
i%e note that in the presence of a mismatch (A * 0) it  is im- 
possible to obtain equations in closed form for the intensities 
I and Il ( ~ f . " ~ ' ) .  

 hi: phenomenon was apparently first pointed out by Ostrov- 
skii , [I8' who analyzed it qualitatively. 
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Resonance excitation of light and dynamic electro-optical 
effects 
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An analysis is reported of the propagation of a weak plane light wave in a gas placed in strong constant 
and uniform alternating external electric fields. The frequency of the latter is in the radio band and the 
frequency of the incident light wave is close to the frequency of one of the allowed transitions in the gas 
molecules. The time modulation of the molecular transition frequency due to the Stark effect in the 
external electric field is taken into account. The degree of modulation and the mean intensity of the light 
wave transmitted through the medium under consideration are investigated as functions of the amplitude of 
the external alternating field, the constant external field, and the frequency of the incident light wave. A 
number of features of this functional dependence is noted. The possibility of observing these effects in a 
gas of molecules of the symmetric spinning-top type is discussed. Possible applications of these effects are 
examined. 

PACS numbers: 51.70.+f, 33.55. +c 

1. INTRODUCTION 

Modulation of electromagnetic waves can be produced 
in media in which the refractive index is a function of 
the electric field. This type of modulation of lightwaves 
by an external electric radio-frequency field has been 
observed in  dielectric^^"^' and has subsequently found 
application in lasers  where it is used for mode lock- 
ing. C 5 - 7 1  The modulation is also possible in the elec- 

tron plasma of semiconductors and in gas plasma in an 
external magnetic field with an rf component modulating 
the cyclotron frequency. [8-131 The modulation of waves 
by an external electric low-frequency rf field in gas 
plasma, due to the modulation by this field of the elec- 
tron mean free time, has been discussed by Kumar et 
al . ,  [14] and that due to the hydrodynamic modulation of 
the plasma density by this field has been d i scus~ed~by  
Kumar et al., Aliev and Silin, and Ostrovskii and 
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Stepanov. 'lBI Appreciable progress has also recently 
been achieved in the description of the modulation of 
light waves by acoustic waves in condensed dielectrics 
in the region in which they a re  transparent. C17-201 

In a previous paper, '211 we examined the modulation 
of light in dielectrics by an external uniform electric rf 
field, with the transition frequency in the medium modu- 
lated by the linear Stark effect. A matrix approachwas 
adopted in the theory in which an initial determination 
was made of the light eigenwaves in the medium, and the 
solution of the subsequent boundary-value problem was 
then reduced to the expansion of the light field given on 
the boundary in terms of the eigenwaves. (This approach 
was proposed by the present authorCg1 and has been used 
by him~lo?'2,13s21 I in the solution of a number of problems. 

An approach to the theory of modulation of light by the 
periodically inhomogeneous field of an acoustic wave 
based on a similar procedure was proposed and used by 
Singer and ~amir -~erman '" ]  and by Chu and ~ a m i r . ' ' ~ ' ~ ~ 3  
It was shown in a previous papercn1 that the nature of 
the modulation of the light wave in the medium wasqual- 
itatively different, depending on the density of the parti- 
cles participating in the particular transition or, more 
specifically, on the ratio of the wavelength of the modu- 
lating field to the characteristic resonant absorption 
length for the light wave in the medium in the absence 
of modulation. In particular, it was predicted that, when 
this parameter was small, there would be an oscillation 
in the intensity of light transmitted by a layer of the me- 
dium under consideration, depending on the amplitude of 
the radio-field oscillations (the wave modulation being 
weak). When this parameter was large, i. e., for a rela-. 
tively high density of particles, the analysis given pre- 
v i o ~ s l y ' " ~ ~ ~ ~  was restricted to the case of nondegenerate 
states for a homogeneously broadened transition line. 
Moreover, the medium was assumed to be spatially 
homogeneous. In this paper, we generalize the theory 
to the case of degenerate states, inhomogeneously 
broadened transition lines, two external electric fields 
(one constant and one alternating), and a medium that is 
spatially inhomogeneous in the longitudinal direction. 
Attention is drawn to a number of new effects that may 
be of practical interest. Results obtained by this gen- 
eral  analysis are  then applied to a gas of molecules of 
the symmetric spinning-top type. 

