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We construct a theory of three-dimensional Langmuir turbulence. We give the turbulence spectra in the 
inertial and the absorption ranges and we analyze the role of possible absorption mechanisms for the short- 
wavelength plasmons. We find the effective collision frequency which characterizes the power dissipated 
from the pumping wave. We study the effect of the build-up of short-wavelength acoustic oscillations on 
the turbulence. We solve the problem of the dynamics of plasma turbulence excited by an electromagnetic 
wave with a frequency differing from the plasma frequency. 

PACS numbers: 52.35.Ra 

8 1. INTRODUCTION 

The interest in the problem of strong turbulence is,to 
a large extent connected with practical applications-the 
necessity for establishing effective collisionless mecha- 
nisms for energy dissipation when one uses lasers of 
beams to initiate a thermonuclear reaction. On the other 
hand, at the present there is no sufficiently consistent 
formulation of a strong turbulence theory which would 
enable us to connect the collapse of an isolated caviton 
with plasmons as the microscopic manifestation of the 
modulational instability with such macroscopic charac- 
teristics as the power dissipated from the pumpingwave, 
the hot-particle distribution function, and others. 

The idea of the collapse as  the non-linear stage, dis- 
covered by Vedenov and Rudakov, c'' of the modulational 
instability of Langmuir waves is due to Zakharov. "I He 
showed that the localization of the plasma waves caused 
by the modulational instability ultimately can lead to the 
formation of cavitons (regions of lowered plasma density 
with plasmons trapped in them) collapsing to dimensions 
where some mechanism for the dissipation of the plas- 
mon energy is switched on. 

One of the authors of the present paper (see, e. g., 

(the kinetic energy of the trapped plasmons is of the order 
of the potential energy), and on the condition that the 
plasmon number in each separate caviton is constant: 

As the depth of the density modulation in the cavitons is 
usually small (6n << no), cob = const and it follows from the 
last condition that the radiation pressure in the center 
of the caviton leading to a displacement of the plasma 
and to collapse will during the collapse increase inverse- 
ly proportionally to its volume I El = cr I -'(I- l / k  is the 
characteristic size of the caviton, s = 1,2, 3 is its di- 
mensionality). For collapse, at the same time, one 
must overcome the pressure of the displaced plasma 
6nT which, according to (1. I), increases a s  p. Hence 
it follows that the one-dimensional case is a special 
one-for some I the balance between the pressures and 
the collapse necessarily ceases. When s = 2 the possi- 
bility of a collapse depends on the initial conditions-if 
initially the high-frequency pressure in the caviton is 
larger than the gas-kinetic pressure, collapse will not 
set in at a later stage. And finally, in the three-di- 
mensional case collapse is inevitable. 

Ref. 3) suggested simple considerations which could be 
used to  study the possibility for collapse depending on Recently self-similar solutions describing the collapse 

of a caviton have been ~ b t a i n e d ~ " ~ ~  and the approach to 
the number of dimensions of the caviton. These con- the self-similar solution has been considered using a 
siderations are based on the relation between the density computer (see Ref. 5) so that notwithstanding the absence 

de'h and the Of the plasmons trapped of a rigorous mathematical proof the fact of the collapse 
in them: of an isolated caviton with plasmons is indisputable. 

16n 1 In,-k2hDz (1.1) Our aim in the present paper is to make the transition 

71 1 Sov. Phys. JETP 46(4), Oct. 1977 0038-5646/77/46040711$02.40 O 1978 American Institute of Physics 71 1 



FIG. 1. Wave and particle spectra in strong Langmuir turbu- 
lence (AR-absorption region, IR-inertial range, MR-modula- 
tional instability region, P-pump). 

from the collapse of isolated cavitons to a theory of 
three-dimensional plasma turbulence1) which includes 
collapse only a s  one of the mechanisms for short-wave- 
length plasmon transfer. Such a theory must describe 
the intense plasmon gas in which a large number of ran- 
domly oriented cavitons which are  in various stages of 
collapse are formed by virtue of the modulational in- 
stability. It is convenient to characterize the turbulence 
which thus arises in the k-representation language and 
it then turns out to be possible to distinguish three re- 
gions: the long-wavelength region where energy is 
pumped into the turbulence, the inertial range in which 
energy is transferred to shorter lengthscales, and the 
short-wavelength absorption region of the plasma tur- 
bulence (see Fig. 1). 

