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We study the effect of a source of resonant particles on a non-linear monochromatic wave in a plasma. 
We consider the case of a Langmuir wave when there is no magnetic field present and that of an Alfvbn 
wave under conditions of a toroidal geometry of the magnetic field. We show that a systematic change in 
the amplitude of the non-linear wave occurs when there is a source of particles present. We suggest that 
this effect may be important for the case of injection of fast neutral atoms into magnetic traps and also in 
problems of fast a-particles produced in a plasma in thermonuclear reactions and in problems of fast 
particle fluxes in the Earth's magnetosphere. 

PACS numbers: 52.35.Mw, 52.40.Mj 

1. INTRODUCTION 

Started by the work by ~ a z i t o v ' ~ ]  and 0 ' ~ e i l ' ~ '  and 
sjrstematized in the survey by Galeev and sagdeevcs1 the 
non-linear theory of the interaction between a mono- 
chromatic wave and resonant particles predicts the van- 
ishing of the Landau damping with time, owing to the 
"mixing" of these particles in phase space. The number 
of resonant particles was there assumed to be constant. 
However, if there is a particle source, the number of 
resonant particles is not constant. One meets the prob- 
lem with a particle source, for instance, in the case of 
injection of fast neutral atoms into magnetic traps. ''I 
Another example of a particle source is provided by the 
production of a-particles in thermonuclear r e a ~ t i o n s . ~ ~ '  
Under cosmic conditions fluxes of fast particles imping- 
ing upon the Earth's magnetosphere may play the role 
of particle sources.['] In this connection it is of inter- 
est to consider the non-linear evolution of a monochro- 
matic wave when there is a particle source present. This 
is the aim of the present paper. We dwell first  of all 
upon the standard example of a Langmuir wave, discussed 
in Refs. 1 to 3, and then analyze the effect which inter- 
ests us for the case of an Alfv6n wave in a tokamak with 
injection of fast neutral atoms. There appears then 
a non-vanishing non-linear Landau damping. 

2. CANONICAL FORM OF THE KINETIC 
EQUATION WITH A SOURCE 

We start  from the kinetic equation for the distribution 
function for electrons which interact with a monochro- 
matic Langmuir wave: 

Here E(x, t) = Eo sin(kx-wt); S(v, t) is a spatially uniform 
particle source, and the remainder of the notation is 
standard. For S = 0, Eq. (1) is the same a s  the one 
studied in Refs. 1 to 3. 

We introduce instead of t, x, v,f, and S dimensionless 
variables T = wt, u = v/vph - 1, 8 = kx- wt, Y = f vph/no, 
Z(u, T) = S(v, t)(n&)-l, where up,= w/k is the phase velocity 
of the wave and no the density of the main component of 

the plasma (the non-resonant particles). Equation (1) 
can then be written in canonical form 

a s  a s  sine a F  
-+u- - - -=I ( !&,%) .  

az ae zO2 a~ 

Here 72, = dr:, 4 = m/ekE0 is the square of the period of 
the oscillations of particles trapped by the wave field- 
the bounce period. 

3. SOLUTION OF THE KINETIC EQUATION 

One can find the distribution function when there is a 
source present by solving the kinetic Eq. (2) by the meth- 
od of integrating along the particle trajectories in the 
wave field. We assume that at  the moment when the 
source is switched on, i. e., at  T = 0, there were no reso- 
nant particles ~ ( 0 ,  8, u) = 0. We then have for T > 0 

As we a re  interested in velocities close to the phase 
velocity of the wave, the integrand in the resonance re- 
gion is approximately equal to 

Recognizing that according to the equation of motion u 
= dB/dr and assuming the time-dependence to be weak 
compared to the time-dependence of the coordinate 8 we 
get from (3) 

where go is the coordinate a t  time T = 0 of a particle 
which at  time T is a t  the point 8; 81(7)/824,= (81/8~),,,~. 

