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The dependence of the critical charge of nuclei on photon density is found. Values of Z, for anomalous 
nuclei are obtained. The calculations of Z, have been camed out taking into account the diffuse nature of 
the nuclear boundary and also the effect of screening of the Coulomb nuclear potential by the electron 
shell. The Thomas-Fermi statistical method is employed for describing the electron density in the shell. 
Two cases are considered: 1) screening by the usual electron shell formed by electrons occupying levels of 
the discrete spectrum (-m < 4 < m ) ;  2) screening by a vacuum shell which is formed by electrons situated 
in levels of energy c<-m. In the first case the dependence of Z,, on the degree of ionization of the 
atom q = (Z-N)/Z is also obtained. The properties of electron states at the critical point are considered 
in detail. Asymptotic formulas for the solutions of the Thomas-Fermi equation in two limiting cases have 
been obtained in the Appendix: q+O (weakly ionized atom) and q+ 1. 

PACS numbers: 31.20.Lr 

1. INTRODUCTION 

The critical charge of a nucleusc" and the spontaneous 
production of positrons for Z > Z,, have been investigated 
in many papers (a discussion of the different aspects of 
this problem, and of its significance for the verification 
of quantum electrodynamics in strong external fields and 
references to the literature of the subject can be found 
in Refs. 2-5). The usually quotedce9halues of 2, refer 
to the normal density of nuclear matter no = 0.17 nu- 
cleon. F3. At  the same time there a re  theoretical indi- 
c a t i o n ~ ~ ' ~ " ~ '  of the possibility of existence of anomalous 
nuclei with a density which differs significantly from no. 

Such a possibility was investigated for the first  time by 
~ i g d a l ~ ~ O '  who showed that nuclear matter beginningwith 
a certain density n = n, becomes unstable with respect to 
the production of r mesons, and this leads to a phase 
transition of the nucleus into a superdense state with the 
formation of a pion condensate. Subsequently this prob- 
lem was considered in greater detailrl'"s$ also the 
possibility of the existence of neutron (N>>Z) and super- 
charged (2-  1 3 7 ~ ' ~ )  nuclei was discussed. c121 Lee and 
Wick also gave arguments in favor of the existence of 
stable superdense nuclei. C'4'15' At present a large num- 
ber of papers is devoted to the problem of the n conden- 
sate, to its effect on different properties of nuclei and 
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to the search for nuclei with anomalous values of Z, A 
and of the nucleon density n. Apparently superdense 
states of nuclear matter can be obtained in a collision 
of two heavy ions. 

In connection with these papers we have carried out a 
calculation of Z, for anomalous nuclei, i, e., we have 
obtained the dependence of Z,, on the nucleon density n 
and on the parameter q=  Z/A. The calculation has been 
carried out both for a nuclear model with a sharp bound- 
ary and also taking into account the diffuse nature of the 
nuclear boundary (Sec. 2). In Secs. 3 and 4 an estimate 
is given of the change in the critical charge AZ, a s  a 
result of the screening of the Coulomb field of the nu- 
cleus by electrons. An investigation i s  made of the 
screening by the vacuum ~ h e 1 1 ' ~ " ~ ~  of an above critical 
atom and also by the usual electron shell (electrons in 
levels of energy c, with - m < &, < m). We have obtained 
the dependence of AZ, on the degree of ionization of the 
atom q =  1 - N/Z. The calculation is carried out in the 
Thomas-Fermi approximation. The results obtained 
are of interest in connection with design of an experi- 
ment on observing the spontaneous production of posi- 
trons in the collision of two heavy ions, since when the 
nuclei approach to a distance R < R, = O.lfi/rn,c they are  
surrounded by the electron shell of the united atom. In 
Sec. 5 we have examined in detail the physical proper- 
ties of atomic levels in the case of Z close to 2,. In the 
Appendix we have given the asymptotic expansions in the 
Thomas-Fermi equation utilized in calculating the effect 
of screening. 

