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The problem of the single-nucleon absorption of slow pions by atomic nucld is solved. The presence of a 
pion condensate ~ i ~ c a n t l y  increases the single-nucleon absorption probability. The measurement of the 
single-nucleon absorption probability may be a critical experiment for the elucidation of the question of 
the existence of a condensate in nuclear systems. 

PACS numbers: 21.65. +f, 25.80. +f 

1. INTRODUCTION 

In 1971 Migdal pointed out the possibility of a recon- 
struction of the pion field in a sufficiently dense nucleon 
system, i. e. ,  the formation of a "pion condensate. " 
The main physic* consequence of such a phase transi- 
tion i s  the possibility in principle of the existence of ab- 
normally dense nuclei. "I In these nuclei the energy 
loss due to the change in the nucleon density i s  compen- 
sated by the energy gain from the phase transition. The 

quantitative theory developed by ~ i g d a l ' ~ '  led to a criti- 
cal-density value (the density at which the phase transi- 
tion occurs) of no 2 0. 6no for nuclear matter with N = Z 
and %L 0.8% for a neutron material (N>> Z), where no 
i s  the normal nuclear density. This allowed the exis- 
tence of a condensate in real atomic nuclei to be postu- 
lated. In subsequent investigationscg"' the estimate for 
the critical density did not change in comparison with 
the estimate obtained in Migdal's first papers. A more 
exact computation of the critical density is not possible, 
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since the quantity n, critically depends on the phenom- 
enological parameters of the theory. These parameters 
cannot be computed theoretically at present because of 
the lack of a theory of strong interactions. The values 
of these parameters found from the analysis of the ex- 
perimental data on the properties of atomic nuclei are 
not accurate enough. Therefore, only a direct experi- 
ment can give an answer to the question of the existence 
of a condensate in atomic nuclei. It is important tonote 
that, for any experimental result, the theory allows a 
more rigorous determination of the critical density and, 
thereby, a more definite indication of the region of ex- 
istence of nuclei with an abnormal density. 

The existence of a n condensate in nuclei i s  manifested 
in the formation in the spin-isospin density of the nu- 
cleons in the nuclei of a periodic structure with wave 
vector ko 2 pF (pF is the Fermi momentum). An analysis 
of the experimental data on electron and proton scatter- 
ing by nuclei, C51 I-forbidden M1 transitions, magnetic 
moments, nuclear spectra, and n-atomic spectrac718' 
does not contradict the possibility of the existence of a 
condensate in nuclei. However, we cannot unequivocally 
infer the existence of a condensate in atomic nuclei from 
this analysis. In view of this, the search for a critical 
experiment is  very important. In our opinion, an ex- 
periment on the measurement of the probability for sin- 
gle-nucleon absorption of a slow pion by atomic nuclei 
can be such an experiment. Theoretical estimates made 
in Ref. 9 showed that the presence of a periodic struc- 
ture in the spin-isospin density leads to a significant in- 
crease in the probability for single-nucleon absorption 
of slow pions. The cause of the increase consists in the 
following. In homogeneous nuclear matter single-nu- 
cleon absorption i s  strictly forbidden by the laws of con- 
servation of energy and momentum. In the case when a 
n condensate exists in the nuclear matter, the nucleon 
momentum is  not conserved because of rescattering on 
the periodic structure of the spin-isospin density, which 
removes the prohibition on the absorption of slow pions. 

In the present paper we solve the problem of the single- 
nucleon absorption of slow pions by real nuclei. In Sec. 
2 we consider the absorption of pions by atomic nuclei 
in the absence of a pion condensate. In this case the 
prohibition on single-nucleon absorption i s  removed be- 
cause of the finiteness of the nucleus, since the finite- 
ness of the nucleus leads to the nonconservation of the 
nucleon momentum. As a result, the single-nucleon 
absorption probability is nonzero, and is  equal to - 
In Sec. 3 we compute the probability, due to the exis- 
tence of a n condensate, for single-nucleon absorption 
in nuclear matter and in atomic nuclei. It is  shown that 
the role of the condensate remains important in a finite 
system. In heavy nuclei the presence of a condensate 
leads to a - 100-fold increase in the probability. Thus, 
experiments on single-nucleon absorption of slow pions 
can be critical for the elucidation of the question of the 
existence of a condensate in nuclear systems. In con- 
clusion, we discuss the available experimental data on 
pion absorption and point out the need for the perfor- 
mance of further experiments. 