The connection between Bo and the running value 0 of 
the coordinate can be found from the equations of motion 
which are  the characteristics of Eq. (2). As the trap- 
ping frequency 7;' is assumed to be large compared to 
the Landau damping rate y,, we neglect the slow change 
in the amplitude above the background of the fast pro- 
cess of the particle oscillations when we integrate the 
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equations of motion. It then follows from (2) that 

where xa = ~ / C T %  C is the energy of an electron made 
dimensionless by dividing by +m&; o = * 1 determines 
the direction of particle motion relative to  the wave. 

Here q(B) = arcsin(% sini8); po = ~ ( 6 ~ ) .  Using (14) to (16) 
we find in analogy with (10) 

In the case of untrapped particles (x < 1)  we get from 
(6) 

where 

where dnF[x,  +B(T')] is an elliptical Jacobi function, the 
argument of which is the elliptical integral of the first 
kind F[x, &6(rt)]. Bearing in mind that according to (6) 

(2n-1)  -'Qn-'h (2n-1)noz  
B i ( x ,  0 , r )  =I6 - sin 

4 K t o  

and using the expansion of the function dnF in a trigono- 
metric seriesLe3 we evaluate the integral over 7' in (7): 

n=, 

(2n-1)noz  . (2n-1)n 1 
Xsin 4 s l n ~ [ F  (T") -21. (20) 

We note that in Eqs. (19), (20), as  in (16), the functions 
Q and K depend on the argument 1/n. where Q(x) =em(- rK1/K), K' = K(-), K(K) is a corn- 

plete elliptical integral of the first kind. 
4. NON-LINEAR EVOLUTION OF THE WAVE 

Using (8) we can express 8, on the right-hand side of 
(9) in terms of 8 and substitute the result into the sec- 
ond term of the right-hand side of (5). In the third term 
of the right-hand side of (5) we first integrate over the 
trajectory and then express 8, in terms of 6. After 
carrying out these steps we get an expression for the 
distribution function of the untrapped particles in the 
variables ~ , 8 ,  n 

When studying the non-linear evolution of a monochro- 
matic wave we start  from the energy balance equation 

where W is the energy of the oscillations given by the 
relation 

where 
and j is the electric current of the resonant particles 
which is equal to 

In the case of Langmuir oscillations which is of interest 
to us 

n-'Q"Kxzo nnT a "2 l+P... sin- sin- F - -  . (13) x duo d z  
"-L , , K T .  %( &I 

Similarly we find the expression for the distribution 
function St of the trapped particles. Instead of (7) and 
(8) we then have 

Using the linearized kinetic Eq. (2) we get from (21) to 
(23) in the linear approximation 

where yL is the linear growth rate given by the relation 

F ( I /%,  c p )  =F ( I /%,  qo) +orlzo ,  

so that, in analogy with (9) 
yL=n(&) - i  f a z ( ~ ! )  

0 

dr'.  
duo 
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For the validity of the linear approximation it is nec- 
essary to assume that YLTb >> 1. C31 However, if YLTb << 1, 
we have instead of (24) 

where 8, = 2 arcsin(l/n) while the functions Fun, and St 

are given by Eqs. (10) and (17). 

We must substitute in Eq. (26) the quantities standing 
on the right-hand sides of Eqs. (11) to (13) and (18) to 
(20). It is convenient when integrating in (26) to change 
from the variables 8, u to the variables F, n by using the 
definitions of the elliptical functions and Eq. (6). We 
get then 

sin 0=2 sin F ( x ,  0 / 2 )  cn F ( x ,  012) .  (28) 

It follows from Eq. (26), written in the new variables, 
and Eqs. (11) to (13) and (18) to (20) that the integrals 
of 4,, and A, vanish while the integrals with C,,, and Ct 
contain solely terms which oscillate with time with a 
period of the order TO: 

x n r  n n ~  
sin - 

X K T ~ '  'OS- % K T , '  

These terms describe the deviations of the amplitude of 
the electric field Eo from its average value Eo which a re  
damped in time. 

