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Functional for the hydrodynamic action and the Bose 
spectrum of superfluid Fermi systems of the He3 type 
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Zh. Eksp. Teor. Fiz. 73, 1445-1459 (October 1977) 

A hydrodynamic-action functional is constructed by a continual-integration method for Fenni systems with 
pairing in the p state. A simplified model is considered in which it is possible to introduce local fields that 
describe tensor Bose condensates. It is shown that the most stable is the B phase, which undergoes a 
second-order phase transition into a planar 2 0  phase in a sufficiently strong magnetic field. The A phase 
is metastable in the considered model and is destroyed by an arbitrarily weak magnetic field. The Bose 
spectrum of the system is investigated. In the model in question it contains four phonon branches in the B 
phase, six in the 2 D  phase, and nine in the A phase. In the more general case of a type-~e' Fermi 
system there are four branches each in the B and 2 0  phases and five in the A phase. Qualitative 
conclusions are deduced for real supertluid He3. In particular, arguments are advanced favoring a second- 
order phase transition from the B phase to a planar 2 0  phase in a sufficiently strong magnetic field. 

PACS numbers: 67.50.Fi 

1. INTRODUCTION 

At temperatures on the order of lo-' K, several super- 
fluid phases can exist in Hes and go over into one another 
when the external parameters of the system are 
changed. The difficulty of constructing a complete 
microscopic theory of Hes makes it expedient to study 
simplified models similar to the Bose-gas model for 
He4. 

We investigate here a simplified Hes model using a 
continual-integral formalism that is convenient, in par- 
ticular, for the description of collective excitations. 
We change for this purpose from an integral over Fermi 
fields to an integral over an auxiliary Bose field that in 
fact corresponds to collective excitations. This device 
was used for a model of a superfluid Fermi gas 
with pairing in the s state. In this approach, the transi- 
tion of a Fermi system into the superfluid state consti- 
tutes Bose condensation of the model Bose system. 

We have considered a technically more complicated 
case, that of pairing in the p state. In this case we deal 
of necessity not with a scalar wave function, but with a 
tensor one that describes the superfluid state, i. e., 9 
complex or 18 real independent functions (18 degrees of 

freedom). This makes possible the coexistence of sev- 
eral superfluid phases (including the phases A and B 
typical of HeS) and to a rich spectrum of collective ex- 
citations. In the simplified model we can get along with 
a local Bose field that describes the collective excita- 
tions. In the general case, however, a bilocal formal- 
ism is needed (see, e. g., 

In Sec. 2 we describe a simplified model that admits 
of a transition from an integral over Fermi fields to an 
integral over an auxiliary local Bose field, and con- 
struct a "hydrodynamic action" functional Sh that de- 
scribes the collective excitations. 

In Sec. 3 the functional Sh is investigated in the Ginz- 
burg-Landau region I A T  I << T,. We obtain the Bose- 
condensation point and the density of the Bose conden- 
sate for various superfluid phases. The investigation 
shows that in the absence of a magnetic field the energy- 
wise most favored and stable (with respect to small per- 
turbations) is the B phase. The A phase is energywise 
less profitable, but is also stable to small perturbations. 
However, application of an arbitrarily weak magnetic 
field destroys the A phase. With increasing magnetic 
field, the B phase becomes deformed and goes over con- 
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tinuously, at  a certain critical field H= H,, into a planar 
20 phase (in the terminology of the reviewc'') which is 
stable at H > H, . 

An investigation of the Bose spectrum leads to the 
conclusion that in the B phase there exist four branches 
that start at zero a s  k- 0, the 2 0  phase has six such 
branches, and the A phase has nine. The phonon 
branches are  analogs of the ~ogol~ubov-sound branchc9' 
for the superfluid Fermi systems with pairing in the s 
state. In neutral Fermi systems, these branches really 
exist, in contrast to superconductors, in which the Cou- 
lomb interaction converts the phonon branch into a plas- 
ma-oscillation branch. 

