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It is shown that when energy is measured in an electromagnetic resonator by determining the 
ponderomotive force, high sensitivity can be attained without greatly disturbing the value of the energy. 
An energy-measurement procedure and conditions under which the measurement error is less than one 
quantum are described. 
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In connection with the problem of raising the sensitiv- 
ity i n  a number of physical experiments, a need arose 
for developing methods of measuring the energy of the 
electromagnetic field in microwave resonators with a 
minimum possible energy-measurement error  and with 
a minimum perturbation introduced by the measure- 
ment. It is well known that an oscillator can be in 
a state with a given energy, and quantum theory pre- 
supposes the existence of a measurement method such 
that the energy is not perturbed in the course of the mea- 
surement. So far, however, there are no known real- 
izations of such a method. 

The general principle of constructing a non-perturbing 
meter is knownCgLthe Hamiltonian of the interaction of 
a quantum system with the measuring instrument must 
be diagonal in the same representation as  the measured 
quantity. If the Hamiltonian of the interaction of an 
electromagnetic resonator with the measuring device is 
not purely diagonal in the energy representation, then 
the energy perturbation will be less the smaller therela- 
tive value of the off-diagonal terms and the farther their 
frequency spectrum (if they oscillate) from the resonator 
frequency. The purpose of the present article is to show 
that a method wherein energy is measured in an electro- 
magnetic resonator by using the ponderomotive interac- 
tion with a mechanical oscillator can be a weakly per- 
turbing one. 

Let us examine the scheme of such an experiment (see 
Fig. 1). One of the capacitor plates (with mass m) to- 
gether with a spring of stiffness k = md, make up a me- 
chanical oscillator. The ponderomotive force F of the 
attraction of the capacitor plates changes the equilibrium 
position of the plate and causes it to oscillate. The dis- 
placement of the equilibrium position is proportional to 
the energy in the resonator I= q2/2c, where q is the 
electric charge on the plate. The Hamiltonian of the in- 
teraction of the electric field with the mechanical sys-  
tem is of the form 

where q is the instantaneous value of the charge, x is 
the displacement of the plate, and C, and d are the initial 
capacity and the distance between the plate. If x/d << 1, 
then q = qo coswet and 
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where bo = q0/2Co. The first term in (1') is diagonal in 
the energy representation, and the second is off-diago- 
nal. At w,,, <c w, however, and at an interaction time t 
>> l/w,, the spectrum of the second term has no resonant 
terms. The motion of the analyzed system at small x/d 
can be approximately described a s  follows: the operator 
of the plate coordinate is equal to 

and the operator of the resonator energy is 

We have left'out of (2) the term 

since its effect on the interaction between the electric 
and mechanical systems is negligibly small at w ~ / w ,  
<< 1. The frequency wk of the mechanical oscillations 
depends on the measured value of go, and if the reso- 
nator is in a state with given energy (.go= (n+ $)Ewe), then 

The uncertainty in the quantity J after the measurement 
is determined according to (2) by the error  Axo in the 
measurement of the value of x( t )  = xo averaged over the 
period, and according to (3) also by the perturbation of 
the energy on account of the uncertainty of the position 

FIG. 1.  
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of the plate (Ax) after the measurement chanical oscillator. At a finite value i*, = ~ Q ~ / W ,  (where 
Qm is the quality factor of the oscillator), the additional 

WJ',.,)=(2kd)'<6z~'>, (Aa;,) = < 8 0 z ) { ( ~ z / 2 d ) z > .  (5) error (~8,,,)2, at nTm >> .>tiurn will be 

We assume next tha t  the time consumed in the measure- (Aame,)rm = 4 d ( x   lie^)''^ , (10) 
ment is much shorter than the time 7*, of the relaxation 
of the mechanical oscillations. In this case a decrease where Tm is the temperature of the mechanical oscillator 
of 6x0 is accompanied by an increase of Ax. and ? is the time of measurement of the value of xo. In 