The problem of a monochromatic wave reduces, when 
there is no particle source present, to evaluatingmere- 
ly such kind of oscillating terms (Mazitov-0'~eil type 
of problemc1f23); in that case aE,,/et= 0. However, when 
there is a particle source present, it follows from (26) 
that there appears, apart from the damped field oscilla- 
tions which are unimportant for T 2 T~ also an evolution 
of the average value of the field zo determined by the 
terms with Bunt and B, (see (12) and (19)). Neglecting 
the oscillations, i t  follows from Eq. (26) that 

Here 

We note that if we take (25) into account Eq. (29) be- 
comes 

Hence we find that the amplitude E, changes according 
to the relation 

so that the non-linear growth rate made dimensionless 
by dividing by w is equal to 

The results (31) and (33) allow the following interpre- 
tation. l' As the resonant particles effectively interact 
with the wave only during a time of the order T, we sup- 
pose that the evolution of the average value Eo at time T 

is caused by the interaction between the wave and the 
particles which a re  produced from the source during the 
period from T - T, to T (as to order of magnitude). The 
number of such particles i s  of the order of 

They lead to  a growth (damping) of the wave with growth 
(damping) rate of the order of 

Bearing also in mind that y = 8 l&, /a~  we find an equa- 
tion which is qualitatively the same as  (31). 

In the case of a supply of particles with aF/8uo < 0 it 
follows from (32) that the amplitude of the wave must 
systematically decrease. The damping rate (33) then 
increases "explosively. " After the lapse of a time T*, 
defined by the relation yL(r*) s wb(0) the wave amplitude 
may have decreased to such small values that the further 
change in the field will be determined by the usual Lan- 
dau damping. 

If, however, particles are  injected with .aF/azi,-, > 0, 
after some time the non-linearity of the wave will only 
be amplified (i. e., the product Y(T)T,(T) decreases with 
increasing time). This effect becomes important for T 

2 T,, where T, is  given by the approximate relation 

Using (31) this means that 

For T > r1 i t  follows from Eq. (32) that the wave ampli- 
tude increases according to the relation 

In particular, for a constant rate of particle injection 
~ ~ ( 7 )  - T SO that 

Since the width of the resonance region increases to- 
gether with the increase in the amplitude of the field, in 
the case of a particle source with a small spread inve- 
locities (small compared to the resonance velocity) all 
particles coming out of the source will turn out to be 
resonant particles after some time. The further evolu- 
tion of the field and of the particle distribution must 
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therefore be studied in the framework of a hydrodynam- 
ical description. Such a transition to the hydrodynamic 
stage begins at T =  T,, where T, satisfies the approximate 
equation 

Av is the width of the velocity distribution of the  particle^ 
in the source. We note that the analogous criterion for 
the transition to the hydrodynamic regime occurs also 
in the linear approximation when y, plays the role of the 
true growth rate. 

5. EVOLUTION OF A NON-LINEAR ALFVEN WAVE 
IN A TOKAMAK WITH INJECTIONS OF NEUTRAL 
ATOMS 

One actual example of a particle source is the injec- 
tion of fast neutral atoms in a tokamak with the aim of 
obtaining a plasma with thermonuclear parameters. The 
beam of fast ions which appears as  a result of ionization 
can, according to Ref. 9, excite AlfvBn oscillations. 
The problem then arises of the relaxation of the ionbeam 
when it interacts with the AlfvBn oscillations and the 
problem of the evolution of such oscillations. In the case 
where a wide oscillation spectrum is excited one can 
consider this problem in the quasi-linear approximation, 
as was done by Kulygin et al. 'lo' The study of the exci- 
tation of an ion beam by a monochromatic Alfvin wave 
is also of interest, since the fact that the wavenumbers 
in a tokamak are  discrete may make it impossible to ex- 
cite several waves at the same time. The evolution of 
an Alfv6n wave when there is no source present was stud- 
ied in Ref. 7. Using the general results obtained in the 
preceding sections of the present paper we consider the 
process, which is most important in practice, of the 
evolution of such a wave under the conditions of a con- 
tinuous injection of neutral atoms. 