The case of low temperatures is investigated in Sec. 
4. The conclusion that the B phase is stable at H= 0 and 
the 20  phase is stable at H > H, remains valid in the en- 
tire region T < T,. At T << T, the spectral branches that 
start out from zero a re  phonon branches, and one can 
speak of speeds of various sounds. These speeds have 
been calculated in the limit as  T - 0 for the A, B, and 
20  phases. 

The comparison of the properties of the model and of 
real ~ e '  i s  the subject of Sec. 5. 

A study of the model leads to the natural conclusion 
that ~ e '  goes over into the 20 phase in sufficiently strong 
magnetic fields. As to the Bose spectrum, the number 
of phonon branches in the general case of a Fermi sys- 
tem of type ~ e '  is smaller in the A and 20 phases than 
the corresponding number for the model, and is equal to 
four each for the B and 2 0  phases and to five for the A 
phase. 

2. CONTINUAL INTEGRAL AND FUNCTIONAL OF 
THE HYDRODYNAMIC ACTION 

The continual-integration method offers extensive 
possibilities for the construction of nontrivial perturba- 
tion-theory schemes and i s  convenient for the descrip- 
tion of the collective excitations of statistical-physics 
systems. 

In the case of a nonrelativistic Fermi system at a 
finite temperature T, we must integrate over the space 
of the anticommuting functions x,(x, T )  and Fsh, t) with 
the Fourier expansion 

Here s =*is the spin index X E  V =  L', T E  [0, PI,  P= (in 
units R= c, = I), k, = 2zmz,/~, w = (2n+ l)n/& n and ni are  
integers. The temperature Green's functions are  ob- 
tained by averaging the products of several fields with 
different arguments with weight eS, where the functional 

in which X is the chemical potential, p, is the magnetic 
moment of the Fermi particle, and H i s  the magnetic 
field. 

We integrate first over the "fast " Fermi fields and 
then over the "slow " ones, using during these two stages 
different perturbation-theory schemes. The integral 
over the fast fields x1 and TI1, for which I k - k,l > ko o r  
I wl > w, will be written in the form. 

J exp d ~ ~ = e x p S [ ~ ~ , ,  xo.] .  (2.4) 

The functional S has the meaning of the action of the 
"slow "fields X, and Ros, for which I k - k,l < ko and I wl 
c w,. The auxiliary parameters ko and w0 a re  defined 
only accurate to their order of magnitude, and the physi- 
cal results should not depend on their concrete choice. 

The general form of the functional is a sum of func- 
t iona l~  of the even powers in the fields xos and Ro,: 

Neglecting the higher functionals S,, S,, . . . and omitting 
the constant 5, which is no longer significant, we ex- 
amine the forms of & and 3,. The form of 3, corre- 
sponds to non-interacting quasiparticles near the Fermi 
surface, and is given by 

C ~ . ( k ,  o ) a . + ( k ,  o ) a . ( k ,  o ) ,  Ik-k~l<ko, lol<rno7 (2.6)  
k , v  

with 

8, ( k ,  o )  zZ- ' ( i o - c , (k -k , )  + s p H ) .  (2.7) 

Here, assuming that E ,(o = 0, k = kp, H= 0) = 0, we have 
expanded c, in powers of w, k - k,, and H and retained 
only the linear terms. The coefficient cp has the mean- 
ing of the velocity on the Fermi surface, p i s  the mag- 
netic moment of the quasiparticle, and Z i s  a normal- 
ization constant. 

The form S4 describes the interaction of the quasi- 
particles and is given by 

B 6 Here p= (k, w) is the 4-momentum; to(pi) and tl(pi) are 
S = ~ ~ ~ ~ ~ X ~ X . ~ X , Z ) ~ ~ X ~ ( X , T ) -  J I f ' ( ~ ) d r  (2.2) respectively the symmetrical and antisymmetrical scat- 

" tering amplitudes under the permutations p1 =A and p3 
=p4. In the vicinity of the Fermi sphere we can put w, 

has the meaning of the action corresponding to the Ham- = 0, k, = kn, (i = 1,2,3,4), where n, are unit vectors such 
iltonian that n, + & = + Q. The amplitudes to and tl should de- 
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pend only on two invariants, for example on (%, q) and 
(& - q, a, - q), with to even and tl odd in the second in- 
variant. We therefore have the expressions 

Here to and 4 are expressed in terms of the functions f 
and g, which are  even in the second argument. 