2. SINGLE-NUCLEON ABSORPTION OF SLOW PIONS 
BY NUCLEI WITHOUT A a CONDENSATE 

The Klein-Gordon-Fock (KGF) equation for a pion in 
the field of a nucleus has the form 

where V, is the potential connected with the electro- 
magnetic interaction of the pion with the nucleus; .+ is 
the pion polarization operator arising from the strong 
n-N interaction in the nuclear material. In view of the 
possibility of absorption of the pion by the nucleons, .? 

contains not only a real, but also an imaginary, part. 
For a slow pion we can restrict ourselves to s and p 
pion scattering by a nucleon. In this case the polariza- 
tion operator is expressible in terms of a small number 
of phenomenological parameters whose values are found 
from an analysis of the experimental data on, for ex- 
ample, the locations and widths of the x-atomic  level^."^' 
In the majority of papers an optical potential, which is 
connected in the nonrelativistic liAmitAwith the polariza- 
tion operator by the relation 2m, V =  9, is used. 

In a finite system depends on r and r', and can be 
represented graphically: 

To compute the probability for single-nucleon absorp- 
tion of a pion, we should separate out in (2) the part, 
$N, of the polarization operator that contains in the ver- 
tical cross section a particle with a hole (NB) at least 
once. The continuous line in (2) is  the nucleon Green 
function. The point corresponds to the irreducible am- 
plitude of the ~ N E  interaction in nuclear matter, i. e., 
the diagram does not contain a particle with a hole in the 
vertical cross section. The hatched triangle represents 
the amplitude of the TNR interaction in the medium. In 
computing the imaginary part of the polarization opera- 
tor ?, , responsible for the single-nucleon absorption, 
we take into account the fact that 

The vertical wavy line in (3) indicates that we should 
take the imaginary part only from the product of the 
single-particle Green functions. It can be verified that, 
for slow pions (o- m,) in systems with (N - z)/A<< 1, 

where g(- 1) is the amplitude of the interaction of the 
nucleons. Then 

In free space the vertex of the pion-nucleon interaction 
in the nonrelativistic limit is equal to 
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where f2/4n= 0.08, M is the nucleon mass, V,,, is the 
gradient acting on the meson (nucleon) wave function, 
and T is the isospin Pauli matrix. The second term in 
(6) makes, in spite of the smallness of the factor m , / ~ ,  
a comparable contribution (< 50%) in the computation of 
the probability for single-nucleon absorption of a pion, 
since the momentum of the outgoing nucleon (- ( 2 ~ w ) l ' ~ )  
is high compared to the pion momentum. The_ slow pion- 
nucleon interaction amplitude, i. e., the n-N-N vertex, in 
a medium differs from the corresponding quantity infree 
space mainly because of the processes of virtual creation 
of the nucleon hole and the As3(1232) isobar. Since Gali- 
lean invariance is not required in a medium, the re- 
normalizations by the medium of the first  and second 
terms in (6) are, generally speaking, different. These 
renormalizations are  local renormalizations, are  deter- 
mined by the NA - NN and Ah - NN interaction ampli- 
tudes, and can be taken into account through the intro- 
duction of phenomenological constants. Notice that, 
since the renormalization is determined by the virtual 
creations of the A-fi pairs, these constants do not de- 
pend on the retained frequency in a wide frequency range 
(when the frequency is varied in the range O c  w c  11' the 
screening changes by 20%0~~') 

Here and below an isotopically invariant medium, i. e., 
the relation (N - z ) / A  << 1, is implied, and the Coulomb 
interaction is neglected. The parameters e;, 4 appar- 
ently differ little from the free-space values, which are  
equal to unity. For example, the parameter e: = 1-2t;, 
is known from the analysis of the p-wave terms of the 
real part of the optical potential, which determines the 
n-atom spectrum, as  well a s  from the analysis of the 
magnetic moments and the probabilities for decay of 
nuclei, C1il where it is found that 6 ,  < 0.15. The param- 
eter e t  is unknown. For simplicity, we shall assume it 
is equal to its free-space value. 

