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A large class of problems in the theory of linear waves can be solved only in the given-field (GF) 
approximation. In the present paper a new approximation, that of given intensity (GI), is developed, and 
takes into account the reaction to the phase of an intense wave. Physically this approximation is justified 
by the fact that the scales over which significant changes of the phase relation and transfer of the energy 
of the intense wave can take place can differ greatly in the presence of a mechanism that mismatches the 
phase relations between the interacting waves. It is shown that even in the absence of a phase mismatch 
the region in which the GI approximation is valid is larger than that of the G F  approximation. The GI 
approximation is used to analyze the stationary interaction of waves in inhomogeneous nonlinear media 
and the nonstationary interaction of waves in homogeneous media. Expressions are obtained for the 
intensities and spectra of the excited or amplified waves. A number of effects that do not appear in the 
GF approximation are observed, particularly the influence on the parametric amplification of the intensity 
at the supplementary frequency and the dependence of the structure of the harmonic spectrum under 
nonstationary excitation conditions on the shape of the main beam. 

PACS numbers: 03.40.Kf 

INTRODUCTION complexity is such that only asymptotic solutions a re  
obtained. - Numerical methods have recently been used 

The given-field (GF) approximation is widely used in 
to solve problems of nonlinear interaction of focused 

the theory of nonlinear interaction of waves in disper- 
beamsclol and of the interaction of waves in inhomoge- 

sive media. c1'31 In this approximation, the complex 
neous nonlinear media. ['11 At the same time, of con- 

amplitude of the intense initial wave is assumed to be 
siderable interest in the theory of nonlinear waves is the 

given, a s  a result of which the nonlinear equations development of analytic methods that make i t  possible 
(which a re  partial differential equations in the general 

to go beyond the framework of the G F  approximation 
case) become simply coupled equations, and this facili- 

and at the same time produce results that can be easily tates greatly their solution for real  wave beams and real  
interpreted. nonlinear media. The GF approximation, however, de- 

scribes correctly only the initial stage of the nonlinear 
wave interaction, so  long as the reaction of the excited 
or amplified waves on the intense wave can be neglected. 
If the reaction is taken into account, however, the non- 
linear wave equations can be solved exactly, even for 
homogeneous systems, only in a limited number of 
cases: for the interaction of plane waves or  narrow 
wave packets (the so-called quasistatic approximatiorf4') 
or for special cases of nonstationary wave interac- 
tion. ts-81 Recently, the method of the inverse scatter- 
ing problemcs1 has been applied to the analysis of non- 
linear wave interactions, although this method imposes 
no limitation on the wave coupling coefficient, but its 

In the present paper we develop, for the analysis of 
the interaction of waves in nonlinear dispersive media, 
the given-intensity (GI) approximation, in which, incon- 
t ras t  to  the GF approximation, the reaction on the phase 
of the exciting wave is taken into account. The physical 
basis of the proposed approximation is the difference be- 
tween the ra tes  of change of the amplitudes and phases 
of the interacting waves. Therefore the GI approxima- 
tion is effective in those cases where there is a mech- 
anism of mismatching the phases of the interacting 
waves, such a s  wave detuning or  group-velocity mis- 
match. However, even where there is no such mecha- 
nism, the accuracy of the solutions obtained by the GI 
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approximation is higher than that of the GF approxima- 
tion. 

We consider in the approximation developed below a num - 
ber of problems of nonstationary nonlinear processes and 
of stationary processes that occur in nonlinear media 
with inhomogeneities. It is  shown that in the GI approxi- 
mation the behavior of nonlinear processes can differ 
not only quantitatively but also qualitatively from the be- 
havior predicted by the GF approximation. 

It should be noted that the GI approximation has al- 
ready been used by a number of workers. C12-141 They, 
however, have stationary interaction 
of wav.es in homogeneous nonlinear media, and inc"' a 
problem having an exact solution was solved approxi- 
mately. 

1. PRINCIPLES OF THE METHOD AND CONDITIONS 
OF APPLICABILITY OF THE SOLUTlONS 

The application of the GI approximation to certain 
problems of practical interest, but which have until re- 
cently solved in the GF approximation, will be illus- 
trated by us in the subsequent sections. Here we con- 
sider the principle of finding solutions in the GI ap- 
proximation, using a s  an example a problem for which 
an exact solution is known. This circumstance makes 
it possible to illustrate the effectiveness of the GI ap- 
proximation and to determine the conditions under which 
the approximate solutions are valid. 

