
Using (7), we have for systems with T<< T2 

where 

The maximum radiation intensity is 

where the first and second terms describe the intensity 
of the incoherent and coherent spontaneous decay, re- 
spectively. The intensity (9) is reached at the instantof 
time 

The coherence for the existence of a coherent compo- 
nent is 

Thus, for natural-width lines the conditions for the on- 
set of coherence decay become twice a s  stringent. 

Let r T 1 z l  and k,L=2(l+c), where &<<I, then 

where I,, is the intensity of the coherent component of 
the radiation. Since Ti = 27, it follows that in such sys- 
tems the intensity of the coherent component will be 

smaller than the integrated intensity of the spontaneous 
decay. Consequently, in needle-shaped crystals, spikes 
of directed coherent radiations will appear against the 
background of the incoherent spontaneous emission, with 
an intensity comparable with the intensity of the latter. 

Thus, the relative narrowness of the Mossbauer tran- 
sition lines, in conjunction with the large values of the 
photoabsorption cross sections for y quanta in the MBss- 
bauer energy region causes the entire volume of the 
sample in which population inversion was produced will 
radiate like a single quantum-mechanical ensemble of 
emitters. The conditions for the onset of this collective 
emission coincides in form with the conditions for the 
amplification with the aid of stimulated emission, which 
were discussed earlier in connection with the y-laser 
problem. Consequently, the problem of attaining ampli- 
fication in the y band, posed above, a s  well a s  the meth- 
ods for its solution, remains as  important a s  ever. 
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Propagation of photons in a magnetic field 
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A radiative correction to the polarization operator of a photon in a strong magnetic field is obtained which 
corresponds to the contribution of the "mass" and the "vertex" diagrams. Arguments are given in support 
of the contention that the expansion parameter for the polarization operator for (q 2(< m is the 
quantity aln2(~/Bo),  with B, = m '/e = 4.41 X 10" G. 

PACS numbers: 12.20.D~ 

Possible astrophysical applications have stimulated If one has in mind purely magnetic fields (say, of the 
in recent times the appearance of different approximate order of B,= m2/e= 4.41 x 10" G), then in making calcu- 
methods of calculating electrodynamical processes in lations of vacuum diagrams with external photon lines 
strong magnetic fields. One of the most popular ones this approximation is  correct in the domain of highpho- 
is the crossed field approximation the idea of which is ton energies w >> m (w is the electron mass). In invari- 
due to Ritus and Nikishov. ''I ant form of recording this means that the parameters 
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FIG. 1. 

F,,Fv and F&J"v must be small compared to (Fu,q")2/ 
m2 (F*,, is a dual tensor, q is the four-momentum of 
the photon). The two-dimensional approximation of 
quantum electrodynamics proposed by usc2.s1 is in a cer- 
tain sense complementary to the crossed field method. 
Its idea i s  based on the fact that in fields B>> Bo and for 
sufficiently small momenta of the external lines of the 
diagram (d << I eBI ) the phase space of vacuum elec- 
trons degenerates into a two-dimensional space since 
their transverse degrees of freedom are suppressed. 
In invariant formulation the conditions for the applicabil- 
ity of the method in the case of loop diagrams can be 
written in the form 

F,,JMvB 1 Fvv'pv 1 , B:, 

(e' (Fv,.Fn") ) ",B 1 q1 1 ,  (FuyqV) '1 (FwYV). 

From this it can be seen that in the case of a magnetic 
field with magnetic induction B>> Bo and in the range of 
photon energy m << w<< e B  both methods are  applicable 
and give identical results. [" For values w 5 m in the 
case B >> Bo only the two-dimensional approximation i s  
applicable. In a recent paper by Morozov and 
~ a r o z h n ~ ~ [ ' ~  a radiative correction to the polarization 
operator for the photon in a crossed field was obtained 
with the authors having considered only the contribution 
of the mass diagram a (see Fig. 1). On the basis of 
physical considerations concerning the smallness of ex- 
change effects in a strong field and for high photon en- 
ergies the authors do not take into account the contribu- 
tion of Fig. lb  to the polarization operator, however, 
mentioning the fact that only the contribution of both dia- 
grams is gauge-invariant. 

In the present note we calculate the gauge-invariant 
contribution of both diagrams in the two-dimensional 
approximation and, in particular, we investigate in de- 
tail the case q2(= q ;  - q:) << m2 where the crossed field 
approximation is inapplicable. Concrete calculations 
have shown that in this case in the formal limit B- .o 

the contribution of Fig. l a  differs from the contribution 
of Fig. l b  by the factor l n (~ /B~) /3 ,  so that in fact over 
a large range of fields the contribution of both diagrams 
is quite comparable. Further we have shown that the 
parameter for the expansion of the polarization operator 
into a perturbation theory series is the quantity aln2(B/ 
B,) (for l q2 1 << m2). Thus, the series diverges in the 
case of fields B- 1017'18 G. 