For infinite homogeneous nuclear matter the formula 
(5) has the form 

The imaginary part, Im@(w, k), of the product of the 
Green functions is, in the regions where it is nonzero, 
equal to 

n o kZ 
IID Q ( a ,  k)=-- OGoGku, --; 

2 ku, ' 2M 

It can be seen from (8) and (9) that lmGN (w, k) = 0 for w 
= 1, k << 2.2, and k > 6.2 (p ,  = 2). The equality to zero 
of ~ m $ ~ ( w -  1, k- 0) corresponds to the strict prohibi- 
tion by the conservation laws of the single-nucleon ab- 

TABLE I. Probability for  one-nucleon emission from 
various rr-atom levels upon the absorption of stopped li 
mesons by atomic nuclei with allowance for  the existence 
of a pion condensate. - 

Note. We assume that the condensate exists in that region where 
the nucleon density n >0.7no, no being the nucleon density at the 
center of the nucleus (a2 = 0.05, ko = p F  = 2, where a and ko are the 
amplitude and wave vector of the condensate field; ii= m, = c  = 1 ). 
For condensate parameters ko = 2.5, aZ = 0.05 the single-nucleon 
absorption probability increases by a factor of four. When allow- 
ance is made for the creation of the A isobar in the intermediate 
state in the diagrams (12), the values in the last column increase by 
a factor of 1.5. 

One-nucleon emission 

without acon- ( with sconden- 
densate (X 10') sate (X 10') 

sorption of a slow pion in an infinite system. In a finite 
system the nucleon momentum is not conserved, and 
single-nucleon absorption becomes weakly allowed. For 
the computation of the probability for single-nucleon ab- 
sorption by atomic nuclei, it is convenient to use the 
coordinate representation; then 

1 r n P x ( o ;  r, rr) = - p F ~ n - ' ( 7 ( r )  Im @ ( o ;  I, r');(rf)}. (10) 

~ 2 3 8  

Th232 
PbZ"8 
TIZo" 

Ta'8' 
Snits  
JIooB 

Xiso 

Ca40 

The method of computing 1mSN(w; r, r') in a finite sys- 
tem i s  similar to the method, expounded in Ref. 12 (see 
the Appendix), of computing Re@ (w; r, r'). Using the 
expression (lo), we can compute the total cross section 
for slow-pion absorption accompanied by the emission 
of one nucleon, as  well a s  the partial n-atom levelwidths, 
rl, due to single-nucleon absorption: 

1.4-10-z 
3.5 
3 
6.2 
0.9 
0.4 
1.9 
0.6 
1.5 lo-: 
12 
0 i. LO-" 
2 

4f 
4f 
4f 

' id  
3d 

1 3 d  
12p 
13d 
I Y p  

r, =J Y:;,, (r) Im 3. , - (o;  r, r r )  Y.:.~~, (r')d3rd3r'. (11) 

In (11) \kiLM(r) is the pion wave function satisfying the 
KGF equation (1). The formulas necessary for the com- 
putation of the I',, (ll), are  given in the Appendix. The 
computation of the quantities rl for a number of nuclei 
and for the various n-atom levels was performed numer- 
ically. Here we used the n-meson optical potential pa- 
rameters given in Ref. 10. The nucleon wave functions 
satisfied the Schrlldinger equation with the Woods-Saxon 
potential. For the emitted nucleon we used a complex 
potential whose parameters can be adjusted to describe 
the scattering by nuclei of nucleons of energy - 140 MeV. 
The parameters for the nucleon optical potential were 
taken from Ref. 13, and a re  given in the Appendix. In 
Table I we give the values of the probabilities for one- 
nucleon emission upon the absorption of stopped pions, 
these probabilities being defined as  the ratios of the par- 
tial widths rl to the observed n-atom level width. It can 
be seen from the table that the probability for one-nu- 
cleon emission in finite nuclei without a a condensate i s  
small: - 10". 

13 
8 
9 

12 
13 
20 
34 
34 
30 
28 
36 
16 

664 Sov. Phys. JETP 46(4), O c t  1977 

4 
4 
4 
5 
7 
i 
5 
i 
8 
4.5 , 
4 



3. INFLUENCE OF THE PION CONDENSATE ON THE 
PROBABILITY FOR SINGLE-NUCLEON ABSORPTION 
IN  NUCLEAR MATTER AND IN  ATOMIC NUCLEI 

1. Nuclear matter 

Let us consider the case when a pion condensate ex- 
ists in nuclear matter at a density equal to the density, 
no= 0.5, of real nuclei. In this case the probability for 
the absorption of a slow pion by one nucleon in infinite 
nuclear matter is nonzero. This is due to the fact that, 
because of the processes of rescattering of the nucleons 
on the spin-isospin structure of characteristic dimen- 
sion kil spi l ,  the nucleon momentum is not conserved. 