The functional 2$ + Sb defined by formulas (2.6)-(2.9), 
is the most general expression describing Fermi quasi- 
particles and their pair interaction near the Fermi 
sphere. The method of obtaining this functional in the 
continual-integral formalism, and its investigation that 
follows below, constitute an alternative approach to that 
developed in the Landau theory of the Fermi liquid. C1O1 

The functions f and g can be easily calculated for the 
gas model. For high-density systems they must be de- 
termined from experiment. 

We consider hereafter a mode1 with 

as the simplified model of ~ e '  with pairing in the p state. 
We use a previously developedca1 method (see alsoCs1) 
for the case g =  0 and f = const < 0. The main idea is to 
introduce a new field that describes the Cooper pair. 
The condition g =  const (just a s  the condition f = const 
inc73 allows us to make do with a local field and not to 
resort to the bilocal formalism. (In fact, this can be 
done also in a more general case, namely when the func- 
tions f and g depend only on the first argument. ) 

The indicated idea can be realized by introducing 
under the sign of the integral over the Fermi field a 
Gaussian integral of exp(~&) with respect to the Bose 
field c, where EAc is a quadratic form with a certain 
operator k. We then shift the Bose field by a quadratic 
form of the Fermi fields, so as to annihilate the form 
3, of fourth-degree in the Ferlxli fields. The integral 
over the Fermi fields is then transformed into a Gauss- 
ian integral and i s  equal to the determinant of the op- 
erator $(c, a that depends on the Bose fields c and Z. 
We arrive at the functional 

Sb-tAc+ln det[iii (c, t ) / P  (0, 0 )  1, (2.11) 

in which the lndet has been regularized by dividing 
h(c,  F) by the operator &o, 0) == *(c, E))lc++. 

The functional S,, was dubbed incT1 the "hydrodynamic 
action functional. " It defines the point of the phase tran- 
sition of the initial Fermi system a s  Bose condensation 
of the fields c and E, and determines the density of the 
condensate at T < Tc and the spectrum of the collective 
excitations. 

For the case of pairing in the s state (g= 0, f = const) 
it suffices to introduce a Gaussian integral over the 
"scalar" complex functions cOr, T) and F(x, 7).  In our 
case (f= 0, g= const) it is necessary to integrate over the 
space of the complex functions cia(& r )  and Ffa(x, 7 )  with 

the vector index i and the isostopic index a (i,a = 1,2,3). 
The Gaussian integral inserted under the sign of the in- 
tegral over the Fermi fields, is of the form 

where g is the constant (2.10). It is easily verified that 
the shift 

does indeed eliminate the form &. 
To calculate the Gaussian integral over the Fermi 

fields, we introduce a column with elements 

and write down a quadratic form in the Fermi fields in 
the form 

The fourth-order matrix M(pl, A) with elements Ma,(h, 
pe) is given by 

where 5 = cF(k - kp) and ua (a = l ,2,3) a re  2 x 2 Pauli 
matrices. 

Integrating over the Fermi fields 

J eK dXo. (det M) '", (2.17) 

we arrive at the "hydrodynamic action" functional in the 
form 

1 1 M (c, F) S,=-X cia+ ( p )  c,.(p) + -In det-. 

P.a,n 
2 M(O,O) 

3. THE REGION I AT I << T, 

The functional (2.18) contains all the information on 
the physical properties of the model system. It can be 
most easily investigated in the Ginzburg-Landau region 
I AT1 << Tc, where lndet can be expanded in powers of 
the fields c and E. Putting 

we retain in the expansion 
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the first two terms (n= 1,2) .  