Some features of the strong turbulence of plasma 
waves were already elucidated in Ref. 4, and the present 
paper is devoted to a more consistent exposition of the 
theory. The plan of the paper i s  the following. In the 
second section we briefly give the results of studying 
turbulence spectra in the inertial range and the absorp- 
tion region and we analyze the role of possible mecha- 
nisms for the absorption of short-wavelength plasmons. 
The third section is devoted to the long-wavelength re- 
gion of the source and we obtain here an expression for 
the effective collision frequency which determines the 
power dissipated from the pump wave. In the fourth 
section we analyze the features of the turbulence which 
arise for rather large pumping amplitudes and which are 
connected with the build-up of sound oscillations in the 
short-wavelength region of plasmon absorption. The 
presence of strong short-wavelength sound produces an 
additional channel for the transfer of plasmons to the 
absorption region by virtue of their conversion into sound 
and it can thereby stabilize the collapse and appreciably 
change the effective collision frequency. Finally in the 
fifth section we solve the problem which is importantfor 
applications of the dynamics of the plasma turbulence 
which is excited by an electromagnetic wave with a fre- 
quency which rather strongly differs from the plasma 
frequency. In that case the spectrum of the plasmons 
arising from the pump wave turn out to be modulationally 
stable and there arises a strong transfer of plasmons 
according to weak turbulence and the formation of along- 
wavelength condensate. We solve the problem of the 
dynamics of such a condensate and the problem of the 
rate of dissipation under those conditions. 

$2. INERTIAL RANGE AND ABSORPTION REGION 

The characteristic wavelengths of the plasmons pro- 
duced in the source region a re  determined by the thresh- 
old of the modulational insiability 

where W is the energy of the plasma oscillations (for de- 
tails see 63). 

In the present paper we consider the case which is 
most important for applications when w / ~ ~ T  >> m / ~  and 
we assume at the same time that the turbulence is not 
too strong so that plasmons produced in the source re- 
gion do not immediateIy fall into the absorption region 
and that there exists an inertial range between large 
length-scales - and small length-scales - k;'(k* - 1/3& 
is the characteristic value of k in the absorption region; 
(2.8) below). The short-wavelength transport of plas- 
mons through the inertial range i s  caused by the col- 
lapse. Simple scale estimates in the equations which 
describe strong plasma turbulence: 

enable us to obtain the law for the self-similar collapse 
of a caviton. 

In the equations given here E( t ,  r) is the complex am- 
plitude of the electric field in the plasma oscillations 

E,=1/2E ( t ,  I) e-'".'+c.c., 

and 6n(t, r )  is the slow density variation. If we assume 
that the collapse speed of the caviton i s  larger than the 
sound speed we get from (2.2) and (1.1) the way the high- 
frequency pressure at the center of the cavitonincreases: 

We get the way the plasma density variation in the cav- 
iton changes from Eq. (1.2) which corresponds to the 
constancy of the number of plasmons trapped in the cav- 
iton (we shall show below that we can assume a three- 
dimensional caviton in the final stage of its collapse t o  
be isolated from the pumping). In the three-dimensional 
case which is of most interest we then have from (1. I), 
(1.2), and (2.3) 

Hence it follows in particular that the collapse speed 
dl/dt a l/(to-t)1J9 increases a s  the size of the caviton 
diminishes so that in the three-dimensional case the 
caviton necessarily gets into the supersound collapse 
regime. 

We study the dynamics of the turbulence when there is 
a source present which maintains the average field of 
the plasma oscillations at a given level. The role of 
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such a source can be played by an electron beam which 
excites plasma oscillations with awavelength much larger 
than lo which act a s  the long-wavelength pumping for the 
development of the modulational instability. The pres- 
ence of such pumping corresponds to satisfying the fol- 
lowing integral condition for E: 

(the brackets correspond to an average over the plasma 
volume, Eo = const is the pumping amplitude). We then 
get from Eq. (2.1) the integral which determines the 
change in the plasmon number due to  the pumping: 

d lEIZ E6n -f dr--.=i% - 
dl 8n Pn. E o j  8x1 

dr- C.C. 

Applying this relation to a separate, isolated cavitonand 
using the self-similar solution (2.3), (2.4) we find 

i. e., the pumping indeed becomes detached from the 
caviton a s  it collapses. 

The turbulence spectrum in the inertial range (see 
Fig. 1) can be found from the equation expressing the 
constancy of caviton flux along the spectrum: 

hTkdk/dt ( k )  =const, 

where N,dk is the number of cavitons in the range of 
characteristic scales (k, k +dk) while the time-depen- 
dence for the transition of cavitons from larger sizes to 
smaller ones is determined by the self-similar solution 
given above. As all cavitons with length scales -lo a r e  
produced with approximately the same energy content 
which after that is conserved in the collapse process, 
the spectral density of the plasmon energy is propor- 
tional to the number of cavitons in a given range of tur- 
bulence length scales: 

The approximation used to obtain this spectrum is in 
fact equivalent to the Kolmogorov hypothesis that energy 
flux is constant over the spectrum in the inertial range. 