We start the study of an Alfv6n wave with the drift 
equations of motion and the kinetic equation for the ion 
injected along the lines of force of the magnetic field of 
the tokamak from a continuously acting source (cf . Ref. 7)  

Here S(t, vll) i s  the particle source and the remainder of 
the notation i s  standard. The main toroidal magnetic 
field of the tokamak has in the normally used coordinates 
a, 8, C the form (see, e. g., Ref. 11) 

B,=B,[~+ (alR) cos Bl. (44) 

Here R is the large radius of the tokamak, B, the mag- 
netic field on the axis of the torus. We assume for the 
sake of simplicity that the cross section of the magnetic 
surfaces of the tokamak is a circle. 

Instead of t, O, vll, f we introduce the dimensionless 
quantities 

where T, = q ~ / v o =  l / w  (see Ref. 9), v, is the average ve- 
locity of the injected ions, v,,,, the phase velocity of the 
wave, no the density of the main component of the plasma 
in the tokamak, and q the safety factor of the tokamak. 
The kinetic Eq. (41) then takes the form of Eq. (2). The 
role of TO in (2) will now be played by the quantity 4 
= T ~ T : ,  where 

Here E,(T) is the covariant component (number a) of the 
electric field of the wave. 

When studying the evolution of the Alfvgn wave we 
start from an equation such a s  (21) which in this case 
means (cf. Ref. 7) 

where W = c l l ~  to/8n; ell = c2/ci, cA is the ~ l f v 6 n  speed, 
j1 the contravariant component of the current which is 
connected with the distribution function through the rela- 
tion 

esin" f McuoZno sin o+- j' = - ~ ~ , ~ f d u , ,  = -- 
0BlR 

Fdu, -- B*R -_ 

where M is the mass of an injected ion. Evaluating j1 
and substituting the result into (46) we find a relation 
similar to (26): 

Using the standard expressions for Fun, and F ,  (see(l0) 
and (17)) and the expression for the non-linear growth 
rate, similar to (25), 

we reduce Eq. (48) to the form (31) where we must take 
El, for E,. Moreover, for the case of an Alfv6n wave 
the expressions for the field and the non-linear growth 
rate determined by Eqs. (32), (33) also remain valid. 
All results for the Langmuir wave which are  written in 
canonical form therefore remain valid also for the case 
of an Alfvin wave. 

Using this fact and bearing in mind the analysis of Eqs. 
(31) to (33) given above we can conclude that when there 
is a source of fast ions present the non-linear evolution 
of an Alfv6n wave in a tokamak can be looked at as  a se- 
quence of the following three stages. 

1) Stage of an almost constant wave applitude. This 
corresponds to the time interval 0 < T < rl. Using (37), 
(45), (49) we find that in the case of an AlfvBn wave and 
a constant rate of injection (I= const) 

724 Sov. Phys. JETP 46(4), Oct. 1977 A. B. ~ ikha~lovski i  and A. I. Pyatak 724 



where v, (0) = C ~ ~ ~ ( O ) / B ,  is the electric drift velocity at 
7'0. 

2 )  Stageof a growing field in the kinetic regime cor- 
responding to the time interval < r < T2.  In the above 
mentioned case of a constant rate of injection 

In particular, for a distribution of the form I = z ~ ' ' ~ ' ~ ' ~ / @ :  
which was considered in Ref. 10, 7,- b2/Z; Av/vo= b. 

We note also that i?10(~2) = B0v0 b2/c.  In such a field the 
electric drift velocity v,(T,) = vob2 so that an ion during 
a period of oscillations drifts along the small torus ra- 
dius over a distance of the order of h a =  ~ b ~ .  

3) Stage of the hydrodynamical evolution starting for  
T > 7,. For a study of this state of the evolution of a 
monochromatic Alfv6n wave one must develop a non- 
linear theory of the hydrodynamic Alfven instability which 
was discussed in the linear approximation in Ref. 9. 