Consider the second-order form. If H= 0, the form is 
diagonal in the isotopic index a and is given by where go no longer depends on ko (we must have here go 

< 0 ) .  Substitution of (3.10) in (3 .9)  yields 

where Iny = C is the Euler constant. 

In the region I AT1 << To we have where 

To find the density of the condensate at T < T, we make 
the substitution 

10T IATI n 
c l a ( p )  -+ ( i 3 ~ ) ' ~ ~ 6 ~ ~ a . ~  (L)"' T ,  

75(3 )  
10T IATI tin+ ( p )  -+ (PV) 'h6~oEis (-1 "'+, 

75 ( 3 )  

At small H ( p H < <  T )  it suffices to take into account the 
increment to 4 , ( O )  and neglect the H-dependence of the 
function A, $ ( p )  - Aij (0)  at small p. After summing over 
the frequencies we get the integrals 

which transforms Sh into 

an expression that depends on the matrix A with ele- 
ments ai, as well as on its hermitian conjugate A', i ts 
transpose AT, and its complex conjugate A*: 

II=-tr AA++v tr A f A P +  (tr A+A)  '+trAA+AA+ 

+tr AA+A'AT-lr AATA*A+-'12 t rAAT t rA+Aq ,  (3.15) 

Only the last of them, which receives an increment - H', 
depends on H. The H-dependent increment to Sh is of 
the form 

where 

P is the projector on the third axis which is directed 
along the magnetic field. 

We note that II is invariant to the transformations In the fourth-order form we shall hereafter be inter- 
ested in terms with small 2-momenta of all the fields 
c ia (p )  and c;,(p) (cFl kil << T ) ,  which can be written in 
the form 

where a! is a real parameter and U is a real orthogonal 
matrix. 

Minimizing II, we obtain the matrix A that determines 
the density of the Bose condensate. The equation 6II 
= 0, i. e., 

-A+vAP+2 ( t rA+A)A+2AA+A (3.18) 
+2A'ATA-2AATA*-A' tr AAT=O, We find the Bose-condensation temperature Tc from 

the condition that the coefficient in the quadratic form at 
cf,(p)c,,(p) vanish for p = 0 .  At H =  0 we have the equal- 
ity 

has several nontrivial solutions corresponding to differ- 
ent superfluid phases. We consider the following pos- 
sibilities: 

A,=c,P, A2=czP2, A,=c,'P+c,"P2, (3.19) 
A , = C ~ ~ ~ ,  A,=c,Cl, A,=c,'C,+c,"C,, A,=c,C,. 

Here P, is the projector on theAtwordimens:onal sub- 
space and is orthogonal to P; C,, C,, and C, are third- 
order matrices: 

The integral with respect to 5 depends logarithmically 
on ko. In order for Tc not to depend on ko it is necessary 
that g4 depend on ko in accord with the formula 
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We write down the squares of the moduli of the coeffi- 
cients I c,I2 as  well as  the corresponding values of II,: 

At H = 0 (v = 0) the minimal of all the variants, II = - 0.3, 
is obtained for A, = cd. This is the symmetrical Balian- 
Werthamer phase (the B phase). The next values of 
equal magnitude II = - 4 yield c2EBz-the planar 20 phase 
(according to the terminology of the reviewc") and c4e4- 
the Anderson-Morel-Brinkman ,4 phase. The remain- 
ing four phases, A,, %, A, and A, are  energywise un- 
profitable compared with the B, A, and 2 0  phases. 

- - -  - 

When the magnetic field is increased the value of II 
for the 20  phase remains unchanged, while II for the A 
and 3 phases increases, the B phase becoming "de-. 
formed." At v = $ we have A, = A ,  and Il, =n,. More- 
over, at  v > $ the solution A2 i s  meaningless, since 
I ci1 = (1-2~)/5 becomes negative. Thus, at 

a transition takes place from the B phase into the planar 
2D phase whose energy, in first-order approdmation, 
does not depend on H at all. The continuity of the tran- 
sition of 4 into A, favors the assumption that this is a 
second-order phase transition. 