The limit of the measurement accuracy is determined 
by the Heisenberg uncertainty relation for the coordinate 
and momentum of the mechanical system and does not 
depend on the measurement procedure. This limit can 
be easily obtained by considering one of the measure- 
ment methods. If the period of the mechanical oscilla- 
tions were exactly lmown, then the value of xo could be 
determined with zero error  by measuring x twice at 
times separated by half the period. However, wk de- 
pends on the unknown quantity Zo (see (4)). Therefore 
the error in the determination of the period leads to an 
error  in the measurement of Wn. If the first measure- - 

merit of x is made with accuracy 6 q ,  then the momen- 
tum perturbation is ~p=ii(26x~)". At the optimal 6x1 
= (aw,~8~'~)/4kd,. the value of AC,, is 

The coordinate uncertainty corresponding to Ap is Ax 
=Ap/mw, and leads according to (5) to a resonator-en- 
ergy uncertainty 

An analysis of other measurement methods for an in- 
finitely large value of i*, leads to values of Aa,,, and 
A 3,, that differ from those obtained only by numerical 
factors close to unity. 

The oscillations of aplate with random amplitude and 
phase introduce an uncertainty in the value of the phase 
of the field oscillations in the resonator. It is easy to 
show that the standard deviation of the phase during the 
measurement time is Aq = ~ ( ~ , / w , ~ n ) ~ ' ~  for large n, and 
accordingly 

The sensitivity of a realistic measurement system 
will depend also on the thermal fluctuations in the de- 
vice that registers x. If we use a capacitive pickup for 
this purpose (shown dashed in the figure), then we can 
turn on a pump signal for short intervals, twice during 
each half-period of the mechanical oscillations. At 
optimal pumping (seec4]) the error  AZ,,, turns out to 
be 

where T, is the temperature of the pickup circuit, w, is 
the natural frequency of the pickup circuit, and n is 
Boltzmann's constant. 

We have assumed so far that ;"*, is long enough, so 
that thermal fluctuations could be neglected in the me- 

a practical realization of such a measurement scheme, 
the principal restriction on the sensitivity will be due to 
thermal fluctuations in the mechanical oscillator. In- 
deed, if ~u,/w, = 1 X 10-lo, then even at xT, = lo4RwD the 
thermal fluctuations in the coordinate-recording device 
limit the sensitivity to a level A gm,, - 1 x lO"(n + $)'Ie 
XEw, (see the condition (9)). At the same time, even at 
Tm=2 K, m = 1 ~ 1 0 ' ~  g, w,=l  rad/sec, ? = 3  sec, d = l  
x 10'' cm and at Q, = 5x 10' (such values of Q have al- 
ready been attainedc5'), we have (A 8m,,)T, z 6 x 10"' 
erg. At these data we have (Abm,,)Tm < Rw, only at we 
> 6x 10" rad/sec. 

Summarizing the foregoing, we emphasize that the 
considered method makes it possible in principal to reg- 
ister with practically no perturbation a one-quantum 
change in the resonator energy. 

In conclusion, let us consider another method of mea- 
suring the resonator energy. A scheme for energy mea- 
surement with the aid of an electron probe was consid- 
ered ints1. In this method, the interaction energy is pro- 
portional to the instantaneous value of the charge q on 
the resonator plates. An analysis of the simplest mea- 
surement schemes for t h i s  type of interaction has shown 
that the smallest error  is At,,, = n1I2tiwe. In a scheme 
with a two passes of the electrons, the calculations inCs1 
yielded a much smaller error.  Possible causes were 
considered in the estimate of the perturbation of the res- 
onator energy, including diffraction by the receiving 
electrodes. However, in the analysis of this last effect 
account was taken of only the change of the law govern- 
ing the electron distribution in the second pass. A more 
detailed analysis has shown that this is not enough, since 
a correlation exists between the initial coordinate of the 
electron and the perturbation of the coordinate due to the 
diffraction by the receiving electrodes. The resultant 
compensation of the resonator-energy perturbation with 
allowance for this correlation turned out to be such a s  
to make the measurement error  also equal to n112Ew,. 
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