Consider a degenerate three-frequency wave interac- 
tion described by the equation 

where Ai and A are the complex amplitudes of the funda- 
mental waves and of the second harmonic, respectively, 
Pare the coefficients of the nonlinear coupling of the 
waves (real quantities), A = 2kl - k is the wave mis- 
match, u, is the group velocity, and 6, is the loss pa- 
rameter. 

We change over from the stationary first-order equa- 
tions (1) to second-order equations, neglecting the 
losses (a/at= O,6, = 6 = O), 

where Z(z) = AA i s  the intensity. This yields GF approx- 
imations: 1) for the parametric gain from (2) at j3=0 
and Z(z) = Z(0) and 2) for second-harmonic generation 
from (3) at & = 0. To solve (2) and (3) rigorously it 
would also be necessary to write down, for example for 
the intensity Z1, an equation whose behavior is deter- 
mined by terms of the typen A:A, which in turn depend 
on I: and IZl etc. In the developed approximate theory 
we can confine ourselves to Eqs. (2) and (3). 

By way of example we consider in detail the second- 
harmonic generation process; it can be assumed here 
that the initial amplitude of the harmonic is A(0) = 0, and 
A1(z = 0)= Ai,o. If we put in (3) for the intensity Zl(z) 
=Il dz = 0) =I1,,-,, then solution of the equation obtained in 
this manner will correspond to the GI approximation, 
namely, no limitations whatever a re  imposed in the non- 
linear medium on the phase cpl of the exciting wave. 

In the GI approximation, Eq. (3) has as  its solution 

A (z) =-ip~;,ze-'~"~ sinc (xz) (4) 

or we have for the real amplitudes a and the phase 

a=@ sinc (xz) a:,, 

(~=2cp~,~-n/2-Az/2. 

In (4)-(6) we put 

x= (A/2) [1+8(l,A)-']'", 

lnl= ( ~ ~ J , . o ) - ' h ,  sinc z=sin z/z. 

In the GF approximation the characteristic nonlinear 
length is  &, - 03. 

1.1. Inexact matching of the phase velocities, A # 0. 
A rigorous solution of equations (1) in this case (a/at 
= 0,6 = 6, = 0) yields for the amplitude of the harmonic 
(@= #)C'5' 

where sn(5, y) is  the elliptic sine and 

At A = O  we have v,=v,=l and we get 

In the case A >4/ln1 we have 

Under this condition y < 0.2, and using the expansionc161 
of the sn function, we arrive at the approximate result 
(5). 

On the other hand if A >> 4/ln1 we obtain from (5) and 
(8) the result of the GF approximation: 

a=pzat0 sinc (Adz).  (11) 

Thus, the condition for the applicability of the solu- 
tion in the GI approximation is 

(1, = ~ / A i s  the "coherent" lengthc"), and interaction 
length z can in this case be arbitrary. 

Figure 1 shows the dependence of the amplitude A of 
the harmonic on the phase mismatch at a constant length 
z, from which it is seen that at A < 2/1,, there is a con- 
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FIG. 1. Dzpendence of the relative amplLtude of the second 
harmonic A = IA/Al.o I on the parameter A=Az/2 for z/Z,,, = 2,  
as calculated: 1-exactly (the curve is taken from['7'); 2-in 
the GI approximation (point); 3-in the GF approximation. 

siderable discrepancy between the exact calculation by 
formula (3) and the calculation in the GI approximation. 
In the opposite case (Azk 2z/1,,) these calculations give 
practically identical values, which, however, differ 
strongly from the result of the GF approximation. 

It follows from (5) and (7) that the period A'w''~ = 2[d 
X n2 - 2(~/1, , )~]"~ of the spatial beats of the amplitude of 
the harmonic agrees with the GF approximation only at 
large values of n (n = 1, 2, . . . i s  the number of the peri- 
od) (see also Fig. l). 

