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The cyclotron-resonance problem is solved for the case of almost specular reflection of the electrons from 
the metal boundary. The surface impedance Z is calculated and its dependences on the specularity 
parameter p and on the magnetic field H are analyzed. It is shown that in the principal approximation 
the impedance is independent of H and of the electron mean free path, but depends on the surface date 
of the metal (on p). Cyclotron resonance appears in the next approximation in the parameter I-p. The 
dependence of the character of the cyclotron resonance on the specularity parameter p is investigated 
qualitatively on the basis of Pippards "ineffectiveness concept." 

PACS numbers: 76.40. +b 

The reflection of electrons from the surface has a sub- 
stantial influence on the character of the cyclotron reso- 
nance (CR) in a metal. It is knownc" that the resonance 
is due to "volume" electrons that do not collide with the 
surface of the sample and return to the skin layer after 
each revolution in the magnetic field H. An important 
role in the formation of the skin layer can be played, be- 
sides the volume electrons, also by "glancing" elec- 
trons. They collide with the metal boundary, and their 
entire orbits lie in the skin layer (see Fig. 1). The de- 
gree of specularity of the surface determines the rela- 
tive role of the volume and glancing electrons in the skin 
effect, and by the same token influences the character 
of the CR-most of all the observed amplitude and shape 
of the resonance line. Consequently the amount and the 
quality of the information provided by the experiment 
turn out to be connected with the state of the sample 
boundary. This is precisely why the question of the ef- 
fect of electron reflection on the CR is of fundamental 
significance and has been repeatedly considered by many 
workers (see, e. g. ,['-41). This question is quite compli- 
cated and has not been completely solved theoretically 
to this day. Thus, for example, the result obtained by 
~ e ~ e r o v i c h ~ ~ l  for the case of almost specular reflection 
is incorrect. It will be shown below that his mistake 
was not to take into account the 6-function character of 
the conduction operator of the glancing electrons. This 
result subsequently found i t s  way into a number of other 
papers. C5s6 '  T!e 6-function term was also left out by 
Zherebchevskii and one of usC3' in the calculation of the 
resonant increment; allowance for this term decreases 
the numerical coefficient by a factor 1.4. 

We solve in the present paper the CR problem for the 
case of almost specular reflection of the electrons from 
the sample surface. The surface impedance of the metal 
is calculated and i t s  dependences on the specularity pa- 
rameter p and the magnetic field H a r e  analyzed. In 
Sec. 1 we use straight forward physical considerations 
based on Pippard's "ineffectiveness concept" to analyze 
semiquantitatively the CR with account taken of the scat- 
tering of the electrons by the metal surface, in the en- 
t i re  range of variation of the specularity coefficient p, 
from zero to unity. We note that the ineffectiveness con- 

cept has not been applied previously to an investigation 
of the role of reflection in CR. The simplicity andlu- 
cidity of the analysis a r e  attractive because they make 
it possible to  interrelate all  the various limiting cases. 
In Sec. 2 we obtain a rigorous solution of the problem. 
of CR for almost specular and strictly specular reflec- 
tion. The formulas of Sec. 1 turned out to  be in quanti- 
tative agreement, accurate to real  factors, with the re-  
sult of the exact calculation. The expressions for sur- 
face impedance, calculated by solving the self-consis- 
tent system of Maxwell's equations and the kinetic equa- 
tion, a r e  asymptotically exact. Thus, we have obtained, 
in a certain respect, a complete solution of the problem 
of the influence of electron collisions with the surface 
on CR in metals. 

I. PHYSICAL ANALYSIS OF THE PHENOMENON 

Cyclotron resonance is observed in metals"] under 
conditions of strong spatial dispersion 

when the radius of the orbit R in a constant magnetic 
field H and the effective mean free path I of the electron 
exceed the skin-layer depth 6. The conductivity of the 
volume electrons responsible for the CR can then be 
described qualitatively by the well-known formula 

FIG. 1. Trajectories of the electrons that cause the conduc- 
tivity of a metal: 1-volume electrons that make CR possible, 
2-glancing electrons (glancing angles cp - ( b / ~ ) ' / ~ ) .  
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Here N,,, is the number of volume electrons and 7 i s  the 
time of their interaction with the electromagnetic field 
(e is the absolute value of the charge and m is the elec- 
tron mass). 

If the inequality 

( ~ 6 )  "2<z,  (1.3) 

i s  satisfied, then the time that the volume electron stays 
in the skin layer in one precession period is of the order 
of (R6)lI2/v (v i s  the electron velocity). Such elec- 
trons have a momentum component normal to the metal 
surface Ip,l -pp(6/~)112, and N,,, turns out to be equal 
to N ( ~ / R ) ' / ~  (N is the electron density). We must now 
take into account repeated return of the electrons to the 
skin layer. Since the "probabi1ity"of the next return 
in sequence, with allowance for the change of phase of 
the electromagnetic wave, is equal to eq'7 the con- 
ductivity of the volume electrons takes the form 

Here uo = ~e~/m(v- iw) ,  y = (v-iw)/51, 1 = v/(v-iw), 51 
= eH/mc is the cyclotron frequency, v i s  the electron 
collision frequency, and w is the frequency of the elec- 
tromagnetic wave. The presence of the factor 2 in front 
of the summation sign in (1.4) is due to the fact that the 
time of the "first" sojourn in the skin layer turns out to 
be half as  large a s  that of the succeeding ones. The ap- 
pearance in (1.4) of the factor cothlry leads to oscilla- 
tions of the surface impedance of the metal in the mag- 
netic field-to cyclotron resonance. 