We now dwell upon the problem of the dissipation me- 
chanisms for the plasmon energy in the short-wavelength 
sub-region. Possible dissipation mechanisms are  res- 
onance absorption by plasma electrons and the charac- 
teristic non-linearity of the plasma oscillations and the 
intersection of electron trajectories connected with it. 
As the transfer of plasmons in turbulence occurs from 
large scales to smaller ones, it is clear that resonance 
absorption must primarily be included for "tail" elec- 
trons with velocities well above the thermal one, i. e., 
in the absorption range we must have kXD < 1. This made 
it possible to assume already in the initial stage of the 
study of strong plasma turbulence (see Ref. 6) that Lan- 
dau damping is the basic mechanism for the dissipation 
of short-wavelength plasmons. 

The characteristic wavenumber value k, for which 
damping becomes important can be determined from the 
condition for balancing in the short-wavelength range- 
the energy flux along the spectrum is compensated by 
absorption by particles 

In this equation W' = ~ ( k , / k * ) " ~  is the energy of the 
short-wavelength (k L k* ) plasma noise, determined by 
(2.6), ko- lo is the wavenumber in the source region; 
r,, is the Landau damping rate, y,,,,,= W , ( ~ W / M ~ ~ T ) " ~  
is the modulational instability growth rate determining 
the characteristic rate of short-wavelength energy trans- 
fer during collapse. We then get from (2.7) 

and even if we use to estimate I?,, the formula obtained 
for a Maxwellian plasma, 

' A  exp (-' /rkm2h,2-J/2) 
'k.""" 

we find that the Landau damping of plasmons becomes 
appreciable for sufficiently small k* (k, AD -3 to t). 

Indeed, when we take the formation of electron tails 
into account Landau damping is switched on for even 
smallere' k. 

The characteristic non-linearity of the Langmuir os- 
cillations is characterized by the occurrence of a non- 
linear correction to the frequency: 

(A, = e ~ / m  4 is the amplitude of the high-frequency dis- 
placement of the electrons). The non-linearity is im- 
portant if the correction given here is comparable to the 
dispersion correction, 

A s  the collapse of a three-dimensional caviton is super- 
sonic, the short-wavelength transfer of plasmons during 
collapse occurs more slowly than the field growth and 
when condition (2.9) is satisfied the parameter kXD re- 
mains small. One can easily estimate that quantity by 
using the self-similar solution (2.3), (2.4): 

For the case considered, W / n o ~  >> m/M, this quantity is 
large compared to which makes it possible to as- 
sume the Landau damping to be the basic mechanism for 
the dissipation of short-wavelength plasmons. '' 

The spectrum of the plasmons in the absorption region 
must then be found at the same time a s  the spectrum of 
the resonant particles. The corresponding set of equa- 
tions consists of the quasi-linear equation for the elec- 
tron distribution function and the equation for the spec- 
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traldensity of the noise in which both the energy trans- 
fer along the spectrum caused by the collapse of the 
cavitons with plasmons and the resonance absorption by 
electrons are  taken into account. Assuming the wave and 
particle spectra to be isotropic we get the following set 
of equations: 

I', is the resonance absorption damping rate. The set  
of equations given here has a quasi-stationary solution 
with a constant particle flux along the spectrum in the 
large velocity region 

a ]  
-= Owhen u<u,,(t), 
d v 

and the condition that the spectrum be continuous at the 
boundary of the absorption region k = k*: 

We can express the constant A in terms of the number 
of particles in the tail: 

J is the particle flux, urn, the upper limit of the "tail" 
of resonant electrons. 

Using the law for the self-similar collapse of the cav- 
itons in (2.12) which is determined from (2.4): k(t) 
a l/(t0-t)a/3 we find the following power-law spectra of 
plasmons and particles first obtained in Ref. 4 in such 
a solution: 

Generally speaking, when finding the law for the self- 
similar collapse one must in the short-wavelength scales 
of the absorption region take into account that the cav- 
itons lose energy due to Landau damping. The corre- 
sponding balance equation has the form 

As long a s  the collapse of the caviton remains super- 
sonic, the growth of the field at the center of the caviton 
is, as before, determined by Eq. (2.3): E a l/to-t) and 
we have then from (2.15) the following relation for the 
collapset81: 

which is with logarithmic accuracy the same as  the col- 
lapse rule k a l/(to-t)2/3 which leads to the spectrum 
(2.14). 