2. BASIC RELATIONSHIPS 

Consider the propagation of a weak light wave in a 
medium exposed to a strong homogeneous rf field of fre- 
quency p. If this wave is excited by a monochromatic 
source of frequency w ,  then, in general, its electric 
field can be written in the form 

The linear polarization response in the medium, in- 
duced by the field (I), has the same form, namely, 

where 

The infinite dimensional matrix $'mn' can be regarded 
as the generalized susceptibility of the medium. We 
shall be concerned below with a plane linearly polarized 
(say, along the x axis) wave propagating in the direction 
of the z axis, assuming that each of the matrix elements 
%(~II) is a scalar, which is valid provided the medium is 

isotropic and the rf field polarized along the same x 
axis. We shall also suppose, at  the beginning, that the 
medium is homogeneous [a""' = x'""' (w)].  When this is 
so, the Maxwell equations and (1)-(3) can be written in 
the form 

where E is the column matrix with elements En, the 
components of the vectors En along the x axis (- - < n 
< -), and 

Let S be a transformation that diagonalizes the matrix 
Q, i. e., the matrix A = S-'QS is diagonal ((A), =A&,). 
The general solution of (4) can then be written in the 
form 

where C,, C2 are arbitrary constants. In the usual rep- 
resentation, Eq. (5) has the form 

where 

and C,, are arbitrary constants (a = 1, 2) and e2 = ReE is 
the component of the electric field vector of the light 
wave along the x axis. According to (6), a plane wave 
in the above medium will, in general, be a superposition 
of an infinite number of eigenwaves determined by func- 
tions of t and z with constants C a t .  In contrast to the 
case of a stationary medium, it is clear that these waves 
will contain factors p, (t) that are  periodic functions of 
time. Their period is determined by the period of the 
variation in the external modulating field. The sum in 
(6) describes a plane wave propagating in the z direction 
for a!= 1. 

Suppose now that the medium under consideration oc- 
cupies the half-space z 3 0 and a plane monochromatic 
wave is incident normally on the boundary z = 0. In gen- 
eral, the wave may be reflected by the boundary and this 
may be accompanied by appreciable transformation into 
components with new frequencies w + np (n # 0). The 
general approach to the solution of this problem and the 
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conditions for the effective transformation of enerw in- nondiagonal elements of the density matrix. -- - 
to these components have been f~ rmu la t ed~ '~ '  for the If the transition line is inhomogeneously broadened 
case of an electron plasma in an external modulating and the energy levels are degenerate, then (9) nus t  in- 
magnetic field. However, in the situations that we shall 

clude additional summation over w, and the complete or  
discuss below, the transformation accompanying reflec- 

partial removal of degeneracy by the Stark effect must tion will be relatively weak. The field e, on the z = 0 
boundary can therefore be specified to be monochromatic. be taken into account. Confining our attention to the 

Using (5) and (6), we can then write the wave field for resonance case w- wba, and omitting the nonresonance 

z s  0 in the form term in (Q), we obtain 

or, using (7), 

Equation (8a) is an expansion of the field in the eigen- 
waves in the medium, and the expression given by (8b) 
is an expansion over the monochromatic components. 
It i s  clear from (8b) that the propagation of the wave in 
the above medium is  accompanied by the appearance of 
components with the new frequencies o + np, i. e, , the 
original wave becomes modulated. This modulation be- 
comes appreciable for values of z for which there i s  an 
appreciable dependence of the qll on I .  Expressions of 
the form given by (8) are  valid for any dielectric in a 
uniform field modulated periodically in time. 

Let us begin by considering the case where the sus- 
ceptibility x '*"' (w) is due to the influence of two nonde- 
generate energy states of the medium, i. e., we shall 
consider the susceptibility of a set of two-level parti- 
cles subjected to a strong modulating electric field el 
=elocospt (parallel to the x axis) and a weak light field 
e,. We shall also suppose that the diagonal matrix ele- 
ments d,,, dbb of the projection of the dipole-moment op- 
erator along the x axis are not zero and not equal to each 
other. If the transition line between the state under con- 
sideration i s  homogeneously broadened, then, provided 

(dab is a nondiagonal matrix element of the operator 
representing the projection of the dipole moment along 
the x axis, w,, = (E, - Ea)/Fi i s  the frequency of the 
transition under consideration), the main influence of 
the field el on the susceptibility of the medium to the 
field ez is due to the modulation of the transition fre- 
quency by the linear Stark effectczz1 so that the expres- 
sion for x""'(w) can be written in the form[2112S'241 