In this paper we use the system of units A= c = me= 1 
and we have introduced the notation c = Za,  Q! = 2 = 1/137, 
Z is the nuclear charge, A is the number of nucleons in 
the nucleus, R = r o ~ l I S  is the nuclear radius, n is the 
density of nuclear matter, np = rpz i s  the proton density, 
6 = ndn;". For normal heavy nuclei ro= 1.1 F, A= 2.62, 
n = q, = 3/4rr! = 0.18  nucleon/^^, np = n:" = 0. 385no. 

We write the potential energy of the electron in the 
form 

where 

The cut-off function f ( r / ~ )  takes into account the finite 
dimensions of the nucleus. Its introduction eliminates 
the "collapse to the center" in the Dirac equationt1' and 
is required for the mathematically correct formulation 
of the problem for t; > 1. 

The value of Z for which the discrete level drops to 
the boundary of the lower continuum E = - 1 is called the 
critical nuclear charge. For its determination we have 
the transcendental equation2' 

FIG. 1. The critical nuclear charge for the levels. 
Along the horizontal axis i s  plotted the ratio of the proton den- 
sities 6 = n d n F ) .  The dotted curve takes into account the dif- 
fuse nature of the nuclear boundary; the other curves refer to 
a nucleus with a sharp boundary (the cut-off model I1 of Ref. 7 
is  used, i .e . ,  f ( p ) = ( 3 - p 2 ) / 2  for e < p = r / R < l ) .  

where 

5 is the logarithmic derivative of the internal (Y< R) 
wave function at the edge of the nucleus, s is the spin of 
the particle (s = 0, i). For scalar particles one should 
replace in the definition of the parameter v the total 
angular momentum j by the orbital angular momentum 1. 
For the ground 1s level we have in both cases 

In subsequent discussion we set p = Y/R, f ( p )  = (3 - p2)/2 
(the cut-off model II according to Ref. 7), which corre- 
sponds to a uniform charge distribution: 

The numerical solution of (2.2) yields the curve t;,,(R) 
for the corresponding level. Its intersection with the 
curve R = r,,A1I3 (where yo= 1.1 F and Z = 0.3854) deter- 
mines the critical charge I;,= t;::' and the radius & for 
nuclei with a normal proton density. The values of EL:' 
and & are given in Table I1 (the subscript zero i s  omit- 
ted for them)-see Sec. 5. 

Further, the relation 

enables us to  obtain from the curve b,, = t;,(R) the de- 
sired dependence of g, on the proton density. The re- 
sult of the calculation i s  shown in Fig. 1. 

The critical charge 2, decreases with increasing 6 
and in the limit 6 - 0 approaches the value Z = 137, cor- 
responding to a point charge. However, this approach 
is quite slow. This follows from Fig. 1, and also from 
the asymptotic relation: 
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(for the ground Isll2 level). In order to obtain this for- 
mula we note that c,(R) for R- 0 can be expanded in 
powers of the small parameter (ln~)". In particular, 
for the ground state we havec7' 

f,, (R) =If nZ/2 InZR+ . . 

Taking into account the fact that 

we obtain formula (2.4) in which at = 9n2/2, q = lnco = 11.7. 
For excited levels the dependence of Z, on 6 is more 
pronounced (cf., the curves for the Isll2 and 2pl12 lev- 
els in Fig. 1, and also Fig. 2 in Ref. 17. 

The opposite limiting case 6 - 0 corresponds to R >> 1. 
Here the dependence of fcr on R becomes linear: 6,(R) 
= &R+ &+ . , with the coefficients & and O2 depending 
on the distribution of the electric charge in the nucle- 
us. C181 From this we obtain 

where bl and 4 are certain constants. This formula 
qualitatively describes the increase in 6, a s  the proton 
density diminishes, but in the region 6 2 10" of interest 
to us the accuracy of the asymptotic formula (2.5) i s  yet 
insufficiently good, and therefore a numerical calcula- 
tion is required. 

Until now we have been discussing the model of a nu- 
cleus with a sharp edge. We make an estimate of the 
amount by which Z,, changes when the diffuse nature of 
the nuclear boundary is taken into account. Taking for 
np(r) the Woods-Saxon distribution 

we assume that the width of the surface layer b is deter- 
mined by the range of nuclear forces and therefore has 
the same value a s  in ordinary nuclei. The condition R 
>> b enables us to calculate the corredion hgz '  by means 
of perturbation theory. 