The change of the phases of the fundamental radiation 
is determined according to (la) in the GI approximation 
by the expression 

We see therefore that at A+ 0 the phase velocity of the 
fundamental wave depends only on its intensity (G! + 0); 
in other words, self-action takes p l a ~ e . ~ '  Taking into 
account the transverse distribution, the divergence of 
the fundamental radiation in a nonlinear medium de- 
creases at A > 0 (self-focusing) and increases at A < 0 
(self-defocusing). From the point of view of the effi- 
ciency of the harmonic generation, what is important i s  
not the change of the phase q1 of the fundamental radia- 
tion itself, but the change of the phase relationc": 

The relative increment to the phase in the GI approxima- 
tion, compared with the GF approximation, 

FIG. 2. Coefficient of conver- 
sion of the second harmonic q1 
=I/Iiv0 as a function of the relative 

05 
length ,?= z/lnl for the case A = 0: 
1-exact calculation; 2-GI ap- 
proximation; 3-GF approximation. 

0 05 I0 
i 

while small ($ < I), exerts a substantial influence on the 
conversion efficiency. The absolute change of $, on the 
other hand, can be large. 

1.2. Exact matching of the phase velocities, A = 0. 
Let us compare the rigorous solution (10) with the ap- 
proximate one (5) at A = 0. Expanding the functions in 
these expressions, we readily find that the intensity of 
the harmonic i s  described, accurate to (z/z,,)~, by the 
same expression 

The result of the GF approximation is given only by the 
first term of the expansion (14). Consequently, even in 
the absence of the phase mismatch mechanism (A = 0) 
the range of applicability of the GI approximation is 
larger than that of the GF approximation. 

Figure 2 shows the dependence of the effectiveness of 
harmonic generation on the length t of the nonlinear me- 
dium; the calculations were performed in accord with 
the exact formula (10) and in the discussed approxima- 
tions. Over a length z = l,,, the difference between the 
conversion coefficient calculated in the GI approxima- 
tion in the exact value reaches only 9%. Thus, at A = 0 
the GI approximation can be used in practice al l  the way 
to z 5 I,,. This circumstance can be used to solve non- 
linear problems with allowance for nonequilibrium losses 
in the interacting waves. Thus, stationary solution of 
Eq. (1) at 6, + 6 in the GI approximation yields 

In (15) we have taken into account the damping of the 
intensity I, of the fundamental radiation a s  a result of 
the absorption (6, # 0), while the decrease of the intensity 
11, due to the transfer to the harmonic, is disregarded. 
We note that a somewhat different approach to the deri- 
vation of the results in the GI approximation in the pres- 
ence of losses in the nonlinear medium was considered 
by Emel'yanov and Klimontovich. '13 ' 
2. WAVE INTERACTION I N  LINEARLY 
INHOMOGENEOUS MEDIA 

We turn now to wave interaction in nonlinear media 
with nonlinear inhomogeneities. This problem has re- 
cently attracted particular interest in connection with 
the problem of plasma heating by laser radiation (see, 
e- g. 2 C1ss201 and the literature cited therein). 

We write down the equations of the three-frequency 
wave interactions (wi + we = u3), which in the case of de- 
cay processes take the formcf'15' 

where the phase shift is 
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A and A(z) are the constants and alternating parts of the 
wave mismatch. The remaining quantities in the equa- 
tion are conventional and analogous to those in (1). 

In the case of tearing interactions it is necessary to 
make in (16) the substitution 4- ion. It is the last pro- 
cess which we shal l  consider here for the sake of argu- 
ment. 

In the GI approximation, the stationary behavior of 
the complex amplitude 4 is described by the equation 

where Vi =Ate"., I?!= ui(ug3,0 + u JZ,,,), and In,o is the in- 
tensity at the entrance into the nonlinear medium. . Equation 
(17) is valid for the case of equal group velocities of the 
interacting waves (ul = uz = u3 = u), and makes it possible 
to analyze the waveform of the pulse within the frame- 
work of the quasistatic approximation, but we shall not 
dwell on this question here. 

We consider first the case of a homogeneous medium 
(A(z) = 0) and obtain the condition for stabilization of the 
tearing instability, without solving Eq. (17). The char- 
acter of the solution of Eq. (17) depends on the param- 
eter g2 = 4r:-A'. At g 2 >  0 Eq. (17) has a growing solu- 
tion that leads to pairing instability. If g2 < 0, then the 
solution is oscillatory, in accord with the condition for 
the elimination of the tearing instability. From the 
stabilization condition 

it follows that the threshold pumping density I::?' de- 
pends not only on the wave mismatch A, but also on the 
intensity I,,, at the supplementary frequency % relative 
to the frequency w,. Putting wz = 0 in (18), we obtain the 
result of 