According to what has been said in the foregoing, the 
presence of a source of resonant particles thus affects 
considerably .the non-linear evolution of a monochromatic 
wave. The main effect displayed when there is asource 
present consists in a systematic change in the wave am- 
plitude which is qualitatively different from the effect 
of damped oscillations of the amplitude when there i s  no 
source present. 

We are grateful to A. B. Kitsenko, K. N. Stepanov, 
and V. D. Shapiro for a discussion of the results of the 
present paper which was very useful for us. 

 his interpretation i s  due to V. D. Shapiro. 

'R. K. Mazitov, Zh. Prikl .  Mekh. Fiz. No. 1 ,  27 (1965) 
[Translation in J. Appl. Mech. Tech. Phys.]. 

'T. O'Neil, Phys. Fluids 8, 2255 (1965). 
3 ~ .  A. Galeev and R. Z.  Sagdeev, Voprosy teorii plazmy 

(M. A. Leontovich editor) 7 ,  3 (1973) [Translation in Rev. 
Plasma Phys. ,  published by Consultants Bureau, New York]. 

4 ~ .  I. Pistunovich, Fiz. Plazmy 2, 3 (1976) [Sov. J. Plasma 
Phys. 2,  1 (1976)l. 

5 ~ .  D. Lawson, Proc.  Phys. Soc. (London) B70, 6 (1957). 
6 ~ .  I. West, Rev. Gyeophys. Space Phys. 13, 943 (1975). 
'A. B. ~ ikha r lovsk i i ,  A. I. Pyatak, and A. M. Fridman, Fiz. 

Plazmy 2, 922 (1976) [Sov. J. Plasma Phys. 2, 511 (1976)l. 
'1. S. ~ r a d s h t e f n  and I. M. Ryzhik, Tablitsy integralov, 

summ, ryadov i proizvedenir (Tables of integrals, sums, 
ser ies ,  and products) Fizmatgiz, 1962 [Translation published 
by Academicy Pressyl. 

'A. B. Mikhailovskii, Fiz. Plazmy 1, 72 (1975) [Sov. J. 
Plasma Phys. 1, 38 (1975)j. 

'OV. M. Kulygin, A. B. ~ ikha f lovsk i i ,  A. I. Pyatak, A .  M. 
Fridman, and E .  S. Tsapelkin, Zh. Eksp. Teor. Fiz. 70, 
2152 (1976) [Sov. Phys. JETP 43, 1123 (1976)l. 

"v. D. Shafranov and E.  I. Yurchenko, Zh. Eksp. Teor. 
Fiz. 53, 1157 (1967) [Sov. Phys. JETP 26, 682 (1968)). 

Translated by D. t e r  Haar 

The phenomenon of parametric trapping of electromagnetic 
waves in an inhomogeneous plasma 
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A theory is developed of absolute parametric aperiodic instability in a spatially inhomogeneous plasma, 
when the electromagnetic waves generated in the plasma are trapped by the plasma near the peaks of the 
pumping-wave field. 

PACS numbers: 52.3S.Py, 52.35.Hr 

1. The present paper i s  devoted to the theory of the 
phenomenon of electromagnetic-wave trapping by aplas- 
ma. The essence of such a phenomenon consists in the 
fact that the secondary electromagnetic waves paramet- 
rically excited under the action of a pumping electro- 
magnetic wave do not get out of the plasma, but are  
trapped inside it. It may be expected that such a phe- 
nomenon is one of the causes of the reduction in reflec- 
tion of electromagnetic waves by a plasma during some 
short interval of time. 

As a specific example of the appearance of the trap- 

ping phenomenon, below we consider parametric insta- 
bility in an inhomogeneous plasma, during which the 
pumping wave gets transformed into an electromagnetic 
wave and perturbations aperiodically growing in time.'' 
It is shown in the process that, after the intensity of the 
electric field of the pump exceeds some threshold value 
in the spatially inhomogeneous plasma, the development 
of absolute parametric instability becomes possible. The 
growing-in time-plasma perturbations are localized 
near the peaks of the electric field of the purnpingwave. 
The regions of such localization are small compared to 
the characteristic dimension of the pump inhomogeneity 
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