The conclusion concerning the phase transition is con- 
firmed by a calculation of the second variation of the 
function II. In order for the phase to be stable to small 
perturbations, 6211 must be non-negative. We present 
the expressions for bell, for the most interesting cases 
i =  2, 3,4: 

Here u,, = Reba,,, via = Im6ai,. 

At v < $ the variation 6'II, i s  non-negative and 6'112 
is of alternating sign, while at v > $ the variation 6'II, 
is non-negative and the solution R, has no meaning. The 
variation 6'114 is non-negative at v = 0 and is of alternat- 
ing sign for any v > 0. This means that the A phase, 
which is metastable at H= 0, is destroyed in this model 
by an arbitrarily weak magnetic field. 

The second variations b%,, 6'II,, 6'111 turn out to be of 
alternating sign at all V .  The corresponding phases (the 
one-dimensional clP, the "conjugate with the A phase" 
c5e5, and the A, phase cle1) are  destroyed in this model 
by small perturbations, and a re  therefore not realized. 
The expression for 6'n6 (a's well as for 62114) turns out 
to be of alternating sign for all v > 0, while at v = 0 the 
corresponding phase coincides with the A phase. 

Thus, in the considered model system, the condition 
for stability in the small is satisfied only for the Aphase 
(at H= O), for the B phase (at H c  H,), and for the 2 0  
phase (at H a  H,). 

The quadratic form 6'113 with 18 variables u,, and via 
has at v < $ four null eigenvectors, the form has 
at v > $ six null vectors, and the form 6211, has at v = O  
nine null vectors. This is due to the existence in the B 
phase of four branches of the Bose spectrum, which start 
out from zero (E(k= 0) = O), and to  the existence of six 
such branches in the 20  phase and nine in the A phase. 
We note that the presence of at least four 6'II null vec- 
tors in the B phase is the consequence of the symmetry 
of II relative to the transformations with one parameter 
and with three parameters that define the orthogonal 

matrix U. 

Consider now the Bose spectrum of the system at I AT1 
<< T,. At T > T, all the branches of the spectrum are 
pure imaginary, with I E(k)l << T,. Continuing analytical- 
ly the function (3.5) into the region I wl << T, we obtain 
at w > O  

Taking into account the terms g-l+A(0) [ ~ q .  (3.12)] and 
the magnetic increment (3.7) we obtain at T > Tc the fol- 
lowing branches of the spectrum: 

Here a is the isotopic index of the correspondingbranch, 
and the symbol II or 1 indicates that the vector index is 
61 parallel" or  "perpendicular "to the propagation direc- 
tion. 

At T < T, i t  i s  necessary to take into account the fourth- 
degree forms. Separating from S, the quadratic form 
after making the shift c,,(p)- cia(p) + c::, it is easy to 
obtain the Bose spectrum. All its branches are of the 
form ~ = - i a k ' - i r  with a>O a n d r 2 0 ,  wi thr=Ofor  
four branches in the B phase, six branches in the 20 
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phase, and nine branches in the A phase. These are We write down the logarithm of the product a s  the sum 
precisely the branches that go over into the phonon- of two terms, in which we make the respective substib- 
spectrum branches with decreasing temperature. tions 5 - 5 - pH and 5 - 5 + pH as  we integrate with re- 

spect to 5, thus eliminating the dependence on H. 
4. THE REGION T, - TmTc To find the condensate density in the B phase, we sub- 

The "condensate density " can be sought here as  be- stitute 
fore in one of the forms (3.19). Let initially H=O. The 
solution corresponding to the B phase is of the form eta- (aP+bP~),a8po($V)" 

and the equation obtained for the constant c is 

Using (3.9), we rewrite this equation in the form 

For T = 0 we have an explicit formula for cZ: 

as well as  for the functional S,: 

Ap,= lim (ShlBV) =T."kf2/4yaca. 
T-0.V-o. 