Using Feynman rules for constructing matrix elements 
in the two-dimensional approximationcs1 we can obtain 
the following expressions for the contributions of Figs. 
l a  and lb  to the polarization tensor of the photon: 

where all the scalar products a re  two-dimensional (0,3), 
y= I eBI ,8= B/B,,, and the tensor differs from zero for 
p, v = 0,3. In order to prove gradient invariance we note 
that 

The second term disappears, and the first after obvious 
transformations is equal to the negative of the contrac- 
tion 1Ib; q". In virtue of this the tensor has the form 

so that the polarization operator is given by 

Evaluation of the integrals over d2p and d2k and a 
further analysis of the formulas can be more convenient- 
ly carried out by going over to the a-representation for 
the propagators: 

as a result of which the contractions I:" and IY)' can 
be represented in the form 

2 [a, (i+a,+a') +a2a.l [ai+a2+a~+a~a~l 
{~s+'T (a,+a,+a,) (~+a,+a.) -azz 

-2 

I 
(5) 

We note that for q 2 2  4 the quantities  IF*^)", as ex- 
pected, acquire an imaginary part, since A and C vanish 
within the region of integration. Expressions (4) and 
(5) must be "regularized": 

although they contain no divergences corresponding to 
large virtual momenta. Both expressions also do not 
contain an infra-red divergence and do not depend on 
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the photon mass, but this circumstance requires expla- 
nation. The contribution of the diagram of Fig. l b  does 
not contain the photon mass in the principal order in the 
field g, while concerning the contribution of the dia- 
gram of Fig. l a  one can only assert that the photonmass 
does not appear in the leading and in the next order in 
powers of ln2. This is explained by the fact that in the 
integral over d2p in (lc) for x - the contribution I p21 - y is also contained, and this does not correspond to the 
condition of applicability of the "two-dimensional" rep- 
resentation of the electron Green's function. [2's' But 
the corresponding contributions are of a logarithmic 
character, and formula (lc) in any case correctly gives 
the leading and the next highest power of lng. 

For a more detailed analysis we consider the case 
I q7 << 1 (no limitations are  imposed in this case on the 
value of the transverse momentum). If we expand (4) 
in a series in terms of q2 and take only the "regularized" 
part linear in G2, then it can be easily noted that the 
integral over as can be factorized by means of a re- 
placement a, - a , / ( l+  as) (i = 1,2), after which the 
integral over a2can  be evaluated in an elementary man- 
ner. As a result of this we obtain 

In the principal order in 8 the main term is the first 
term (7). The corresponding contribution to the polar- 
ization operator can be transformed to the form 

It is not possible to carry out the integration in (8) ex- 
actly, but we can pick out the principal power of lnB. 
For 8- .o the integral of the first term tends to a con- 
stant, while in the second term the argument of theloga- 
rithm can be replaced by x, after which the integral is 
available from tables. This yields 

The quadratic dependence on lng of the contribution of 
the "mass" diagram is quite natural, since the self-en- 
ergy correction to the electron mass in a strong mag- 
netic field is also proportional to lneg. 's' 

In a similar manner, it is possible to separate out the 

term linear in g2 in formula (5) with the integrals over 
a, and a, becoming factorized with the aid of the change 
of variables introduced above. In the principal order in 
fi  the result has the form 

For &- .o we obtain 

i. e., in this limit the contribution of the "vertex" dia- 
gram is smaller than the contribution of the "mass" 
diagram by factor of 1&, with the contributions being 
of opposite sign, and for l?= 20 approximately cancelling 
each other. We could have expected the appearance of 
the first power of lnB in (11) since the vertex function 
in the two-dimensional approximation is also propor- 
tional to 1nB. C31 

It i s  well known that the contribution of a simple loop 
in the approximation under consideration i s  proportional 
to the first power of the field, i. e., in the next order 
of perturbation theory in terms of a! there appears an 
additional factor 01x1~8. This enables us to suppose 
that the expansion parameter for the polarization op- 
erator for I q 21 << 1 i s  indeed ln28 from which one ob- 
tains the aforementioned limitation on the magnitude of 
the field. 

The author considers it  his pleasant duty to thank V. 
I. Ritus for a number of explanations he has provided 
on the subject under consideration. 
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