For an inhomogeneous medium, the solution of Eq. 
(17) at A = 0 and A(z) = az takes the form 

.-ti (2)=(Al ,oI:(~1,  ' / r ;  S )  + U ~ A ~ , ~ A : : L F ( P Z .  3/2; f ) ) e x ~ ( - i a z ' / 4 ) ,  

(19) 

where F(p, m; b) is a confluent hypergeometric function, 

At short distances z(az2 < 1, gz < I), using the expan- 
sion of the function F(p, m; 5), we obtain for the inten- 
sity 

Thus, the inhomogeneities of the medium lead to elim- 
ination of the tearing instability. However, both the in- 
stability threshold and the saturation level depend not 
only on the intensity of the pump wave but also on the in- 

, tensity of the wave at the supplementary frequency. 

3. NONSTATIONARY WAVE INTERACTIONS. 
EFFECTS OF PHASE MODULATION OF THE PULSES 

Nonstationary wave interactions are of considerable 
interest in nonlinearly optical processes that occur in 
the fields of ultrashort laser pulses. They will be stud- 
ied below for homogeneous media (A(z) = 0j. 

3.1. Frquency multiplication. According to Eq. (I), 
nonstationary frequency doubling is described in the GI 
approximation by the equation (without allowance for the 
l O S ~ e s ,  6, = 6 = 0) 

where 

The coordinate r has been introduced in the intensity 
Zl,o(~, 8 of the fundamental radiation to take into account 
the transverse distribution. 

The boundary conditions for (22) take the form 

V (r .  8. q )  lt-?,=O, 
m 
- dZ 1 t -8,  - i l A  r .  1 )  p  ( - i ) .  (23) 

The solution of (22) by the Reimann method assumes, 
after a number of mathematical transformations, the 
form 

where J,(~) is a Bessel function of real argument. 

The complex amplitudes of ultrashort laser pulses 
can be represented in the form 

The function G ( r )  characterize the shape of the beam 
(G(0) = I), while the function 

It is important that the inhomogeneities of the medium ~ ( t )  =exp {- (T-?+ i ~ )  tZ}  (254 
during the initial stage decrease the growth of the pa- 
rametrically amplified signal. At large distances (az2 characterizes the shape of the pulse and the modulation 
> I), on the other hand, the amplification is practically of the phase in time. Usually the width of the spectrum 
saturated; at r:/2 a! < 1 the intensity takes the form of ultrashort pulses A o  = 4~"(1+ ~ ~ 7 ' ) " ~  exceeds the 
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FIG. 3. Spatial arrangement of the minima in the spectrum of 
the harmonic ( X , = c v z A t  A,,,J. The solid curves were cal- 
culated in the GI approximation at  z/1 , I=  2" I2r; the dashed 
curves were calculated in the given-field approximation (Id 
-"O, P1=0). 

width due to the duration 7 ,  i. e., &rZ > 1. We can there- 
fore neglect the group delay of the interacting pulses in 
comparison with the duration 7 .  

3.2. Second-hamzonic spectrum. The spectral den- 
sity of the harmonic at vz < r is given by 

S ( o ;  r, z )  =G'(r) I: sincz ( zd /2 )S  q U  ( o ,  z )  , (26) 
dZ=dZ ( a )  = ( A + ~ W ) ~ + ~ P ~ , I ~ G ~ ( ~ ) ,  (27) 

where SaU(w, z) is the spectrum of the harmonic in the 
given-field approximation in the quasistatic doubling 
regime (v = 0): 

It follows from (26) that the structure of the spectrum 
of the harmonic depends on the dispersion properties of 
the medium, on the intensity I, of the fundamental radi- 
ation, and on the shape of the beam G(r). The spatial 
picture of the distribution of the minima in the spectrum 
of the harmonic is determined by the expression (A = 0) 

where X2 i s  the wavelength of the second harmonic (1, 
= X1/2), A is the deviation from &, l,, = ( @ A z ~ ) - ~ / ~ ,  and n 
is the order of the minimum. 