The symbol Ap3 reminds us that this quantity has the 
physical meaning of a correction to the pressure in the 
corresponding superfluid phase. 

For the remaining superfluid phases at H= 0 and T = 0 
we can also obtain explicit formulas 

It is  seen that at T = 0, just a s  in the region I AT1 
<< C,, the symmetrical B phase is energywise most fav- 
ored, while the two-dimensional 20  phase and the A 
phase have "equal opportunities. " All the remaining 
phases are energywise less profitable and can be shown 
to be unstable to small perturbations at a l l  values of H. 

Just as in the Ginzburg-Landau region, the A phase is 
metastable but is destroyed when an arbitrarily weak 
magnetic field is turned on. 

In the presence of a magnetic field, B and 20 are 
competitively possible. For the 2D phase the functional 
S, is not dependent on H at all. To prove this, we sub- 
stitute c,, = ( B V ) ~ ' ~ ~ ~ C ~ ( P ~ ) , ,  in the functional 

in S,. We obtain 

The parameters a and b a re  determined from the equa- 
tions 

We shall use these equations to find the critical mag- 
netic field H, at which the B phase goes over into the 
two-dimensional 2 0  phase. At the transition point we 
have a = 0. The second equation in (4.10) coincides with 
the corresponding equation for the 2 0  phase where, a s  
already shown S, is independent of H. We can therefore 
obtain from the second equation the value of b (which 
does not depend on H) and then substitute it in the first, 
which now takes the form 

where 

M= ( ~ 1 + ~ 2 ) 1 + Z p 2 H 2 ( 0 2 - E z )  +p4H' 

+16bL sin' O f 8  (oz+ E2+p2H2) bz sinZ 0, 

with b independent of H. It can be shown that the left- 
hand side of (4.11) is monotonic in H, varying from 
zero at H= 0 to infinity as  H- -. Therefore the equation 
has a single root H= Hc. 

Investigation of the second variations of the phases B 
and 20 shows the B phase to be stable at H < Hc and the 
2 0  phase at H > H,. Just a s  in the Ginzburg-Landau re- 
gion, the form of the second variation in the B phase has 
four null eigenvectors and six in the 20  phase. The A 
phase (at H =  0) has nine null eigenvectors and a s  many 
phonon branches. 

Let us indicate the calculation of the phonon branches 
and of the sound velocities for the B, 20, and A phases 
at T=O and H=O. 

We begin with the B phase. We make in S, the sub- 
stitutions 
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and separate in S, a quadratic form in the new variables: 

corresponding to the acoustic mode. 

For the u modes we have 

(4.13) 
XE G ( p . )  G ( p 2 )  (2n l .n l ,~ l .n l j -4n~in~j ) ,  

BV 
The excitations (4.19) correspond to spin waves. The 
results (4.18) and (4.19)'agree with those obtained by 
other methods. C11-151 

e ( p )  =io-E, G ( p )  = Z ( o z + ~ 2 - t 4 c z Z 2 )  -'. 
- - 
We express the coefficient tensors of c+c and cc + c+c+ 
in the formA(O)+@(p) -A(O)) and B(O)+(B(p) -B(O)). 
We have 

Carrying out analogous manipulations for the two- 
dimensional 20  phase, we obtain the following results. 

The "phonon" variables are  

The first two of them correspond to the acoustic phonon 
branch 

and the last four to a branch of the form 

The contribution of the terms with A(0) and B(0) is 

where k,, is the component of the vector k along the mag- 
netic-field direction. 