],-,,,(A) Is-" (A) + Jm-a (A)  In-.(A) 1 I: ( o - a h + s p + i / ~ r  w+ol+sp+i/rr ' 

where n o  is the susceptibility of the material but is un- 
related to the particular transition, J,(A) is the Bessel 
function, N is the density of particles executing the given 
transition, Ap = pbb - paa is the population difference be- 
tween the corresponding energy levels, A = (dbb - daa)eld 
Ep, elo is the component of the vector elo along the x 
axis, and TL is the characteristic relaxation time of the 

Id I Z  
x ' ~ " )  ( a )  =xo6,,,+N ~ ~ I . - , , ( A , , )  I , - , (AJ  ~ , ( a + s p ) ,  (10) 

where 

in which the sum over is connected with the degener- 
acy [A, = (djt)  - d',t')/Fip]. This analysis includes the 
case where, in addition to the alternating external field 
el, a constant external electric field eo, parallel to the 
x axis, is also applied to the medium. In the latter 
case, the functions U, (Sl) describe the profiles of the 
inhomogeneously broadened components of the Stark- 
split (in eo) transition line: U, (a) = U(a- 60,). For the 
linear Stark effect, 6w, cr eo. The total width of the 
corresponding profile U, (Sl) will, in general, be denoted 
by 

The problem i s  thus to diagonalize the matrix Q with 
allowance for (10). It has been showncp1 that the char- 
acter of the solutions corresponding to Eq. (4) i s  differ- 
ent, depending on the parameter 

(we have in mind here the maximum value in n for n # 0, 
and the quantity co = 1 +4 rx ,  i s  assumed to be indepen- 
dent of w). For small values of this parameter, the 
corresponding solution was given in our previous pa- 
perc211 (the solution of a similar problem for electron 
plasma in a uniform external magnetic field H = Ho - H1 
x cospt, the alternating component of which produces a 
time modulation of the frequency of cyclotron resonance, 
was obtained in another previous paperclS1). For such 
values of y, the above solution remains valid even in the 
case of the degenerate states that we are  considering 
and for an inhomogeneously broadened transition line: 

where 

We note that, according to (13), the modulation of the 
light wave transmitted by the layer of the medium under 
consideration is, in general, directly determined by the 
matrix H ' ~ " )  (w), SO that measurements of this modula- 
tion can be used a s  a means of determining the suscepti- 
bility matrix. Measurements of the modulation for 
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small values of y can therefore be used to carry out a 
more complete investigation of transitions in the medium 
as compared with currently used methods. We also note 
that measurements of this modulation provide us with a 
spectroscopy of transition lines at very low concentra- 
tion of the particles in which the transitions take place. 

3. SOLUTION OF THE PROBLEM FOR LARGE 
VALUES OF y 

We must now consider the case of large y. This case 
can easily be reached in practice because the frequency 
p of the rf field is smaller by several orders of magni- 
tude than the frequency of the light wave. We shall con- 
sider z << c / p  and, correspondingly, we shall set P= k 
in (4). The matrix Q then takes the form 

i. e., the problem reduces to the diagonalization of the 
matrix T. Next, we suppose that the distance up to the 
frequencies of the Stark components neighboring a par- 
ticular component p = 6, i. e. , the interval I 6 u,- - 6 w, 1 , 
exceeds the corresponding interval I PA,-l of the modula- 
tion of the component 6wj by the field el: 

Under these conditions, when the frequency w of the in- 
cident light wave satisfies the condition 

where w::' is the center of the transition line under con- 
sideration in the absence of external fields e, and el, the 
expression given by (10) must contain only the resonance 
term corresponding to j~ = P: 

Id 1% xcmn) (o) -- xo8,, + N x~ J , ,  (A) J.,(A) U (o + sp - 604. (18) 
I 

For simplicity, we have omitted the subscript il on dab 
and A. 