Let the value t; = LC, correspond to the potential Vc,(r) 
= - 6,,v(r). We find the change in 5, as  the perturbing 
potential 6 V(Y) is switched on from the condition 6& = (6V 
- 6gCPv) = 0: 

Here we have 

g(r) and f (r) are the radial functions for the upper and 
lower components of the Dirac bispinor defined in ac- 
cordance with Ref. 19. The wave functions g(r), f (r) 
and xc,(r) refer to the critical point g =gc,, c = - 1. The 
normalization condition (2.9) usual for the states of the 

discrete spectrum (- 1 < E < 1) is preserved also at the 
edge of the lower continuum, due to the presence of the 
Coulomb barrier in the effective potential. C2'7 

We note that B is the slope of the level at the point 
where it intersects the boundary of the negative contin- 
uum: 

The value of f l  determines the threshold behavior of the 
probability for the spontaneous production of posi- 
trons. t~~~ The values of f, and B for the first four lev- 
els of the discrete spectrum are  given below (cf., Table 
m. 

Since R >> b, one can utilize in the integration the for- 
mula 

and determine the constant C: 

The smearing out of the edge of the nucleus is equivalent 
to perturbing the proton density 

6n,(r) = C { l f  exp [ (r-R)/b])-'-n,O(R-r) 
=- (nblR)Zn,[O(R-r)+'/Jle6'(R-r)+. . .], (2.12) 

which corresponds to the perturbation of the potential 
- 

1 
6V ( r )  =ez 4nr1' dr' (- - 

Substituting these expressions in (2.8) we obtain. 

Calculation using this formula with b = 0.5 F (the same 
value as for ordinary nucleic211) yields the dotted curve . 
in Fig. 1. The numerical values of the corredion A Z ~ '  
for np = nko' are given in Table I. The correction AZ:' 
increases sharply for superdense nuclei which is ex- 
plained by the factor R" in front of the integral in (2.13). 
In the case of low density of nuclear matter (6 < 0.5) the 
correction for the diffuse nature of the nuclear boundary 
is negligibly small. 

Figure 2 shows the dependence of the slope of the 
ground Isl,, level at the boundary of the lower contin- 
uum on 6 = n,,/ni0'. 

We obtain estimates of possible values of the param- 
eter 6. According to the latest results in the theory of 
n c~ndensation'~'~ two regions of stability of anomalous 
nuclei are possible: 

1) superdense nuclei for which we have 

<4<A,=200f ( n ,  ' /2)  -10'-lo3, q=Z/A=0,5, r~-(5-10)n~; 

2) neutron nuclei with 
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TABLE I. The critical nuclear charge for the first four 
levels of the discrete spectrum. 
- I 1 1 31, I / 3p1r  

Note. ')Z,,  is the critical charge for a bare nucleus with a 
sharp edge (cut-off model 11). 

')The origin of the corrections AZ:?: m;;--diffuse nature of 
the nuclear edge, &;:)--screening by the shell of the neutral 
atom (q = 0), AZ$(,:)-screening by the vacuum shell. 

3 )~ f t er  the values of AZL;) there is indicated in brackets the 
number of electrons which were already present in the vacu- 
um shell at the moment that the given sublevel enters the 
lower continuum. 

4 ) ~  numbers refer to nuclei with normal proton density 
(6=1). 

A>Az-2.  105(n/no)'[f (n ,  0 )  q-50 (n/n,)'"A-'Is. 

Here f(n, 0) = E (n, ?I)/& (no, +); & (n, 0) is the volume energy 
per particle in the nucleus. For these two regions of 
stability we have 

For neutron nuclei with A- lo6 we o b W .  6 - 0.01 for n 
=no and 6-0.1 for n = 5no. The values of Z, shown in 
Fig. 1 include both stability regions. 