Similar results a re  obtained for the A phase. The 
phonon variables a re  here We consider the term with p = 0, in which we put c,, = uia 

. + + zv,,, cia = q, - ivia. We obtain a sum of two forms: 

The first three correspond to branches that propagate 
with the speed of sound: the u-form has three null eigenvectors corresponding to 

the variables u12-u,, u,-us, U31-u13, while the v form 
has one null vector corresponding to the variable vll + % 

+ q,, Therefore at small p, after expanding A(p) - A(0) 
and B(p) - B(0) in powers of 3 and k2, there will be no 
free terms for the corresponding "phonon" variables. 
The condition that the terms proportional to 4 and k2 be 
cancelled out after the analytic continuation io- E yields 
the equation E = ck and yields the speeds of the sounds. 
The terms proportional to 02 a .  k2 are  of the form 

and the remaining six correspond to the branches 

We note that in the calculation of the branches (4.21) 
and (4.23) the coefficient of d+ c:ki is formally a loga- 
rithmically diverging integral in terms of the angle vari- 
ables JdSl (sine)-'. In fact, the integral is equal to - ln(~/c ,  k) (A i s  the energy gap), andthe logarithmic di- 
vergence is obtained if we forget the non-analyticity of 
the corresponding coefficient function as  w- 0 and k - 0. 
No "logarithmic situation" arises in the calculation of 
the branches (4.20) and (4.22). 

In concluding this section we note that although there 
are many papers devoted to the calculation of the Bose 
spectrum in the A phase by other methods, most ofthem 
are incorrect (for references see, e. g., '.163171)." 

Let the excitation propagate along the third axis, so 
that kl = k2 = 0 and k, = k. Putting; u,, = 0 and via = d,,, we 
obtain that the coefficient of 8 is proportional to (d 
+ &k2/3), and we get the phonon branch 

5. QUALITATIVE CONCLUSIONS FOR ~e~ 

The considered model system can describe the real 
~ e '  only qualitatively. In addition to the approximations 
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f = 0 and g= const, no account has been taken here of a 
number of other effects, such a s  spin-spin interaction." 
Nonetheless, a number of regularities that have been 
noticed for the model can hold also for He9. 

In He3 at low temperatures, in the absence of a mag- 
netic field, the B phase is  energywise most favored. The 
A phase exists in a certain temperature interval at suf- 
ficiently high pressures (above the tric ritical point). 
Our model system is close to the gas model and should 
agree better with the properties of ~e~ at low pressures, 
where only the B phase exists in fact. The existence of 
the A phase can be regarded a s  an effect due to high 
pressure, when He3 differs substantially from the gas 
model. The A phase in this model is metastable and is  
destroyed by an arbitrarily weak magnetic field. In He3, 
the A phase has a large margin of strength and continues 
to exist also when a magnetic field is turned on. 

In our model, when the magnetic field is strongenough, 
the B phase goes over into the two-dimensional 2Dphase. 
It seems natural for this to hold true also for He3 in a 
sufficiently strong magnetic field. Any magnetic field is 
"sufficiently strongY'in the vicinity of the phase-transi- 
tion line. It is therefore natural to assume that in a 
magnetic field at low pressures the normal phase N goes 
over first into the two-dimensional 20  phase, and only 
then into the B phase, while the phase diagram assumes 
the form shown in Fig. 1. The dashed line on the phase 
diagram at H >  0 marks the boundary between the A, 
phase that exists in the magnetic field at sufficiently high 
pressure, and the 20 phase that exists possibly at low 
pressure. Transitions between the phases N and 20, N 
and A,, or B and 2 0  are of second order, while those 
between A.and B, A and A,, A, and B, and A, and 2D are 
of first order. 

We conclude thus that a 20  phase can exist in He3 in 
a magnetic field. 

As to the Bose spectrum, in the general case of a 
Fermi system such a s  He3 the number of the phonon 

branches of the spectrum turns out, generally speaking, 
less than in the considered model system. In the gen- 
eral case there exist four branches in the B and 2 0  
phases and five branches in the A phase. This result 
can be easily obtained if we use for n-KexprG&n-- 

-- 

that differs from (3.15) by arbitrary coefficients infront 
of the invariants 

and then obtain the number of eigenvectors of the qua- 
dratic form 6'lI, which correspond to zero eigenvalues, 

One of us (V. N. Popov) is grateful to the CentralUni- 
versity of Venzuela for the hospitality that contributed 
to the performance of this work, a s  well as G. E. Volo- 
vik and V. P. Mineev for a discussion. 
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