To find the constant in the formula for the plasmon 
spectral density we use the normalization condition 

At the same time we find from the particle number and 
energy balance equations the following relations: 

Q is the power absorbed from the pump into plasmatur- 
bulence. In the problem considered the stationary state 
of the turbulence i s  rewhed because the energy dissi- 
pated into turbulence at long length scales i s  transferred 
to short scales, is absorbed by particles, and finally 
leads to acceleration of the tail. At large t, when v,, 
>> v,,, the upper limit of the tail increases according to 
the rule v,, a P, the lower limit v,, = const, and the 
law for the saturation of the number of particles in the 
tail has the form n' = n;(l-a/P) which agrees with the 
time dependence, obtained from (2.13), (2.15), for the 
particle flux into the tail: Ja l/4, al/ t4 .  The flow of 
energy transferred to the "fast " particles can also be 
put in the form B r n & ~ .  Using (2.13) and (2.15) and 
equating this flux to the quantity yrn,,W which gives the 
energy flux into plasma turbulence we get a relation 
connecting the constant A with the plasmon energy: 

Using this relation we find the following final formula 
for the maximum number of particles in the tail: 

1 
- 2 

'1. n,T '16 1 mu,,, 
n - ' = - i - n o ( t )  F, 6=-. 2T 

The lower limit of the tail v;,, a s  t- - is given by the 
equation 

and the asymptotic relation for the growth of the upper 
limit of the tail has the form 

The analysis in the present paper, which is based upon 
Eqs. (2.1) and (2. 2), is valid so long a s  we can neglect 
the effect of the tail upon the dispersion of the Langmuir 
oscillations. The appropriate condition has the form 
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and i s  satisfied for times 

53. SOURCE REGION. ENERGY DISSIPATION 
IN PLASMA TURBULENCE 

Just as in hydrodynamic turbulence, the description 
of the long-wavelength region, where energy is pumped 
into the turbulence, is very complicated. In the present 
section we expound a model theory of plasma turbulence 
in the source region; this theory is based upon the as- 
sumption that long-wavelength plasmons produced from 
the pumping wave stochastically randomize their phase 
when scattered by cavitons. In that case the effect of 
energy dissipation in plasma turbulence turns out to be 
to a considerable cxtent analogous to the stochastic heat- 
ing of particles. tsl 

The analysis of long-wavelength plasma turbulence 
will be based upon the set of Eqs. (2. I), (2.2) for the 
modulational instability given in the preceding section. 
In the analysis it turns out to be convenient to use the 
following Fourier expansions for the amplitude of the 
electric field and the long-wavelength density varia- 
tions: 

Here b,=$@$,w,; igk are the random phases of the plas- 
mons which possess the following correlation function: 

(in this case the angle brackets correspond to averaging 
over the ensemble of random phases of the plasmons). 
The characteristic time for the decoupling of the phase 
correlations in (3.2) i s  determined by the frequency 
scattering of the long-wavelength plasmons by the den- 
sity cavitons. Thus, v,,,- v,/l, v,- koX;w, is the group 
velocity of a plasmon, k, i s  a characteristic wavenum- 
ber in the source region, and Z,, the distance between the 
cavitons. It is clear that 1,- l/k, (see Fig. 2) and the 
final formula for v,,,, takes the form 

We find the Fourier coefficients of the electric field 
from Eq. (2.1): 

@ 

FIG. 2. 

The growth in the energy of the plasma oscillations is 
determined by the integral of the equations for the modu- 
lational instability (Eq. (2.5)). Substituting into the 
right-hand side of the integral the Fourier expansion 
(3.1) for the electric field with the coefficients (3.4) and 
averaging over the random phases of the plasmons we 
get 

We get the equation for the Fourier components of the 
long-wavelength density variations from (2.2) if we as- 
sume that the characteristic time for changes in the 
Fourier amplitudes 7, and Ek is large compared to v;trr: 

If we neglect the last term Eq. (3.6) leads to the well 
known dispersion relation of the linear theory (see Ref. 
10) modified to take account of the stochastic change of 
the plasmon phases. The two last terms in Eq. (3.6) 
correspond to the obvious fact that the role of the main 
wave, whose amplitude i s  modulated a s  a result of the 
instability, can be performed by the long-wavelength 
part of the plasma noise spectrum. 