Let us calculate the imaginary part, ~m.?~(w, k), of 
the polarization operator of the slow pion (w-  1, k- O), 
which part determines the probability for single-nucleon 
absorption in infinite nuclear matter with allowance for 
the existence of the condensate. Let us expand 1 m 3 ~  
x (w, k) in a power series in the amplitude, a, of the 
condensate field to fourth-order terms (because of the 
symmetry of the condensate field, ( 0 -  &)r, the expan- 
sion contains only terms with even powers of the ampli- 
tude), since terms - a2 vanish in the case of a conden- 
sate with wave vector ko=pF = 2 < 2.2. This is due to the 
nature of the function ImiP (w, k), (9). For 6.2 > ko > 2.2 
the dominant terms will be the terms - a2. The skeleton 
diagrams for the polarization operator have the follow- 
ing form: 

~m 9, ( a ,  k) = 

Here a wavy line designates the static condensate field 
with wave vector k,,, a hatched nucleon-condensate field 
interaction vertex takes into account the screening by 
the Fermi-liquid spin-spin interaction. Analytically, 
(12) has, in the isotopically invariant system, the form 

- M e p  j'e,.'k< 
Im&(w+I ,  k+O)=-8- 

nZ [ l+g-@ (0, k,) I2m2 

fZep2k02a2 
Im @ ( w ,  k,)  .a2(cpz---'lacpoz) +8 

[ l+g-@ (0, k , )  ]"[oZ-4(ko2/2M)212 

This formula has been written for the case when theuex- 
ternal" pion i s  charged. Here we have retained only 
those terms from (12) - a 4  which do not vanish simulta- 
neously with the terms - a2, i. e., we have dropped the 
terms - a41miP (w, h). We have also taken into account 
the fact that Im@(l, 0) = 0, (9), and have averaged the ex- 
pression over the angle between the momentum, k, of 
the "external" pion and the momentum, ko, of the con- 
densate field. Here (P{~P+, q-, qo} is the isotope vector of 
the condensate field (q2 = 1). The Fermi-liquid param- 
eters for the nuclear matter are  equal to 1.6, 1 2  e, 
2 0.8. C141 

Allowance for diagrams more complicated than the 

skeleton diagrams leads to additional screening of the 
terms in the expression (13). This screening can be 
estimated. Let us consider the terms of the order of 
a'. Since in the diagrams determining the screening 
the departure of the nucleons from the mass shell is - kouF, the pion-nucleon scattering amplitude 

entering into them can be assumed to be local (i. e., to 
be nucleon-momentum independent) to within (kovF/w)2. 
Therefore, it is convenient to rewrite the diagram (14) 
in the form 

Here x is the isotopic vector of the "external" pion (x2 
= 1). The screening of the diagram (15) is largely con- 
nected with the creation in the intermediate state of a 
particle and a hole possessing nonzero total energy and 
momentum (w = 1, k=&), and is described by the follow- 
ing equation: 

where the hatched rectangle represents the effective in- 
teraction of the nucleons for a carried-away energy w 
- 1 and momentum k=&. The first  term on the right- 
hand side of (16) is the irreducible TN scattering ampli- 
tude in the sense that it does not contain a particle and 
a hole in its vertical section. The main difference be- 
tween this amplitude and the amplitude (15) is connected 
with the creation of the A-N pair. As for the v - N - ~  ver- 
tex, (7), this difference is small (S200/0). With allow- 
ance for screening 

From (15)-(17) it is easy to obtain the expression 

I6 Mp, f'etk.l 
I m 9 N ( ~ , k ) = - - -  

3 nP [ l+g-@(O,  k,)] '02 

The screening in (18) leads to the decrease of 1mgN by 
a factor of 2-3 for g,,,- f,,,- 1. The screening of the 
terms - a 4  can be roughly estimated if we take into ac- 
count diagrams of the type (16), which lead to the ap- 
pearance of screening factors of the type (1 +@(w, ko))* 
x (1 + f+(w, 2ko))-2, which decreases the terms - a' by a 
factor of 3-4. 