It may easily be verified that the transformation S, 
that diagonalizes the matrix (18), and the inverse trans- 
formation S1, are such that 

(S),I=(S-l>I.=h-. ( A ) .  (19) 

Under these conditions, the matrix A = S'QS is diagonal 
(A,=A,b,,) and the elements A, have the form 

Equations (7), (8), (19), and (20) form the solution of the 
above problem for y >> 1 provided (16) and (17) are satis- 
fied. Using (7) and (19), we can write the expressions 
for the time-dependent components of the characteristic 
waves in the medium in the form 

cpr( t )  --exp(-ilptfiA sin pt). (21) 

Moreover, for weak resonant ab60rption, 

2 n ~ l d ~ l ~ f i - ' e ~ ' ~ ( o ~ ' )  < I ,  (22) 

which is of the greatest interest in practice, the expres- 
sion for the coordinate components of the characteristic 
waves is 

q,, (z)  -exp(ike~zf hlz), (23) 

where 

It is clear from (23) and (24) that, for example, when 

p a ~ o t ,  (25) 
A X ,  (26) 

an appreciable dependence of qi, on I can be seen over a 
characteristic length 

z - Z, = [2nlt I dab la E-'E;''~N ~m u (WE i- 6~$)1-~, (27) 

which i s  also the characteristic length for resonant ab- 
sorption in the absence of the alternating external field 
el. According to (8b), this may be accompanied by ap- 
preciable modulation of the initially monochromatic light 
wave. 

4. DYNAMIC ELECTROOPTICAL EFFECTS 

Let us now consider in greater detail the solutions ob- 
tained for y >> 1. We suppose, to begin with, that the fre- 
quency w of the incident light wave is a resonance fre- 
quency with respect to the frequency of the correspond- 
ing Stark component of the transition line in the con- 
stant field e , ( ~ =  w::' + 6wp). We shall consider the mod- 
ulation of the wave intensity under conditions (25)-(27). 
This modulation can be easily examined by starting with 
(8a), (19), (21), and (23) where, in view of (25) and (27), 
we may substitute q,, = e x p ( i k ~ i / ~ z  + A a z )  and ql, 
=exp( ik~; /~z)  for I + 0. For a Doppler-broadened 
transition line at p z  1.25Awt, 0 .5 s  A,,z < 1.5, the ex- 
pression obtained in this way is accurate to within 
0.3%. The corresponding dependence of IE l 2  on t for 
z =0,94z, i s  shown by the solid curve in Fig. 1. It i s  
clear that several intensity pulsations are  present with- 
in each period 2n/p. 

It is interesting to compare this modulation picture 

FIG. 1. Relative intensity of transmitted light wave as a func- 
tion of time (solid curve). Broken curve shows the correspond- 
ing dependence predicted by the quasistatic expression. 

678 Sov. Phys. JETP 46(4), Oct. 1977 V. N. ~ u ~ o v d  



(V = 0, i 1, i 2, . . . , 1 vl  S 1 AI ). In this more general case, 
we have from (8a), (19), (21), and (23), using (25) and 
(27), 

FIG. 2. Relative modulation of the transmitted light wave as 
a function of the amplitude of the external alternating electric 
field: a-incident wave frequency w = w g )  + 6w;; b-incident 
light wave frequency w = w$'+ 6w;ip (p is  the frequency of the 
external electric field). Broken curves show the correspond- 
ing results predicted by the quasistatic expression. 

with the corresponding picture predicted by the well- 
known quasistatic expression 

E=E'O' e x p ~ i k e ; z + i h n ( t )  k z ] ,  (28) 

where 

is the instantaneous value of the complex refractive in- 
dex in the modulating field. The corresponding depen- 
dence of I El on t is shown in Fig. 1 by the broken 
curve. As can be seen, the dependence represented by 
the solid curve is very different from that shown by the 
broken curve. This difference is due to the dynamic 
effects which occur in the propagating wave under con- 
dition (25). 

Let us now consider the relative intensity modulation 

as  a function of A. This modulation is practically zero 
(q = 0) when A is any of the roots of the Bessel function 
J,(A), and is appreciable between the roots. The depen- 
dence of q on I Al for z = 0 . 3 6 ~ ~ ~  pa 1.25Au, is shown in 
Fig. 2a by the solid curve. For comparison, the broken 
curve in this figure shows the dependence predicted by 
the corresponding quasistatic approximation. As can be 
seen, the "dynamic" curve oscillates along the A axis, 
whereas the quasistatic curve gives a monotonic depen- 
dence. It is also clear that the minima on the solid 
curve are  very sharp, so that the positions of these min- 
ima can be determined with high precision. In the above 
example, the values of g at these minima do not exceed 
0.003. 