For the plasmon spectral distributions (2.6) and (2.15) 
which decrease rather fast with increasing k it is just 
the long-wavelength part of the spectrum (k- ko) which 
gives the main contribution to the plasma oscillation en- 
ergy. We shall assume that the energy of the plasma 
oscillations 

is appreciably larger than the pump wave energy Pd8n. 
We can then in Eq. (3.6) neglect the contribution from 
the pump and the characteristic values of the wave- 
lengths of the plasmons formed in the modulational in- 
stability and the growth rate of that instability are  given 
by the relations 

One can find the amplitude of the long-wavelength density 
fluctuations from the condition that the plasmons are 
trapped in the density well: 
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FIG. 3. Plasma noise energy a s  function of pump amplitude 
(W/noT= vefi/"wp, 8 = ~ ; / 8 n n ~ ~ ,  ~ ~ = ( r n / M ) " ~ k *  AD/"). 

Using (3.7) and (3.8) we can finally write Eq. (3.5), 
which determines the growth of energy of the plasma 
oscillations under the action of the pump, in the follow- 
ing form: 

dW 
-= 

EoZ 
Veff - 

dt 8n ' 

the quantity vet,  which characterizes the dissipation rate 
equals 

a is a numerical coefficient which cannot be found from 
the .qualitative considerations given here. Simulation of 
the process of the development of the modulational in- 
stability from the pumping wave (see, e. g., Ref. 11) 
confirms Eqs. (3.9), (3.9') and gives the value (y = 0.3. 

The value of vet, enables us to round off the theory of 
plasma turbulence considered in the present paper and 
to estimate the rate of absorption of high-frequency en- 
ergy in the plasma. For stationary turbulence one must 
satisfy not only the balance condition (2.7) for short 
length scales but also a balance condition at long length 
scales-the power dissipated from the pump wave deter- 
mines the energy flow along the spectrum in the collaps- 
ing cavitons 

This equation gives together with Eqs. (3.7) and (3.9') 
the possibility to express the energy of the stationary 
plasma waves in terms of the pump wave amplitude 

The analysis given in the present section of the long- 
wavelength plasma turbulence in which the energy of the 
oscillations and the effective collision frequency depend 
strongly on the pump wave amplitude is valid only in a 
well defined range of pumping: 

The lower limit of this interval is obtained from the con- 
dition W >> Pd8n and the upper limit corresponds to the 
condition for the existence of an inertial range ko<< k,. 
For larger pumps the oscillations arising a s  a result of 

the modulational instability fall at once into the absorp- 
tion region. A detailed analysis of that case is very 
difficult and a modeling of the process on a computer is 
here very important. We indicate merely that it follows 
from the balance equation which we now write in the 
form 

that for large pumps the increase in W must be stabi- 
lized (in the opposite case we are shifted rather deeply 
into the absorption region which leads to a steep increase 
in the damping rate r). 

The way vet, depends on the pumping energy - l$j is 
shown in Fig. 3, and the dotted line corresponds to 
pumps for which there is no inertial range. 

$4. BUILD-UP OF SHORT-WAVELENGTH SOUND AND 
DYNAMICS OF PLASMA TURBULENCE IN A 
NON-ISOTHERMAL PLASMA 

An analysis of numerical  experiment^^^^"^ enabled us 
to draw attention to an important feature of the collapse 
of Langmuir waves. When a caviton with plasmons 
trapped in it reaches sufficiently small dimensions when 
absorption of plasma waves is starting, the equilibrium 
between the high-frequency and the gas-kinetic pres- 
sure is violated. T-hexaviton collapses and the excess 
density variation is discarded in the form of sound waves 
emitted from the caviton (Fig. 4). 

In a separate caviton the fraction of plasmon energy 
which is transformed into the energy of low-frequency 
motions is small in the ratio k2ki. Indeed, when kkD 
<< 1 the energy of the low-frequency motions is mainly 
given by the ion oscillations 

(t is the displacement in the low-frequency motions, 
divt =- 6n/no) and using (2.2) we easily get the following 
estimate: 

1 6n IEI' m G j T  l ~ l ' a ~ h ' ~ ~ '  j-at. 16n (4.1) 

A , ,  
ZOO 400 600 

FIG. 4. Density variation and electrical field amplitude at  the 
center of a caviton a s  functions of time in a numerical experi- 
ment. '12' When wpt - 400 the energy of the Langmuir field is 
damped and then the caviton becomes a source for short-wave- 
length sound oscillations. 
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In an isothermal plasma (To = Ti) the sound emittedfrom 
a collapsing caviton is fast absorbed by ions and cannot 
appreciably affect the dynamics of plasma turbulence. 
The results of the preceding two sections are applicable 
just in that case. In a non-isothermal plasma with hot 
electrons (T, >> T,) the process of the absorption of the 
sound by resonance electrons becomes slow. In that 
case there occurs a build-up of short-wavelength sound, 
and the conversion into that sound completely alters the 
dynamics of the turbulence. The present section of this 
paper i s  devoted to considering this problem. 