We proceed to estimate the conductivity of the glanc- 
ing electrons. Their number is N,,, and the time be- 
tween two successive collisions with the surface is de- 
termined by the glancing angle q - (6/R)'I2 << 1; these 
values a re  of the same order as  N,,, and T,, of the vol- 
ume electrons. Following the universally accepted mod- 
el used for the description of electron reflection from 
the boundary, we introduce the specularity parameter 
p(Oc p 9  1). The probability that an electron is notscat- 
tered in the volume of the metal in one cycle of its mo- 
tion but is specularly reflected from the surface is then 
described by the quantity p e"Yv. Taking into account the 
smallness of I yl q~ - ( ~ 6 ) ~ / ~ / 1 < <  1, we obtain with the aid 
of (1.2) the electric conductivity of the glancing elec- 
trons 

(1.5) 
To analyze the CR we can use the following estimate 

of the surface impedance of the metal: 

The complex quantity 6 satisfies; the equation 

6'=ic2/4noo, 

where o is the conductivity of the metal (a = u,,~ + u,,). 

According to (1.4) and (1.5) we have 

Equation (1.7) has simple solutions in two limitingcases. 
In one of them we can neglect the term y(6/~)1n com- 
pared with the remaining terms in the brackets, while 
in the other this term is the principal one. 

We consider first the second case, which corresponds 
to specular reflection of the electrons from the sample 
boundary : 

In this situation the skin layer is produced by the glanc- 
ing electrons and the surface impedance Z depends in 
first-order approximation monotonically on H. The 
Z(H) oscillations due to the CR consistute a small frac- 
tion of the average value of the impedance 

Apart from real constant, these formulas agree with the 
expressions obtained in the previous papers. "'31 

If the surface scattering of the glancing electrons pre- 
vails over the scattering in the volume of the metal 
(1-p>> I yl (6/R)'l2, then the impedance Z takes the form 

In the case of diffuse reflection (p << 1) formula (1.10) 
goes over into the known expression obtained by Azbel' 
and one of usC1]: 

We note that the result (1.11) is valid when the resonant 
singularity is so strong that I cothnyl greatly exceeds 
all the remaining terms in the curly brackets of (1.7). 
At so sharp a resonance, the surface impedanceZ(H) i s  
not sensitive to the character of the interaction of the 
electrons with the boundary of the sample. 

We consider the regionof the parameters p and y in 
which the following inequalities hold: 

Here, just a s  in the case of specular reflection (1.8), 
the surface impedance is determined mainly by the 
glancing electron. Cyclotron resonance appears in the 
next term of the expansion of Z in the parameter (1 - p) 
x cothw. According to (1. lo), we obtain 

Comparison of (1.3) with ~e ie rovich ' s  resultc4' re- 
veals substantial differences. It i s  impossible to recon- 
cile the impedance given by (3.11) ofC4' with the limiting 
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cases of diffuse (1.11) and purely specular (1.9) reflec- 
tion, the resonant term has a different character, and 
the phase factors in both terms of the impedance a re  
different. 

It will be shown in the next section that the foregoing 
physical analysis of the phenomenon is in full agree- 
ment with the exact solution obtained from Maxwell's 
equations. 

II. SOLUTION OF MAXWELL'S EQUATIONS. 
SURFACE IMPEDANCE 

Let the constant and homogeneous magnetic field H 
be parallel to the metal-vacuum interface. We choose 
a coordinate system with the y and z axes on the metal 
surface (the plane x =  01, the z axis parallel to H, and 
the x axis directed into the interior of the sample (see 
Fig. 1). A plane monochromatic wave i s  incident on 
the interface x =  0 in the direction of x. The electric 
field in the interior of the metal i s  E=E(x)eiw'. We in- 
troduce the Fourier transform 

1 " " 
E. ( x )  = -j dk 8,(k)cos kx ,  8 , ( k )  =2 j a z ~ , ( z ) c o s  kx. (2.1) 

P 0 

Maxwell's equations for the Fourier component eP,(k) 
of the field take the form 

The Fourier component of the conductivity of an in- 
finite metal K,(k) is due to the volume electrons. The 
integral kernel of the conductivity operator Q, (k, kt) con- 
tains contributions from both the volume and the surface 
electrons, and depends on the parameter p. Exact ex- 
pressions for the kernels K,(k) and Q, (k, kt) for arbi- . 
trary reflection coefficients p are  given inc2'. 