Superdense nuclei (A<Al) can be both below critical 
and above critical. The boundary between these two re- 
gions is quite sharp; for critical nuclei A = 320-330 for 
3 < 6 < 10. On the other hand, neutron nuclei (A > A2)  have 
Z/Z,- 20-100 and lie in the beyond critical region. 
Such nuclei, if they exist in nature, must be surrounded 
by a vacuum shell including many electrons. c161 

3. EFFECT OF  SCREENING O N  Z,, 

The attraction of an electron by the nucleus is weak- 
ened due to the screening action of the electron shell, 
and this leads to  an increase in Z,,. Two types of 

' 

screening are possible: a) screening by atomic elec- 
trons situated in the usual (- 1 < E, < 1) levels of the dis- 
crete spectrum; b) screening by the vacuum shell C'lev- 
els" with E, < - I), forming around a nucleus with a 

FIG. 2. The slope of the level at the critical point (cut- 
off model 11). 

charge Z >Z,. An estimate of these effects is impor- 
tant in connection with designing an experiment on the 
spontaneous production of positrons in collisions of heavy 
nuclei. Such an experiment can be carried out not only 
with bare nuclei, but also with beams of bare nuclei Z1 
incident on a usual heavy target Z, if the following con- 
ditions a re  satisfiedca3 

The possibility of working with an ordinary target con- 
sisting of neutral atoms (Zz) makes the carrying out of 
the experiment much easier. But in this case the quasi- 
molecule formed during the time of close approach of the 
nuclei is surrounded by electrons of the external shells 
and it is necessary to calculate Z,, taking screening in- 
to account. In the region of uranium 

where 4,- 0.1 is the critical distance between nucleis', 
r, is the radius of the K-shell with R = R,,, Fa is the mean 
radius of the atom. In virtue of the conditions (3.1) it 
is sufficient for carrying out a calculation of screening 
in a system of two nuclei separated by distance R < R,, 
to consider the problem of a spherical superheavy nu- 
cleus with the total charge Z=Z1 +Z,. For Z =Z, the 
velocity of K-electrons is of the order of the velocity of 
light, but for the majority of the electrons of the atomic 
shell the distance from the nucleus r- 7,, >> 1, and the 
energy E,- r;"' dl3<< 1, and therefore the non- 
relativistic Thomas-Fermi model is applicable to de- 
scribe them. 

The selfconsistent potential for the electron taking 
screening into account takes on the form V(r) = - gv, (r), 
where 

cp (5 )  u ( r )  + qro-', r<ro 

r 2 r ,  

The function v(r) is defined in (2. I), ro is the radius of 
the positive ion, q =  (2-N)/Z is the degree of ioniza- 
tion, q(x) i s  the solution of the Thomas-Fermi equa- 
tion 

with the boundary conditions 

Here x is the dimensionless variable: 

Substituting the perturbation 6 V( r )  = t;[v(r)-v,(r)] into 
(2.7) we take into account that the principal contribution 
to the matrix element (6 fi comes from the region r- r, 
<<Fa in which one can utilize the expansion (A. 1). We 
denote by AZ:r(q) the increase in the critical charge due 
to screening. In the given approximation the dependence 
on the degree of ionization q can be factored: 
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t \ FIG. 3. Dependence of the cor- 
rection due to screening on the 
degree of ionization of the atom q. 

here y = y(q) is the slope of the curve q(x) at the origin, 
cf., formula (A. 2). Numerical calculation yields for 
the function F(q) the curve shown in Fig. 3. We also 
give its asymptotic expansion: 

(the derivation of these formulas, and also certain de- 
tails of the numerical calculation a re  discussed in the 
Appendix: the constants a, and a4 are also given there). 

The correction AZ:?' for neutral (q = 0) atoms was ob- 
tained by a numerical solution of the Dirac equation with 
the potential V(r) = - ~Y-'~,(X) and the energy & = - 1; to 
carry this out we used the phase method described in 
Ref. 23. The values of A Z ~ '  obtained in this manner 
are shown in Table I. 

For q not too close to unity the function F(q) varies 
slowly (see Fig. 3). Therefore the correction for 
screening in an ion with q= 0.5 is almost the same as 
in the case of complete screening: F(0.5) = 0.90'7. This 
is explained by the fact that a s  the degree of ionization 
increases the electron shell draws in towards the nu- 
cleus (xo(q) decreases with increasing q), and this par- 
tially compensates for the decrease in the screening 
charge of the shell equal to Z(1-q). 