We determine the stationary level of short-wavelength 
sound from the balance equation 

W, is the energy of the short-wavelength sound pulsa- 
tions, ys = w , m k , ~ ~ / M  is the damping rate due to  their 
resonance absorption by electrons. As a result we get 
a very high level of sound: 

The presence of strong short-wavelength sound leads to 
a stabilization of the collapse. This effect is connected 
with the occurrence of an additional channel for trans- 
ferring the plasmons to the short-wavelength absorption 
region as  a result of direct conversion through sound 
pulsations. 

If the acoustic turbulence is isotropic and weak, i. e., 

the characteristic growth rate which determines the con- 
version speed turns out to be equal to 

where rk i s  the damping rate for the absorption of short- 
wavelength plasmons, given by Eq. (2.8). A study of 
the dynamics of collapsing cavitons, taking conversion 
into account, has shownc141 that stabilization of the col- 
lapse occurs when the damping rate of the plasmawaves 
caused by conversion is larger than the growth rate of 
the modulational instability. Indeed, when one takes 
conversion into account the plasmon energy in the cav- 
iton i s  damped according to the rule E' o: e ~ ( -  2yc0,t), 
and using Eq. (2.2) one can show that the density well 
produced by the radiation pressure for ymod << yconv turns 
out to be insufficiently deep to trap the plasmons: 

As a result we apply the analysis of plasma turbulence 
neglecting the build-up of short-wavelength sound in a 
non-isothermal plasma for sufficiently small W: 

when the level of the short-wavelength sound given by 
Eq. (4.2) corresponds to the condition yco, < y,,,. One 
can use Eq. (3.10) to show easily that inequality (4.4) 
corresponds to a pumping 

At large pump strengths the sound appreciably affects 
the dynamics of Langmuir turbulence. The complete 
stabilization of the collapse can then not occur a s  sound 
waves are  produced just in collapsing cavitons. As a 
result a regime is established in which the energy of the 
sound pulsations is maintained at a level determined by 
the threshold condition yc,, = ymod: 

The condition for the acoustic turbulence determined 
by this relation to be weak 

is the same as  the condition ko<< k,  for the existence of 
an inertial range. In the case W > W,, the conversion 
on sound i s  the main mechanism for the transfer of plas- 
mons from the modulational instability region k -  ko into 
the short-wavelength absorption region k- k,. The en- 
ergy of the short-wavelength Langmuir oscillations pro- 
duced in the conversion, 

turns out, when one takes (4.5) into account, to be the 
same as in the small W regime (collapse regime): 

with the only difference that when conversion is taken 
into account the oscillations fall directly from the source 
region into the short wavelength region, omitting the in- 
ertial range. The collapse itself as  mechanism for 
short-wavelength transfer of plasmons through the length 
scales of the inertial range i s  permitted only to the de- 
gree a s  it  i s  necessary to maintaining the level (4.5) of 
the sound pulsations. In that case the balance Eq. (4.2) 
for a known sound level determines the flow of plasmon 
energy to short length scales proceeding through col- 
lapsing cavitons: 

As the rate of collapse of a separate caviton remains of 
the order of ymo, we can also write this flux in the form 
ymodWc, and we find that only a small fraction of the long- 
wavelength plasmons goes to short length scales along 
the collapse channel. Their energy is 
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FIG. 5. Effective collision frequency as function of the pump 
amplitude in a non-isothermal plasma when the conversion due 
to short-wavelength sound is  important ( 8  = ~28nn~~) .  

The build-up of short-wavelength sound leads also to 
a change in the quantity v,,,. Such a change is connected 
with two different mechanisms. On the one hand, the 
conversion of the pump by short-wavelength sound pul- 
sations produces a new channel for dissipation and in 
v,,, there appears a t e r m  equal to y,,,. On the other 
hand, the dissipation mechanism considered in the pre- 
ceding section is connected with scattering by long- 
wavelength density fluctuations produced by the modula- 
tional instability, and in Eq. (3.9') for v,,, there enters 
therefore only that part of the energy of the plasma 0s- 
cillations which proceeds through the cavitons and leads 
to a modulation of the plasma density. In the regime of 
the developed conversion (W> W,,) this energy is given 
by Eq. (4.6) and is small compared to W. We thus fi- 
nally get the following formula for v,,,: 

The last term in Eq. (4.7) for v,,, is usually small. 
Neglecting i t  and using the balance Eq. (3.10) (the dissi- 
pation of energy from the pump compensates for the 
short-wavelength transfer, caused in the present case 
by the conversion) we get the following equation for the 
connection between the energy of the plasma oscillations 
and the pump: 