We shall not describe the standard procedure of ob- 
taining the asymptotic forms of K, (k) and Q, (k, kt), and 
present the final result. For simplicity, we confine 
ourselves to isotropic electron dispersion (alkali metal). 

Under the conditions of the anomalous skin effect, the 
function K,(k) has an asymptotic form 

1. We consider first the case of almost specular re- 
flection of the electrons from the sample boundary [Eq. 
(1.12)]. The asymptotic expression for the kernel Q, 
x (k, kt) i s  a sum of three terms: 

3NeZ 1-P lux nZ 
Q. ( k ,  k x )  = 2mu(i-p)k2 [ ( l i ~ c t h n y ) ~ - ~  

(2.4) 

The first term is the conductivity of the glancing elec- 
trons (40 - (k~)-'"; see the figure) and does not depend 
on the magnetic field H. It differs from the electric 
conductivity of the glancing electrons in specular reflec- 
tion (cf. formula (3.7) ofC2]). The differences are  caused 

by the fact that in the specular case the glancing elec- 
trons are  scattered in the interior of the metal, while 
under the conditions of (1.12) the scatterer is the sam- 
ple boundary. The second term of (2.4) contains the 
CR and i s  due both to volume and to surface electrons 
with glancing angles rp - r. It is smaller by a factor 
1 tanhnyl/(l- p) >> 1 than the contribution of the glancing 
electrons. The third term is determined only by the 
surface electrons and is of the form 

8y(1-p) rdO hE(0)  j d q ~  sin[kR sin O(1-cos v ) t ]  G , ( t ) = n Z  (etP-pe-") 
0 t  

(2.5) 
where n, = sin8 and n, = cos0, It will be shown later that 
this term, alongside the others, plays an essential role 
in the solution of Maxwell's equations. If it is regarded 
then Eq. (2.2) has, generally speaking, no solution. 

Let us analyze the behavior of the function G,(t). It 
i s  easily seen that G, (t) reaches a maximum of the order 
of (1 - p)kR cothny at the point t = 0. With increasing I tl 
the function G, (t) decreases, and in the region 

its behavior is characterized by the asymptotic form 

2""a ( l - ~ ) ( k R ) ' "  i t ,_ , l ,  G, ( t )  2: - 
5 y  , c,==/,, C,=l 

Finally, far from the maximum at I yl 2 / ( i -p )2~~<<  I tl 
we get 

It follows therefore that G, (x - 1) is  a sharp function 
of x.  The characteristic region of its variation is I x 
- 1 I - I yl '/(l-p)2k~ and i s  small compared with unity. 
At the same time &,(kx) varies smoothly over an inter- 
val Ax-  1. We can therefore replace G,(x- 1) in (2.2) 
by the expression 

The integral equation (2.2) can then be written in the 
form 

We have left out the subscript of the sought function, 
8, (k) = 8 (k), since Eq. (2.8) contains no quantities that 

depend on the polarization. The independence of the 
field distribution of the wave polarization is a result of 
the assumption that the electron dispersion is isotropic. 
The quantity 6 is the thickness of the skin layer in the 
considered case of almost specular reflection of the 
electrons 

739 Sov. Phys. JETP 46(4), Oct. 1977 Kaner st a/. 739 



Equation (2.8) coincides in form with the equation for 
the Fourier component of the electric field in the case 
of the anomalous skin effect at H =  0 and diffuse scatter- 
ing of the electrons. '"] This agreement is not acciden- 
tal, since in both cases the skin layer is formed by the 
effective electrons moving along the metal surface. Con- 
sequently we can use the results of the theory of the 
anomalous skin effect and write down directly the ex- 
pression for the surface impedance with 6 given by (2.9): 

The principal term in (2.10) does not depend on the mag- 
netic field and on the mean free path (on v), but depends 
substantially on the state of the sample surface. The 
CR oscillations are  small compared with the dc compo- 
nent of the impedance. It is of interest to note that the 
exact formula (2.1) differs from (1.13) only by a factor 
(3/7?)1'8* 0.82. 

2. To complete the picture, we present in conclusion 
the results of the exact solution of Maxwell's equation 
and of the calculation of the surface impedance in the 
case of specular reflection of the electrons from the 
metal boundary [Eq. (1.8)]. In this case the asymptotic 
form of the integral kernel Q, (k, kx) differs from (2.4) 
only in the form of the first term, namely: 

3NeZ lnx 
2mv(i-p)kz xZ-I 

is replaced by 

The quantity I k, I is the reciprocal of the depth of the 
skin layer formed by the glancing electrons: 

The resultant integral equation i s  solved with the aid 
of the method of Hartmann and Luttinger. The result 
is the following expression for the surface impedance: 

where the real constants a and A a re  given by 

4n2F-' ('1s) 6.98, 
a =  (4n15) "'sin (2nI5) 

r2 ('I,) sin (2~15)  - 
A =  j,ttCth(,t) I r ( E ) r ( ? ) l 2  =o.I?. 

2 (2n) (50l';1)"~ , 5 

The results of this section thus corroborate the valid- 
ity of the physical description proposed in the preceding 
section for the phenomenon. 
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