Figure 3 shows the form of the function (28) for a 
Gaussian main beam: G(r) = e d -  (Y/Y~)~}. It is seen 
that the structure of the spectrum of the harmonic in in- 
tense fields z k  I,, differs strongly from that calculated 

FIG. 4. Normalized spectrum of second harmonic S(A)  for the 
center of the beam ( r = O )  at diffecnt ratios z/Znl: l - O U n l  
- m ) ;  1-1.36; 3-2"12r=2.23 ( A = c v z h . ~ ' ~ ) .  

in the given-field approximation. These distinguishing 
features are: the bending of the bands in opposite di- 
rections away from the center of the spectrum, the nar- 
rowing of the central band, and the broadening of the 
lateral bands. Figure 4 illustrates the change of the 
spectrum of the harmonic for the center of the beam 
with changing ratio z/Z,,. 

3.3. Energy of second harmonic. We calculate now 
the energy density of the harmonic 

The difficulty of the exact calculation of (29) is due to 
the presence of the function sinc2[zd(w)/2] (see (26)), 
which, however, can be replaced approximately by 
exp(- 0. 09z2d2). The energy density inthe harmonic, for 
an initial pulse in the form (25a) is then 

W=2"n ( ~ / l , ~ ) ~ [ l f  (dlqu )'I-$ exp {-0.72(z/ l , l )a)  W,, (30) 

where Wl = 2n112~1,0(r)~ is the energy density of the fun- 
damental radiation, and 1, = 7{v2 (1 + ~ ~ 7 ' ) ) ~ ' ~  is the quasi- 
static length. At constant lengths z and I,, the energy 
conversion coefficient qe = W/ Wl reaches a maximum 
value when I,, z 0.852. With increasing phase-modula- 
tion coefficient E (with decreasing length l,,,), the ef- 
fectiveness of conversion into the harmonic decreases. 

3.4. Frequency mixing. We consider the generation 
of the summary frequency, assuming the group veloci- 
ties of the mixed waves to be equal (ul = us). In terms of 
new coordinates 5 = t-z/ul and 0 = t-z/u,, the function 
V3, which i s  connected with the amplitude of the excited 
wave by the relation 

is defined in the GI approximation by the equation (cf. 
(22)) 

Its solution 

is of the same form as  expression (24). Consequently, 
all the singularities of nonstationary second-harmonic 
generation by phase-modulated pulses are obtained in 
the GI approximation in the case of nonstationary mix- 
ing of such pulses. The result of the given-field approx- 
imation i s  obtained from (32) if l3, = B2 = 0. 

3.5. Parametric amplification. Another important 
case of nonstationary wave interaction, when the group 
velocities at the frequency wz and, say, the frequency 
q can be regarded a s  equal. This case applies, be- 
sides processes of amplification and generation of the 
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difference frequency, also to processes of stimulated 
scattering (Raman scattering, Mandel'shtam-Brillouin 
scattering, etc. ). 

The behavior of the complex amplitude 4 of frequency 
o, is given, in accordance with Eqs. (2) in the GI ap- 
proximation, by the equation 

with boundary conditions 

where 

VZ-AZ exp (ivs2-'AE), E=t-z/n=, q=t-zIuC (35) 

For the analysis of the considered process it is con- 
venient to change from the time-dependent form of the 
solution of (33) 

(I,[g] is  a Bessel function of imaginary argument) to the 
Fourier spectrum 

x ~ ~ ~ , ~ ~ t ~ A ~ : ~ ~ t ~  
sh(z/2) [rL ( t )  - ( A + Y ~ ~ ~ ) ~ ] ' ~ *  e'"' dt. (37) 

-- [ r z ( t )  - ( A + v , , ~ ) ~ ] ' ~ ~  

In the derivation of (37), just as in Sec. 3.1, it was 
assumed that the time lag is v32z < min(rt r3) (7, are the 
durations of the initial pulses), and the nonstationary 
character of the process is due to phase modulation. 

In the case of large gains I'(0)z = rOz > 1 and identical 
exciting pulses, such that 

the spectral density at the frequency w, is  equal to 

where 
(39) 

It follows from (39) that the width of the spectrum at the 
excited frequency is equal to 

The growth of the gain increment r,,z and of the fre- 
quency-modulation coefficient E make the spectrum nar- 
rower, while the group detuning vs2 causes a decrease 
of A y. At r,,z = 2& 72, the spectrum width at the frequency 
q is minimal: 

Thus, in the presence of phase modulation an increase 
in the gain does not lead in all cases to an increase in 
the width of the spectrum (cf. c221). 

In the GI approximation, r0 is determined by the in- 
tensities Is,o and I l , ,  respectively at the pump frequen- 
cies w3 and q (see (36)). An increase of I , , ,  however, 
produces the opposite of the effect due to the increase 

I3,0. 