In deriving formulas (3.5) and (3.6) the potential 6 V(r) 
was replaced by its value 6 V(0) at the centre of the nu- 
cleus. Such an approximation is justified for rK << ro . 
This inequality i s  satisfied in virtue of the fact that the 
radius of the K-shell i s  r, - 1, while the radius of the 
ion is r, - a". 

Utilizing the asymptotic expansion (A. 11) for xo(q)we 
write the condition for the applicability of formula (3.5) 
in the form 

This condition is violated only in the case of very high 
degree of ionization (q- 1) when the Thomas-Fermi ap- 
proximation itself ceases to be applicable. Since inthis 
case the correction for screening also disappears for- 
mulas (3.5), (3.6) can be utilized practically always. 

4. VACUUM SCREENING 

After the spontaneous production of positrons and 
their departure to infinity a vacuum shell remains sur- 
rounding the nucleus. We take the distribution of charge 
in it to be given by the relativistic Thomas-Fermi mod- 
el. '''' For the first levels of the discrete spectrum the 
parameter Z,e9 = 0.085g, << 1. In this case the selfcon- 
sistent potential V(r) can be expanded in series in 
powers of zeS:  

4 
V ( r )  =V,  ( r )  + - (Zea)'Vi ( r )  +. . . 

371 

In this expression Vo(r)  given by formula (2. I), while 

V , ( r )  =(In ( 5 / R )  +c,)S/r-I/,$, ( x )  , R<r<r.; 
(4.2) 

V , ( r )  = ( l n  ( f l R )  +c l )5 / r ,  r>r.. 

Here x =  Y/Y, = 2r/g, r, = b/2 is the radius of the vacuum 
she& the values of cl and A(x) are  given in Ref. 16. 
The correction - Vl in (4.1) describes the distortion of 
the electrostatic potential of the nucleus by the vacuum 
electrons situated in "levels" of energy E, < - 1. 

We represent (4.2) in the following form: 

where 

~ ( r ) = R - ' c [  (In (25JR) - " / ~ ) f  ( p )  -g (p )  ] for O<r<R, 

for R<r<r., 

w(r)=O for r>r.. 

Here p = r / ~ ,  f(p) is the cut-off function for the Coulomb 
potential inside the nucleus (cf., (2. I)), 

We note that g(l)=O for any kind of cut-off. If f ( p ) =  1, 
which corresponds to the cut-off model I (cf. , Ref. 7), 
then g(p) = (1 - $)/6. For model I1 we have 

Substituting (4.3) into (2.7) and taking into account the 
fact that the total number of electrons in the vacuum 
shell is equal to 

cl = - 1.38 for model I& we calculate the shift in 2, due 
to the screening effect of the vacuum shell to be given 
by: 

~ z t : '  = ( I - ~ )  N., (4.6) 
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Cr.lZ 

P' [ $ S C ~  (In (t../R) +ci) 1 -' l w ( r )  x.2 ( r )  dr, (4.7) 

where ,5 is the slope of the level at the boundary of the 
lower continuum. If the radius of the vacuum shell were 
small compared to the radius of the K shell 

then A Z ~ '  would have been equal to N,. In actual fact 
r, and r, are  quantities of the same order of magnitude; 
this leads to the appearance of the factor (1 - p) which 
decreases the correction A Z ~ ' .  

The values of J.L and A Z ~ '  obtained from formula (4.7) 
are shown in Table I. It should be emphasized that the 
correction A Z ~ '  refers to the case when at the moment 
that a particular level drops into the lower continuum 
all the preceding states (E, < - 1) are filled by vacuum 
electrons. If the initial nucleus is bare (i. e., complete- 
ly stripped), then for this it is necessary to wait a time 
7- y" in order for the positrons from the corresponding 
quasistationary levels to be removed to infinity. 5' 

Of the effects considered by us which increase 2, the 
greatest is the increase in Z,, due to vacuum screening. 
This can be easily understood since the corresponding 
charge density n,(r) is situated at the same distances 
from the nucleus as the electron at the critical point g 
= t,. But the effect of vacuum screening is not great 
for the lowest levels (Isll2 and 2pl12), which are  of the 
greatest interest from the experimental point of view. 

