc- 
ture factor can be calculated only in the region cd >> T, 
where it is described by formulas (20) and (21) with 

An interesting analogy exists between a Peierls di- 
electric with order parameter heiw, on the one hand, 
and a sinusoidal structure with order parameter nei*, 
on the other. The substitution cp - cp + cpo transforms 
both system into a state that can be made coincidentwith 
the initial one only via a spatial translation. In our case 
there is therefore a conduction mechanism analogous to 
the Froehlich mechanism. This means only that al- 
though the electron spectrum does have a gap (see (4)) 
no real dielectric transition can occur in a one-dimen- 
sional system. Whereas in a Peierls dielectric the mo- 
tion of the charge-density wave is accompanied by os- 
cillations of the heavy lattice, which leads to renormal- 
ization of the mass of the elementary excitations, in a 
magnet the motion of the spin-density wave is accom- 
panied by a change in the mean values of the spins at the 
lattice sites. Since the spin-configuration energy in a 
sinusoidal structure is lower than the electron energy, 
the effective mass of the elementary excitations is of 
the order of the electron mass. 

This shows once more that in this case the mean-field 
approximation cannot be used and expression (4) can be 
used only for estimates. 

5. CONCLUSION 

One of the substances in which a one-dimensional 
structure of the helicoidal or sinusoidal type can be ob- 
served, is the intermetallic compound AlI1M%. The ex- 
change interaction between the Mn atoms that are ar- 
ranged in a chain is effected via the conduction electrons, 
while the interaction between the atoms of different 
chains is apparently small. At T = 100 K the suscepti- 
bility of the samples has a maximum and then decreases. 
The low-temperature behavior of the susceptibility is 
unclear because of the paramagnetic impurities. Dunlop 
and ~runer '"  attribute the behavior of the susceptibility 
to the formation of single magnetic systems out of Mn 
atom pairs. The point i s  that the Mn atoms can occupy 
in the structure two possible positions, A and B. The 
relative differences between the distances A 4  AB, and 
BB i s  less than 5%. For agreement with experiment, 
however, it is necessary to introduce a very large gap, 
A- 150 K. Since the interaction via the electrons is 
long-range, there is little likelihood that the small dif- 
ference between the distances can lead to a substantial 
difference between the AA, AB, and BB exchange inte- 
grals. The converse is more likely, namely, at tem- 
peratures such that the impurities play no role the sus- 
ceptibility has a behavior typical of one-dimensional 
magnets in which all the spins are  equivalent (see, 
e. g., ["). 

Some anomalies in the susceptibility are  observed al- 
so  in the compound VFp ['I The quantity x,,Tk,,) is 
somewhat smaller than that calculated from the model 
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with nearest-neighbor interaction. The three dimension- 
al  transition in this substance is to a state with heli- 
coidal structure. It is therefore perfectly possible that 
in the temperature interval in which the system is quasi- 
one-dimensional the ordering of the system is close to  
helicoidal. There a re  no conduction electrons in the 
system and the interaction of the non-nearest neighbors 
is probably via direct exchange, on account of the weak 
localization of the d electrons. Of course, the most con- 
vincing confirmation of the existence of the structures 
described above would be a direct neutron-diffraction 
observation of a two-velocity structure factor. 

The author is deepjy grateful 110 I. E. ~ z ~ a l o s h i n s k i r  
and S. A. Brazovskii for a discilssion of the results and 
for critical remarks. 
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Thermally stimulated emission of surface polaritons 
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The angular dependences of the emission spectra of heated zinc selenide films were experimentally 
obtained in p-polarized light m the frequency band of the surface polaritons in the IR region of the 
spectrum. The dispersion curves of the surface polaritons are reconstructed from their emission spectra. 
The influence of a metallic substrate on the dispersion curves of the surface polaritons of a dielectric film 
is demonstrated theoretically. The developed theory is in good agreement with the experimental results. 
The possibilities of using this method to determine the optical characteristics of metal films in an insulator- 
metal-insulator sandwich are discussed. 

PACS numbers: 78.65.Jd, 78.45. +h, 71.36.+c, 73.60.H~ 

INTRODUCTION 

The thermal vibrations of atoms in condensed media 
can give rise to alternating dipo.le moments at  the char- 
acteristic frequencies of the medium. These alternat- 
ing dipole moments emit electromagnetic waves under 
certain conditions. Subject to satisfaction of the energy 
and momentum conservation laws, these electromagnet- 
ic waves can leave the medium and be recorded a s  ther- 
mal radiation. The thermal vibrations of the atoms 
near the free surface of a crystgl lattice also produce 
alternating dipole moment. The magnetic field produced 
by them, however, is "tied" to 1:he interface and can not 
"break away" from it, since the wave vector of the sur- 
face polariton on the crystal-vacuum interface is al- 
ways larger than the wave vector of light in vacuum. 
The use of prisms with anomalous total internal reflec- 
tion (ATIR), a s  is known, makes i t  possible to equalize 
the wave vector of the light in the ATIR prism with the 
wave vector of the surface polariton. When this condi- 
tion is satisfied, the surface polariton absorbs the light 
wave. If some system has absatrbed light, then, in ac- 
cordance with Kirchoff's law, it: must emit it, i. e . ,  the 
picture can be reversed. Thermally stimulated emis- 
sion of surface polaritons has been investigated many 

times (see, e. g., C2'), but the thermal emission of sur- 
face polaritons of single crystals in the regime of in- 
verted ATIR has so far been observed apparently only 
b t S l  

The purpose of the present study was to check on the 
feasibility of observing the emission of surface polar- 
itons of dielectric film in the inverted ATIR regime, as  
well a s  to investigate the interaction of the surface po- 
laritons of the film with a metallic substrate (in particu- 
lar, to investigate the "metallic " quenching of surface 
polaritonscf I). 

1. EXPERIMENT 

The tests were made on ZnSe films sputtered on an 
aluminum film, obtained in turn by sputtering in vacuum 
on a hot substrate. The thickness of the aluminum lay- 
e r s  prior to the annealing was = 0.1 and = 1 pm, while 
the ZnSe film, after crystallizing annealing in an argon 
atmosphere, was = 1 pm thick. The ATIR prism was a 
half-cylinder of single-crystal silican, and the size of 
the air  gap between the prism and the sample was set 
with the aid of a frame of lavsan polyster film 25 to 6 
pm thick, depending on the emission angle. The "sam- 
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