Using the foregoing, let us give the lower limit of the 
effect of the condensate on the probability for single- 
nucleon absorption of slow pions in infinite nuclear mat- 
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ter. For ko = 2 

Let us compare this expression, using the relation be- 
tween the polarization operator and the optical potential 
(2?=>), with the imaginary part of the potential for the 
slow pion. The parameters of the optical potential have 
been found from the experimental data on the a atomsc101: 

The second term here is connected with the p-wave ab- 
sorption of the pion, and is the decisive term for the 
level widths of the n-mesic atomthat are  observed in 
experiment (the widths of the levels 2p, 3d, 4f, . . . ). 
Comparing (19) with the second term in (20), we see 
that, for a2 = 0.05, the contribution of the single-nucle- 
on absorption due to the n condensate is - 10". Let us 
also give an estimate for the ko> 2.2 case. In this case 
the terms - a2 are nonzero. For example, for k,= 2.5 

In this case the contribution of the single-nucleon ab- 
sorption becomes - l(a2 = 0.05). Consequently, the es- 
timates show that there occurs a substantial increase 
in the single-nucleon absorption probability in the case 
when a pion condensate exists (- 100-fold increase when 
a2= 0.05). Is' As will be shown below, the indicated 
single-nucleon absorption mechanism connected with the 
presence of a condensate remains important also infinite 
nuclei. 

2. Atomic nuclei 

In a finite system with dimension R =  r&/' the single- 
nucleon absorption probability determined by the exis- 
tence of a condensate can be computed, using the formu- 
las for the infinite medium, since the condensate-field 
momentum k o 2  pp >> R" - pp/~'/ ' ,  In doing this, it i s  
-necessary to take into account the dependence of the nu- 
cleon density and the condensate-field amplitude on the 
distance to the center of the nucleus.  hen^' 

n ( r )  ''1 

1 m B . = - 5 ( ~ )  ah(r )  ( k ~ ) ,  kB=pF=2, 

- n ( r )  ''> 
1rn9jN=- az ( r )  (kk ' )  , k0=2. 5.  

In experiment the emission of one nucleon with energy 
in the 140-MeV region from a nucleus upon the absorp- 
tion of a stopped pion i s  observed. The appearance of 
this nucleon i s  connected with single-nucleon absorption. 

Let us estimate the probability for emission of one 
nucleon from an atomic nucleus, assuming that a con- 
densate exists in the real nucleus. Having absorbed a 
stopped pion, a nucleon acquires an energy - 140 MeV, 
and is emitted from the nucleus with probability less than 
unity. This is connected with the fact that the mean free 
path of a nucleon with energy - 140 MeV in nuclear mat- 
ter is less than the nuclear dimension, and is - 2 F. 

Bearing in mind that the probability for the appearance 
of a nucleon with energy - 140 MeV at the point r i s  given 
by the formulas (22), the partial width, r ,  connected 
with the one-nucleon emission can be estimated from the 
for mula 

where ~ ( r )  gives the probability for the emission of a 
nucleon from the nucleus: 

, 8-I ( r )  =80-'n(r) /n0.  

Here 6, is the mean free path of the nucleon in the cen- 
tral region of the nucleus, and i s  equal to 2 F. We have 
computed with the aid of (22)-(24) the probabilities for 
one-nucleon emission (the ratio of the partial width to 
the experimental n-atom level width) for a number of 
nuclei with allowance for the n condensate. The perti- 
nent results are  given in Table I. It can be seen from 
the table that the presence of the condensate increases 
substantially the probability for one-nucleon emission. 

Let us discuss a few questions that arise in the anal- 
ysis of the mechanism of single-nucleon absorption of 
pions by finite nuclei. 