Using that equation we can express the effective collision 
frequency in terms of the pump wave amplitude: 

We show in Fig. 5 v,,, a s  function of Eo. The fast 
growth of v,,, for small pumps (vet,= l$ for Eo < E,,,) is 
practically saturated in the regmine of the developed 
conversion (v,,,c ~ 2 , ~ ' ) .  The discussion given here is 
valid under the condition that there exists an inertial 
range between the source and the absorption regions: 
W/n,,T << (k, A,)', i. e., @J81rn,~ < k,AD/9a. The second 
term in v,,, (equal to y,,,) which we neglected when ob- 
taining (4.8), (4.9) grows faster with W than the first  
one, but it can become appreciable only for pumps E;/ 
8rn,,T- k*2,~,/9a! for which there is no inertial range. 
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On the whole the conversion through short-wavelength 
sound diminishes the effective collision frequency con- 
siderably and its magnitude turns out in that case to be 
less  than the ion plasma frequency. 

85. LANGMUIR TURBULENCE FOR LARGE 
"MISMATCHES" OF PUMP AND PLASMA 
FREQUENCIES 

So far  we have studied the dynamics of Langmuir tur- 
bulence in the case when the frequency of the pump wave 
equals the plasma frequency. For many applications, 
for instance, for the problem of the heating of a laser 
pellet the study of mechanisms for the dissipation of 
high-frequency energy for large mismatches between the 
pump and the plasma frequencies is of interest. In that 
case the parametric instability of the electromagnetic 
pump, the linear theory of which one can find, e. g., in 
Ref. 10, leads to the production of rather short-wave- 
length plasma oscillations with kXD - ($A)"~(A = (wo-up)/ 
up is the mismatch of the pump wave and plasma fre- 
quencies). 

the plasma oscillations are  accumulated in the region of 
the spectrum in resonance with the pump up to the turn- 
ing on of the modulational instability. The stationary 
level of the energy of the plasma oscillations is in that 
case determined by Eq. (3.11) and the dynamics of the 
turbulence is the same a s  that considered in the pre- 
ceding sections-if collapse is taken into account the 
oscillations a re  transferred to the short-wavelength re-  
gion and a re  absorbed by the particles. 

The opposite case of large mismatches, A > Ao, when 
the spectrum of the plasma oscillations arising from the 
pump wave is modulationally stable and the spectral 
transfer to small k  according to weak turbulence is im- 
portant, is more complicated to analyze In the present 
section we shall consider in detail the case of an iso- 
thermal plasma, T, = T i ,  when sound waves are  strongly 
damped. In that case the production of plasma oscilla- 
tions from the pump wave is connected with the process 
of induced scattering by ions. The characteristic growth 
rate of such a process ist'O1 

As usual in weak turbulence, the build-up of plasma 0s- 
cillations in the region in resonance with the pump 6 k  
= x ~ ~ ( ~ / M ) " '  proceeds to a level comparable with it 

The scattering of the plasma oscillations by ions leads 
to a spectral transfer to the region of small wavenum- 
bers. In each scattering process the plasmon wavenum- 
ber is changed by an amount 6 k .  The energy of theplas- 
ma oscillations in the region bk is of the order ~ : / 8 n  
so that the induced scattering leads to an approximately 
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veff Eo' Eo' < W c a v ~ - - - - -  
~ m o a 8 n  8n 

FIG. 6. Spectral transfer of plasma oscillations in the long- 
wavelength region according to weak turbulence and occurrence 
of the modulational instability (MI) a t  large "mismatches" 
A> Ao. 

uniform distribution of the plasmon energy over the 
spectrum with a spectral density (Fig. 6) 

Eo' M '19 

W ~ * ~ L ~ ( , )  . 

If the total width of the spectrum is large compared to 
6k, its evolution is with rather good accuracy described 
by the equation for differential transferc ''I: 

aw, is wk awk 
-$2.4---. 

at 276n n,MvT.hDS ak 

If one takes (5.1) into account, it turns out that the 
fluxof plasmonenergy into the small k region, described 
by Eq. (5.2), is equal to yiE;/8n.  This flux reaches 
the long-wavelength region where the modulational in- 
stability is important and is there dissipated in collaps- 
ing cavitons. It is clear that the quantity veff which de- 
termines the rate of dissipation of the pump wave en- 
ergy in this  case turns out to be equal to y,: 

The characteristic k for the long-wavelength region of 
the spectrum where the modulational instability arises 
are determined from the instability condition (see (3.7)): 