We have developed a theory of nonlinear waves in the 
GI approximation. The application of this approxima- 
tion to media with linear and nonlinear inhomogeneities 
and nonstationary processes is physically more justified 
than the hitherto used GF approximation. One of the 
linear coefficients in the abbreviated equations (16) of 
the nonlinear wave interaction in the GF approximation, 
P,, is in effect assumed to be equal to zero. Actually, 
however, the coefficients P,, are as  a rule of the same 
order, and it is the rates of change of the amplitudes 
and phases of the interacting waves which are different. 
This circumstance is the basis of the developed GI ap- 
proximation, in which a number of new effects have 
been obtained. We mention among them the influence 
of the effect exerted on the threshold by parametric 
amplification, and the threshold of intensity stabiliza- 
tion at the additional frequency. In the case of multi- 
plication and mixing of frequencies in the nonstationary 
regime or when these processes take place in inhomoge- 
neous media, the conversion coefficient may experience 
saturation at a level that differs appreciably from com- 
plete conversion in the case of stationary processesthat 
occur in homogeneous media (see also C23'). An analysis 
of nonstationary multiplication and mixing of frequencies 
in the GI approximation yields a qualitatively different 
picture of the spectrum than the GF approximation. 
This result agrees with experiments on frequency multi- 
plication of intense ultrashort pulses. '14' 

The condition for the applicability of the GI approxi- 
mation in the presence of loss of phase coherence be- 
tween the interacting waves is determined by inequality 
(12), which is valid for arbitrary lengths, z, and the 
coherent length I&, depending on the character of the 
interaction, must be replaced by the quasistatic length 
2, or by the inhomogeneous length l,,,,,, = n/A(z). At 
distances z < &, satisfaction of condition (12) is not obli- 
gatory. 

We have confined ourselves here to an illustration of 
the use of the developed GI approximation to cases of 
three-particle interactions. This approximation, of 
course, can be used also for the analysis of four-fre- 
quency interactions. We note finally that, in accordance 
with the space-time analogy in the theory of nonlinear 
wavesc5' the GI approximation can be applied to certain 
problems of nonlinear interaction of wave beams. 

The authors are deeply grateful to S. A. Akhmanov for 
stimulating discussions. 
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i%e note that in the presence of a mismatch (A * 0) it  is im- 
possible to obtain equations in closed form for the intensities 
I and Il ( ~ f . " ~ ' ) .  

 hi: phenomenon was apparently first pointed out by Ostrov- 
skii , [I8' who analyzed it qualitatively. 
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Resonance excitation of light and dynamic electro-optical 
effects 
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Zh. Eksp. Teor. Fiz. 73, 1283-1295 (October 1977) 

An analysis is reported of the propagation of a weak plane light wave in a gas placed in strong constant 
and uniform alternating external electric fields. The frequency of the latter is in the radio band and the 
frequency of the incident light wave is close to the frequency of one of the allowed transitions in the gas 
molecules. The time modulation of the molecular transition frequency due to the Stark effect in the 
external electric field is taken into account. The degree of modulation and the mean intensity of the light 
wave transmitted through the medium under consideration are investigated as functions of the amplitude of 
the external alternating field, the constant external field, and the frequency of the incident light wave. A 
number of features of this functional dependence is noted. The possibility of observing these effects in a 
gas of molecules of the symmetric spinning-top type is discussed. Possible applications of these effects are 
examined. 

PACS numbers: 51.70.+f, 33.55. +c 

1. INTRODUCTION 

Modulation of electromagnetic waves can be produced 
in media in which the refractive index is a function of 
the electric field. This type of modulation of lightwaves 
by an external electric radio-frequency field has been 
observed in  dielectric^^"^' and has subsequently found 
application in lasers  where it is used for mode lock- 
ing. C 5 - 7 1  The modulation is also possible in the elec- 

tron plasma of semiconductors and in gas plasma in an 
external magnetic field with an rf component modulating 
the cyclotron frequency. [8-131 The modulation of waves 
by an external electric low-frequency rf field in gas 
plasma, due to the modulation by this field of the elec- 
tron mean free time, has been discussed by Kumar et 
al . ,  [14] and that due to the hydrodynamic modulation of 
the plasma density by this field has been d i scus~ed~by  
Kumar et al., Aliev and Silin, and Ostrovskii and 
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