1. It is known that the wave functions of pions for the 
levels given in Table I lie largely outside the nucleus, 
and a re  damped inside the nucleus. The phenomenon of 
pion condensation is a volume effect, C3"1 and the ampli- 
tude of the condensate field is nonzero inside the nucle- 
us. However, in spite of this fact, as  the numerical 
calculations show, the one-nucleon emission probability 
is sensitive to the existence of a pion condensate inatom- 
ic nuclei, which fact is demonstrated by Fig. 1. In Fig. 
1 we show the dependence on the condensate radius of 
the probability for the emission of a nucleon from the 
4f level in lead upon the absorption of a n meson, If we 
assume that the existence domain of the condensate ex- 
tends to the nuclear-matter density, which is equal to 
0.7% then the presence of the condensate leads to a - 100-fold increase in the probability. Similar situa- 

FIG. 1. Dependence of the probability for the emission of one 
nucleon upon the absorption of a stopped pion (from the 4f 
level) for 2 0 8 ~ b  on the condensate radius. The quantities 0. Lo 
and 0. 7no are  the nucleon densities in the nucleus at  different 
distances to the center, no being the nucleon density at  the 
center of the nucleus. 
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tions are  observed in the other cases given in Table I. 

2. a finite system there ar ises  a problem connected 
with the fact that the condensate field has a quantum 
character.'" The meaning of this is a s  follows. In an 
infinite system the condensate field can be considered 
to be classical, i. e., to have a definite value at  each 
point in space. In a finite system the ground state is 
characterized by a wave function with zero mean field 
value. As has been shown in Refs. 1 and 4, the con- 
densation manifests itself in the fact that the positive 
and negative values of the field a t  a given point are equal- 
ly probable, and only the mean square of the field has a 
nonzero value. To the ground state of the finite system 
corresponds a symmetric wave function, xS(q), while to 
the first  excited state corresponds an antisymmetric 
wave function, xa(q). The function x (q) describes motion 
in two identical wells separated by a potential barrier. 3' 

The level spacing decreases exponentially with increas- 
ing volume, and in a sufficiently large system there 
arises degeneracy, which allows us to speak of a definite 
field value at  each point. In real nuclei the distance to 
the first  excited - levelcan be estimatedc4' a s  6 - 28 
xexp(- 0.96d/100} (for A = 50, 6 - 20 MeV; A =  200, 
6 -4 MeV). 

In the case of interest to us, when the frequency of the 
external influence (in the present case the frequency of 
the "external" pion) is high: a- 140 MeV >> 6, we can 
assume that the system is degenerate, and use the rep- 
resentation of the condensate as  a classical field, i. e., 
the use of the above-presented formulas is legitimate. 

3. In a finite system there exist fluctuations with 
characteristic dimension - (2pF)-' in the scalar density- 
Kohn density oscillations. The effect of these oscilla- 
tions on single-nucleon absorption has been taken into 
account in that in (10) and (11) we use nucleon Green's 
functions found for a finite system. The probabilities 
computed in this case a re  many times smaller than the 
probabilities obtained when the condensate is taken into 
account (see Table I). The question ar ises  why these 
oscillations do not give the same contribution a s  the n 
condensate, in spite of the fact that their amplitudes a re  
of the same order of magnitude. This i s  connected with 
the symmetry of the oscillations. The vanishing of the 
bare amplitude of the scattering on the Kohn oscilla- 
tions: 

(the wavy lines correspond to the scalar field) leads to 
a situation in which the imaginary part of the skeleton 
diagrams (12) - k4, which leads in i ts  turn to a decrease 
in the probability in the small k limit. 

4. In computing the probability for single-nucleon 
absorption of slow pions, we should take into account 
the processes in which the A isobar is created in the in- 
termediate states in the diagrams (12). This increases 
the probability roughly by a factor of one and a half. 
Such processes have been taken into account in that in 

the specific calculation (see Table I)  we used the experi- 
mental w-N scattering lengths (volumes). In this case, 
since the momentum of the condensate pion is high (ko 
kpF= 2), it is necessary to take the form factor (1 
+ 0. 23k2 0) 22112C31 into account in the w-%-A amplitude. Al-  
lowance for the effect of the s-wave scattering in the 
computation of the partial widths, rl, of the n-atom 
levels insignificantly changes the magnitudes of rl. 

4. CONCLUSIONS 

The main result of the work consists in the following. 
The existence in nuclei of a n condensate leads to a sub- 
stantial increase in the single-nucleon absorption prob- 
abiiity (-100-fold increase in the case of heavy nuclei; 
see Table I). This allows us to hope that slow-pion ab- 
sorption experiments will provide an answer to the ques- 
tion of the existence of a condensate in atomic nuclei. 