The energy of the long-wavelength plasma oscillations 
Wo is then, as  before, connected with E$ through Eq. 
(3.11) with a = 1. The total energy of the plasma waves 
is appreciably larger: 

The fact that the ratio w,,/w,, is small explains the 
jump in veff when one changes from the small mismatch 
regime to the large mismatch regime (Fig. 7). If A 
< A o  a free development of the modulational instability is 
possible and W,, = W .  If A > A, only a small part of the 
energy of the long-wavelength plasmons goes into the 
cavitons. The magnitude of v.,,, which is proportional 
to the energy W,, in the cavitons, then discontinuously 
reduces to the growth rate of the parametric instability 
Y,. The equality of v,,, and y, is usual for weak turbu- 
lence and the jump in v,,, when one goes over to the large 
mismatch regime where the long-wavelength transfer 
according to weak turbulence is important is given by 
the relation 

We show in Fig. 7 the "effective collision frequency " as 
function of the energy of a pump with a frequency which 
differs from the plasma frequency. The number 1 in- 
dicates the region of large pump amplitudes (small mis- 
matches) when the plasmon spectrum in resonance with 
the pump turns out to be modulationally unstable, and 
the number 2 the region of small pump amplitudes (large 
mismatches) when the dynamics of the plasma turbu- 
lence is in two stages-a long-wavelength transfer to the 
modulational instability region due to scattering by ions 
and a subsequent transfer of energy by collapsing cav- 
itons to the absorption region. 

In a non-isothermal plasma, T, >> Ti ,  for large mis- 
matches, A > A ,  the production of plasma oscillations 
from the pump wave is caused by decay of the pump in-' 
to a Langmuir wave and sound. The energy flow along 
the spectrum to small k is in that case connected with a 
stagewise transfer during the decay of Langmuir waves 
and ceases, a s  before, on reaching the long-wavelength 
region where the modulational instability is important. 
As a whole, the picture of the evolution of the spectrum 
is to a considerable extent analogous to that expounded 
above for the case of an isothermal plasma with the only 
difference that now the quantity v,,, is the same as the 
growth rate of the decay process 

EQL M - sn m A)" 

Owing to the large magnitude of the growth rate of the 
modulational instability the oscillations in the long- 
wavelength region of the spectrum remain all the time 
at the threshold of instability. The energy of the plas- 
mons going to short length scales in the collapsing cav- 
itons can be estimated from the balance equation: 

FIG. 7. Effective collision frequency in the case when the fre- 
quency "mismatch" of the pumping frequency is larger than 
the plasma frequency: A> m/M. 
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For the energy of the plasma oscillations in the long- 
wavelength region of the modulational instability Wo we 
have again Eq. (3.11) with a = 1. In the large mismatch 
regime the energy of the oscillations going over into the 
cavitons is small compared to Wo: 

and, a s  before the jump in vet, when we change to the 
large mismatch regime is connected with this. 

The basic distinguishing feature of the case considered 
is that the long-wavelength sound produced in the decay 
of the Langmuir waves must lead to a randomization of 
the phases of the plasmons scattered by it and, hence, 
to the occurrence of an additional dissipation mechanism 
characterized by an effective frequency 

In the stationary state we have v:,,- v,,, by analogy with 
the problem of the conversion considered in the pre- 
ceding section. Indeed, for large levels of long-wave- 
length sound, when vef,< v:,, the dissipation mechanism 
connected with the stagewise transfer during the decay 
of Langmuir waves must cease, as it is impossible since 
just in such a transfer sound is generated. Both dissi- 
pation channels give therefore in the case considered 
approximately the same contribution to the effective col- 
lision frequency which is given by Eq. (5.6). 

"one-dimensional Langmuir turbulence has specific peculiari- 
ties connected with the absence of collapse and is the subject 
of a separate discussion. 

"A more exact definition ofthe limits of the absorption region 
will be given at  the end of the present section. 

3 ) ~ n e  should bear in mind that the formula for the non-linear fre- 
quency shift was given for the case of an isotropic spectrum 
which is the most favorable one in the sense of the occurrence 
of electron non-linearities. In the one-dimensional case 
such a correction is totally absent. Numberical simula- 
tion of the collapse processc51 shows that a dipole caviton 
formed in the collapse is strongly anisotropic: O2 - 1/10. 
The plasman spectrum in such a caviton is nearly one- 
dimensional and a small factor - e2 appears in the formu- 
la for the non-linear correction to the frequency (see 
Ref. 7). In that case the threshold for the occurrence of 
an electron non-linearity increases substantially is com- 
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