We make two additional remarks. 

1. Let a level of angular momentum j be lowered into 
the lower continuum. From this level 2j + 1 positrons 
will be emitted with the number of electrons in the vacu- 
um shell N, increasing by unity with the emission of each 
positron. A consequence of this is the splitting of 2, 
for a given level into 2j + 1 equidistant values separated 
by an interval 1-p (cf., formula (4.6)). The energy 
spectrum of the positrons emitted by the nucleus con- 
sists of 2j+ 1 closely spaced lines. For the lowest lev- 
els of the discrete spectrum Z,, is split into two values, 
since j = g. The corresponding values of u'~' are 
shown in Table I with the number of electrons Ne in the 
vacuum shell being shown for each case. 

The final value of 2, is obtained by summing 2::' and 
the different corrections ~22 ' .  For example, for the 
K shell in the case of the bare nucleus Z,,= 169.2 when 
the first positron is emitted and 2, = 170.0 when the 
second positron is emitted. 

2. For the lowest levels the number of electrons in 
the vacuum shell Ne is not great and therefore the ques- 
tion arises of the accuracy of the Thomas-Fermi statis- 
tical method. With this aim in mind the calculation of 
h~:: '  was carried out by a different method utilizing the 
density of the vacuum K-electrons n,(r) obtained by 
~ ~ u l a s s ~ ~ ~ ~ ~  by means of a numerical solution of the 
Dirac equation. The correction for screening has the 
following form 

e2 
AZ'" - ' ~ x . . 2  ( r )  n. (r') d'rd3rr=N. (I-" ). 

" -7 

After certain transformations we obtain: 

I 1 ' " dr' 
5 =J d q C T 2 ( r )  [ I  -_I *(r f )dr '  - j  f i ( r T )  7 , 

?- 1 
0 D 

where 

The normalized density p,(r) for the beyond critical 
K shell (Isll2, Ne = 2) has been calculated by ~ ~ u l a s s ~ ~ ~ ~ '  
for the following values of the parameters: t,, = 1.383, 
R = 0.0259, which corresponds to the critical charge of 
the nucleus for the 2pIl2 level (with f (T/R) = B(R-Y), i. e. , 
for the cut-off model I). A calculation of the slope of the 
2plI2 level according to formula (2.8) yields P= 9.66, a s  
a result of which we obtain from (4.9) p = 0.310. On the 
other hand the use of the Thomas-Fermi model for ne(r) 
(cf., formula (4.7)) yields6' p,, =O. 247. This leads to 
a difference of - 100/o in the values of the correction A Z ~ ' .  
It i s  natural to expect that in going over to the next lev- 
els the accuracy of the Thomas-Fermi method improves. 

5. PROPERTIES OF ELECTRON STATES FOR Z 2137 

Calculations were made of different quantities char- 
acterizing the state of the electron for Z 3 137; in doing 
so particular attention was paid to the critical point Z 
=Z,,, E = - 1. The results of the calculations for the first 
four levels of the discrete spectrum are collected in 
Table 11. We explain the notation. 

The meaning of the quantities ~ 1 ,  to, t,, and /3= - [&/ 
d ~ ] , = , ~ ,  is clear from Fig. 4. Further, x = r  ( j  +$) i s  
an integral of the motion for a Dirac electron in a cenc 
t ral  field, C191 R is the nuclear radius at the critical 
point. In obtaining 5, and R the dependence R =  rO~l i3  
was utilized with the parameters r,, = 1.1 F and A/Z = 2.6. 
The quantities T ,  r,,,, 9-0, wR, wo and v characterize 
the probability distribution for an electron for Z =Z,,: 
r,,, is the point at which the electron density x:,(Y) has 

TABLE 11. 