At present we have in the literature several papers on 
the measurement of stopped-pion absorption, from the 
results of which we can estimate the probability for one- 
nucleon emission. C16-181 In Ref. 16 Anderson et al. re- 
port the measurement of the energy spectrum of neu- 
trons up to an energy of 150 MeV. From the results of 
this work we can estimate the probability for one-nucle- 
on emission in Pb and U nuclei, which turns out to be - In the work by Dey et al. C1ll the energy spectrum 
of the neutrons released in the reaction 165~o(n-, m) was 
measured. The probability for the emission of a fast 
neutron in this case is also - lom3. This allows a rough 
estimation of the upper bound of the condensate-field 
amplitude. For ko = 2 the estimation yields a 2  5 5 X 

while for ko = 2.5 we have a 2 5  4X 10". Let us mention 
V. Butsev and D. ChultBm's work, '18' in which the prob- 
ability for the reaction 

was measured. The probability turned out to be less 
than lo-'. Since the estimate obtained from the results 
of Refs. 16 and 17 for the one-nucleon emission prob- 
abilities is a fairly rough estimate, a definitive con- 
clusion concerning the absence of a condensate in nuclei 
cannot be drawn. And from the results of Ref. 18 we 
cannot infer the nonexistence of a condensate, since the 
probability for such a reaction is determined by purely 
surface phenomena, i. e., by that region of the nucleus 
where the condensate does not exist. For a definitive 
answer to the posed question we need further experi- 
mental investigations. 

In conclusion, we thank 4. B. Migdal, E. T. ~ e i l i k -  
man, V. A. Karnaukhov, E. E. Sapershtein, V. A. 
Khodel', E. V. Boyrlrinov, and I. N. Polosukhin foruse- 
ful discussions and for interest in the work. 

APPENDIX 

It is convenient to compute the particle-hole propaga- 
tor in a finite system, using the coordinate representa- 
tion: 
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P ~ M  - Q (a; r, r') = z nhqh (r) qh' (r') G (E~+u;  r, r') 
a 

+ z nApr (r) ph.(r') G (er-a; r, r') , (A. 1) 
)r 

where the n, and ipa(r) are the occupation numbers and 
the single-particle wave function, computed in the 
Woods-Saxon potential, of the state X=n, j, I ,  m. The 
Green function G(E; r, r') satisfies the equation 

(8-R)G(e; r, r') =6 (r-r'), (A. 2) 

where 2 is the Hamiltonian of a particle with energy E - 140 MeV. The solution to Eq. (A. 2) is sought in the 
form 

~ ( 8 ;  r, r f ) = Z  Q;lrn(n) Ojlrn(n')~jl (E; r, rr), 
jlrn 

(A. 3) 

where 

G,, (&; r, rF)) satisfies the equation 

(&-Hit) G,, (8; r, r') =6 (r-r') /rrl, (A 4) 

+U, (r) (01) jl+Uo (l+r.)/2, (A. 5) 

where 

is the Woods-Saxon potential 

Us, is the spin-orbit splitting constant; UQ is the Cou- 
lomb potential of a uniformly charged sphere of radius 
R, R is the radius of the nucleus, and a is the diffusivity. 
The solution to Eq. (A. 5) can be represented in the form 

2M y " )  (E, r) y"' (E, r'), rGr' G~~ (6; r, r') = -{ 
h2m' y ( ' )  (E, r) y ( ' )  (E, r'), r>r" 

(A. 6) 

where the Wronskian of the equation, W ( & )  = y'1'y'2" 
-#""" has been reduced to unity. 

The functions y"' and y"' satisfy the following bound- 
ary conditions: y"'(0) = 0 and y'2'(r- -) is exponentially 
damped in the upper cln half-plane. It can easily be 
shown that I?, is determined by the quantity 

(A. 7) 

This formula allows us to compute Imd,(w; r, r'), which 
determines the partial width (11). The constants Uo and 
Us, in (A. 5) were chosen as  follows (w -  140 MeV): 

Uo=- (15+20i) MeV, U.I= (1.5-li) MeV. (A. 8) 

Let us give the final expression for the partial width rl, 
which determines the single-nucleon absorption prob- 
ability: 

(A. 9) 

where qnjr is the imaginary part of the phase shift in the 
wave function of the emitted nucleon, 

dr (A. 11) 