We note that similar dynamic effects can also be seen 
whenever the frequency w of the incident light wave dif- 
fers  from the resonance value by an integral number of 
frequencies of the modulating field: 

In particular, it follows from (30) that, when v f 0, the 
dependence of the modulation parameter q on A is also 
an oscillating function, and the minima of q are  deter- 
mined from the condition J,(A) = 0 and a re  again sharp. 
A s  an example, the solid curve in Fig. 2b shows as  a 
function of 1 Al under the exact relationship o = w::' + 6 Y 
ip (I v l  = 1) and z= 0.362, (the broken curve shows the 
quasistatic approximation). 

We now consider the average (over the period of the 
modulating field) relative intensity of the field oscilla- 
tions in the wave 

In other words, the quantity W is the transmission co- 
efficient (in fact, the intensity transmission coefficient) 
of the medium of thickness z for these particular waves. 
In general, we have from (8a), (19), (21), and (23) 

In particular, under the conditions given by (25), (26), 
(27), and (29), we have approximately 

It is clear from this expression that W is also an OS- 

cillating function of A, the maxima of which are  deter- 
mined by the roots of the equation J,(A) = 0. Thus, the 
maxima of the mean intensity of the transmitted wave 
correspond to minima on its modulation depth. 

Figure 3a shows W a s  a function of I AI for z =z, and 

FIG. 3. Intensity absorption coefficient for the light wave 
as a function of the amplitude of the external alternating elec- 
tric field: a-incident wave frequency w = w g ' t  6w;; b-incident 
light wave frequency w = w t '  + 6w; ip. Broken curves are pre- 
dicted by the quasistatic expression. 
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FIG. 4. Relative intensity modulation in the transmitted light 
wave as a function of the frequency difference (Aw = w - w g )  
- 6w;) between the incident light wave and the corresponding 
Stark component of the transition line in an external constant 
electric field. Broken curve corresponds to the quasistatic 
expression. 

exactly satisfies the relation q = 4:' + 6 W. The broken 
line in this figure shows, for comparison, the corre- 
sponding dependence obtained in the quasistatic approxi- 
mation. Similar results for w= w:, + 6w,- *p, z = z, are  
shown in Fig. 3b. As can be seen, the broken curves 
are not oscillating functions. Thus, the oscillations in 
W as  a function of A (solid curves) are  also a dynamic 
effect. 

Finally, consider q and W a s  functions of the frequency 
w of the incident wave (or the frequency of the Stark 
component 6 wF) for fixed A, i. e., for a fixed amplitude 
and frequency of the modulating field. It is readily seen 
from (30) and (32) that, when (25)-(27) are  satisfied, 
this dependence i s  again an oscillating function and the 
maxima of q and the minima of W correspond to (29). 
The corresponding dependence of 7 and W on A w  = u - - w(o) ,, -&,- for I A l  =3,p=2.5Aut, andz=z , i s  shown 
in Figs. 4 and 5, respectively, by the solid curves. The 
dashed curves show the corresponding results based on 
the quasistatic expression. Since the dashed curves are  
not oscillatory, it is clear that the oscillations in q, W 
a s  functions of w (solid curves) constitute another dy- 
namic electrooptical effect. We also note that themin- 
ima in and the maxima in W correspond to 

( I  = 0, * 1, * 2, . . . ), and, moreover, the magnitude of p 
at the minima does not exceed 0.01 in the above example, 
whereas the magnitude of W at the maxima is close to 
unity and does not differ from it by more than 0.001. It 
is also interesting to note that appreciable wave intensity 

FIG. 5. Light wave intensity transmission coefficient as  a 
function of the difference (Aw = w - WE) - 6w;j between the fre- 
quencies of the incident light wave and the corresponding Stark 
component of the transition line in a constant external electric 
field. The broken curve corresponds to the quasistatic ex- 
pression. 

modulations are  observed within the detuning range I Awl 
exceeding the transition frequency modulation interval by 
roughly a factor of two (see Fig. 4). On the other hand, 
in the quasistatic description, these intervals are  prac- 
tically equal. 

The above effects have been examined for the case of 
a homogeneous medium and, in particular, it was as- 
sumed that the constant external field eo was uniform. 
The influence of any nonuniformity of this field along the 
z axis can also be taken into account. Consider the case 
where the inhomogeneity of the medium may be due to 
the dependence of x, N, 6 w,, and A w, on z. We also 
suppose that the frequency interval between the chosen 
component p = ji and the neighboring Stark components 
(i. e., the quantity 1 6 u,- - 6 w, I ) exceeds both the inter- 
val l pd p l of the modulation of the component 6 w; by the 
field el and the interval of the variations 6,wg of this 
component in z due to the nonuniformity of the constant 
field e,: 

In this case, when the frequency w of the incident light 
wave satisfies (17), and in (10) we can retain only the 
resonance term corresponding to p = P, we arrive at the 
expression given by (18) in which no, N, 6w;, and Aw,  
may depend on z. Next, using the z-independent trans- 
formation (l9), we obtain (8) and (21), where the func- 
tions ql,(z) are  determined by 

subject to the boundary condition ql, (0) = 1, ql,(+ m) = 0. 
The quantities A, in these equations a re  given by (20) 
and, in the present case of an inhomogeneous medium, 
are functions of z. 

Thus, the original time-dependent problem has been 
reduced to a system of stationary equations (34). If we 
consider the case of a smooth inhomogeneity, as  com- 
pared with the length of the light wave, due to the in- 
homogeneity of the field e,, and if (22) is satisfied, we 
can readily obtain the expression given by (23) for ql,(z) 
in the geometric-optics approximation in which we must 
now use a more general expression for A, than is given 
by (24), namely: 

h,  = i 
2xkN I dab 1" 

zde: 
\ U(o + Lp - 60$) dz. 

It is clear from this expression that the nonuniformity 
of the external constant field e, leads to  a weakening of 
the above effects of electrooptical oscillations. For 
example, for a constant gradient aedez, these effects 
are practically absent if the interval of variation in the 
frequency of the Stark component ( 1  6,w,-1 ) over the com- 
plete length of observation due to the nonuniformity ex- 
ceeds the interval (PA,-) of modulation of this frequency 
by the field el. The above effects are, therefore, most 
clearly defined in a homogeneous medium. 
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5. THE CASE OF A GAS OF MOLECULES OF THE 
SYMMETRIC SPINNING-TOP TYPE 

As an example of a medium in which the above effects 
can be observed, consider a gas of molecules of the 
symmetric spinning-top type. We shall be interested in 
molecular transitions with a change in the vibrational 
and rotational quantum numbers, v and J, respectively. 
To be specific, let us consider the transition v, J- v+ 1, 
J +  1 which is subject to the linear Stark effect (an anal- 
ogous analysis can be given for the v, J -  v+ 1, J- 1 tran- 
sition). In this case, the subscript a in the initial state 
is a set of two numbers, namely, v, J, whilst the sub- 
script b in the final state represents v + 1, J+  1, so that 

In the constant electric field e,,, the transition fre- 
quency splits into a series of Stark components w::' 
- - ,c , 0) + 6 w, differing by the values of p and, if the Stark 

splitting energy exceeds appreciably the hyperfine inter- 
action energy and is much smaller than the separation 
between the rotational levels, the expression for 6 w, 
can be written in the form1221 

where d is the absolute magnitude of the dipole moment 
of the molecule. As can be seen, the subscript p corre- 
sponds to the set of two numbers in this case, namely, 
M, K (ME is the component of the total angular momen- 
tum along the direction of the field eo and K E  i s  the com- 
ponent of this angular momentum along the molecular 
axis; M, K =  0, * 1, * 2, . . . , * 5). The matrix elements 
dhfK' of the dipole-moment operator for the correspond- 
ing transitions are  given byLz2' 

Next, if  we consider the field el, we obtain the analog 
of (36) for A,: 

ZMKde,, 
A M K  = - 

J ( J + l )  ( I + 2 )  Ap ' 

It is clear from this expression that the degeneracy in 
the subscripts M, K is partly removed and partly re- 
mains. Assuming, for convenience, that different val- 
ues of the subscript p correspond to different values of 
the product MK (for example, by assuming that p = MK), 
we shall take for I d6:' 1 in (10) the sum of all values 
I d',fK' 1 corresponding to the particular value of the 
product M K .  