..(r)= (-1) 1+j+'h(2:,l' ': :} ( T ~ ~ ~ ) , ' ~ ~ ~ , R ~ ~ ' ( ~ )  

R,,,,(r) is the radial part of the nucleon wave function in 
the Woods-Saxon well, RiL(^/) is  the radial part of the 
r-meson wave function in a r-atom, and 

1 2  '/, j z  

x ( ~ L + u ~ I ~ ~ ( !  4n i;) ( 1 ,  '1, j i ] .  (A. 12) 
L S J  

The reduced matrix elements are equal to 

<L+lllv.llL)--L(L+l)c; <L-lIIv.IIL)=-(L+l)L'h, 

<L+ lllnllL)=(L+i)", (L-lllnllL)=-L". (A. 13) 

"1t is assumed that ti = m, = c = 1. 
' ) ~ o t i c e  that the nonconservation of momentum in a finite sys- 

tem leads to the result that the terms -a2 will be nonzero for 
ko=2,  which will give rise to some increase in the probability 
for the absorption caused by the condensate. 
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A large class of problems in the theory of linear waves can be solved only in the given-field (GF) 
approximation. In the present paper a new approximation, that of given intensity (GI), is developed, and 
takes into account the reaction to the phase of an intense wave. Physically this approximation is justified 
by the fact that the scales over which significant changes of the phase relation and transfer of the energy 
of the intense wave can take place can differ greatly in the presence of a mechanism that mismatches the 
phase relations between the interacting waves. It is shown that even in the absence of a phase mismatch 
the region in which the GI approximation is valid is larger than that of the G F  approximation. The GI 
approximation is used to analyze the stationary interaction of waves in inhomogeneous nonlinear media 
and the nonstationary interaction of waves in homogeneous media. Expressions are obtained for the 
intensities and spectra of the excited or amplified waves. A number of effects that do not appear in the 
GF approximation are observed, particularly the influence on the parametric amplification of the intensity 
at the supplementary frequency and the dependence of the structure of the harmonic spectrum under 
nonstationary excitation conditions on the shape of the main beam. 

PACS numbers: 03.40.Kf 

INTRODUCTION complexity is such that only asymptotic solutions a re  
obtained. - Numerical methods have recently been used 

The given-field (GF) approximation is widely used in 
to solve problems of nonlinear interaction of focused 

the theory of nonlinear interaction of waves in disper- 
beamsclol and of the interaction of waves in inhomoge- 

sive media. c1'31 In this approximation, the complex 
neous nonlinear media. ['11 At the same time, of con- 

amplitude of the intense initial wave is assumed to be 
siderable interest in the theory of nonlinear waves is the 

given, a s  a result of which the nonlinear equations development of analytic methods that make i t  possible 
(which a re  partial differential equations in the general 

to go beyond the framework of the G F  approximation 
case) become simply coupled equations, and this facili- 

and at the same time produce results that can be easily tates greatly their solution for real  wave beams and real  
interpreted. nonlinear media. The GF approximation, however, de- 

scribes correctly only the initial stage of the nonlinear 
wave interaction, so  long as the reaction of the excited 
or amplified waves on the intense wave can be neglected. 
If the reaction is taken into account, however, the non- 
linear wave equations can be solved exactly, even for 
homogeneous systems, only in a limited number of 
cases: for the interaction of plane waves or  narrow 
wave packets (the so-called quasistatic approximatiorf4') 
or for special cases of nonstationary wave interac- 
tion. ts-81 Recently, the method of the inverse scatter- 
ing problemcs1 has been applied to the analysis of non- 
linear wave interactions, although this method imposes 
no limitation on the wave coupling coefficient, but its 

In the present paper we develop, for the analysis of 
the interaction of waves in nonlinear dispersive media, 
the given-intensity (GI) approximation, in which, incon- 
t ras t  to  the GF approximation, the reaction on the phase 
of the exciting wave is taken into account. The physical 
basis of the proposed approximation is the difference be- 
tween the ra tes  of change of the amplitudes and phases 
of the interacting waves. Therefore the GI approxima- 
tion is effective in those cases where there is a mech- 
anism of mismatching the phases of the interacting 
waves, such a s  wave detuning or  group-velocity mis- 
match. However, even where there is no such mecha- 
nism, the accuracy of the solutions obtained by the GI 
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