Let us consider in greater detail the given transition 
from the rotational level J=  1. In this case, p =0, * 1, 
i. e., the transition line splits into three components in 
the electric field. Suppose, for example, that 17 = 1, i. e., 
consider the component with the maximum frequency. 
In (18), we then have 

Let us now take a numerical example for the CHsCN 
gas, the molecules of which have dipole moment d=3.92 
x lo-'' e. s. u. When the frequency of the incident 
wave is close to the frequency w4 of the molecular vibra- 
tional mode (when this is so, w::' = 1.73 X 10" rad/sec) 
and the gas temperature i s  T = 290" K, the Doppler ab- 
sorption linewidth: corresponding to pressures P S  1 
Torr in the absence of the external fields eo, el and the 
profile 

(Aw = w - wk:') is A wt = 3.53 x 10' rad/sec. In accordance 
with the foregoing, we can then set p = 1. 25Awt e4.3 
x 10' rad/sec and, hence, we find that I Al = 2. 88elo 
e. s. u. For example, when el,- 0.3-3 e. s. u., we have 
l Al - 1-10. Using (16), we find that the magnitude of 
the constant field eo should exceed I elOl. The resonance 
absorption length z will, in general, depend on the gas 
pressure and the composition of the mixture, and may 
vary within broad lirnfits. For example, for pure CHSCN 
gas at P -  0.1-0.01 Torr, estimates of this length for 
the v = 0 - v = 1 transition yield z, -0.3-3 cm. The wave- 
length of the modulating field (h-  5 X  10' cm) is then 
found to exceed the above figure by two or  three orders 
of magnitude (i. e. , y >> 1). 

Let us now consider possible applications of the above 
effects. We note, above all, that the dependence of the 
light transmission coefficient of the medium on the fre- 
quency of the incident wave i s  a quasiperiodic function 
(Fig. 5) with a typical "period" of 10' rad/sec when the 
layer width is z 5 1 cm. This property may be used in 
the selection of axial modes in laser cavities under high 
resolution. The above effect canalso be used to produce 
various types of modulation in the light beam and to con- 
trol the operation of lasers by varying the rf field pa- 
rameters. Next, for an rf field of fixed frequency and 
amplitude, these effects can be used for the analysis of 
time deviations of the frequency of the incident light 
wave and, conversely, for fixed parameters of the in- 
cident wave they can be used to analyze the time varia- 
tions of the rf field frequency. We also note that the ef - 
fects can be used in high-resolution spectroscopy. For 
example, owing to the fact that the modulation parameter 
of the light wave plotted as  a function of A (Figs. 2a and 
b) exhibits sharp minima, these minima can be used to 
determine accurate values for the Stark constants of vi- 
brational-rotational transitions, to identify these tran- 
sitions, and so on. 
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Role of collective and induced processes in the generation 
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It is shown that the principal role in the generation of coherent Mossbauer coherent radiation is played by 
processes of collective spontaneous radiation. Observation of induced Miissbauer y radiation in the decay 
of strongly excited polyatomic systems encounters unsurmountable difficulties. 

PACS numbers: 76.80. + y 

The question of the possibility of extending the princi- 
ple of laser generation of the y-ray band is constantly 
discussed in the literature of the last fifteen years (see 
the reviewsc1"'). It was assumed that the main idea of 

'lasing in the optical band, i. e., amplification of the 
light with the aid of stimulated emission, could be di- 
rectly realized also in the y band. No account was 
taken, however, of the peculiarities of the electromag- 
netic waves in the y band, or of the peculiarities of the 
Mtissbauer y radiation. The need for using the latter 
has alrbady been repeatedly emphasized. In the present 
article we consider in greater detail the kinetics of 
emission of extended resonatorless systems of two-lev- 
el emitters that are strongly excited and are uncorre- 
lated at the initial instant, and show that in the Mass- 
bauer energy region the stimulated processes make a 
negligibly small contribution to the radiation intensity. 
The principal role is played here by processes of collec- 
tive spontaneous emission, which replace stimulated 
emission when it comes to generation of coherent y pho- 
tons. 

The semiclassical approximation of the quantum equa- 

where 

are respectively the number of quanta in the sample vol- 
ume and the population difference; T = L/c; l/Tz is the 
width of the Mtissbauer transition line; 

V is the volume of the sample; f is the probability of the 
Mtissbauer radiation; M is the matrix element of the 
nuclear-transition current density; the bar denotes av- 
eraging over the directions of k: o+, o-, a, are Pauli spin 
operators; 

tions of field dynamics is of the form (for a detailed de- Summation with respect to k is carried out over a spher- 
rivation seec4'): ical layer of thickness 

dn n 
-+-=F 

d F 1 1  1 1 
, dr+T ( T + r , ) ~ = F ( n ~ + ~ ) .  

dt r 
(1) d S  S d R  - + - = F R - ~ F  - -  - 2F, 

dt T~ ' dt and account is taken in (4) of the fact that T << Tz for the 
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