Note. All the quantities given in the table have been calculated for 
S = 1, i.e., for the same value of the proton density as in ordinary 
heavy nuclei. The lengths R ,  r,,, and F are expressed in units of 
ff/m,c = 386.1 F. 
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FIG. 4. Approximate var- 
iation of the energy of the 
level E with increasing b' 
= za. 

its maximum value, ro is the quasiclassical turning 
point," w, is the probability of finding the electronwith- 
in the nucleus. They are equal to 

" 
i - x. f ( r )  rdr, r,= (bz-x') /2L, 

where 

- 
1 

- 
ru, - g2 ( r )  ?dr - - 

l+v ' (5.3) " 0 

The function x,,(r) =  fa)'^^ refers to the energy c 
= - 1 and is normalized in accordance with the condition 
(2.9). 

We discuss the results obtained above. From Table 
II it can be seen that r,,- R, while the average radius 
5 is by a factor of 10-20 greater than R. Thus, for Z 
=Z, the electron is basically situated outside the nucle- 
us. In th is  respect the situation reminds one of the deu- 
teron, but with the significant difference that the elec- 
tron is completely relativistic and is held at distances 
r- K/mc = 1 by the Coulomb barrier in the effective po- 
tential U(r). Therefore it is not accidental that r and ro 
are quantities of the same order of magnitude. InTable 
I1 o = [(re - ~ ~ ) / 5 ~ ] ~ / ~  is the dispersion of the electron 
cloud. For Z < 137 one can neglect the nuclear radius 
and utilize the wave functions for a point charge. For 
example, for the ground lslla level we have 

FIG. 5. Probability of findin% 
the electron inside the nucleus' 
for Z= 2, (the radius R is 
measured in units of E/m& 
= 386 F) . 

(for f << 1 these formulas go over into the well-known ex- 
pressions for the nonrelativistic hydrogen atom). With 
increasing Z the average radius of the K shell decreases 
monotonically, while the dispersion a increases. This 
tendency is preserved also in going over into the region 
t> 1. 

If one departs from the relation between R and Z spec- 
ified by the formula R =  Y~A"', one can obtain the curve 
f, = &=,(R) (cf., Fig. 2 in Ref. 7), and also one can study 
the dependence of different quantities8' on the nuclear 
radius R. For the probability w, we obtain with good 
accuracy the linear dependence w, = const R (cf., Fig. 
5). We show that this fact is associated with ther'col- 
lapse towards the center" in the Mrac equation with the 
Coulomb potential V(Y) = - L/Y. 

Retaining in the system of equationsc1g' for the radial 
function g(r) and f(r) the terms most singular at theori- 
gin, we obtain the behavior of g and f a s  r- 0: 

f ( r )  , g (r) a rdxl-tl-i. (5.5) 

For the second- (singular) solution we have 

As long a s  t; < I xl = j + 4 there exists a criterion for the 
choice of the solution of the Dirac equation regular at 
the origin. Collapse towards the center arises whenthe 
coupling constant has the value f = I x I = j + $. In this 
case f and g have at the origin a singularity which 
is not permissible from the point of quantum mechanics. 

The cutting off of the Coulomb potential at Y< R makes 
the wave function finite at the origin even for Z =Z,, with. 

(I)~(Y) = x,,(r)/r, w, - @&(O)). Although the probability 
w, is small for R << ti/mc, nevertheless the limiting 
transition to R = 0 is impossible. This can also be seen 
from the asymptotic formulas for c1 (the position of the 
levels for 2 = 137), to and t;,. These quantities arenon- 
analytic with respect to R at the point R= 0. Thus in the 
case of the ground IsllB state we have 

(here A = - lnR >> 1). 

The quantity wo is equal to the probability of penetra- 
tion of the electron into the classically forbidden region 
r> 16 and is quite large, particularly for the lowest lev- 
els. For highly excited states with f >> ,> XI we have 

where 
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The ratio of the probabilities v = wz/wi characterizes 
the degree of "relativism" of the electron: at the criti- 
cal point v is of order of magnitude unity. In terms of 
this parameter one can express the magnetic moment of 
the electron for 5 = b,: 

All the quantities collected in Table II refer to defi- 
nitevalues of the parameters ro and A/Z. In order to 
make a recalculation for other values of these param- 
eters it is not difficult to obtain the following formulas: 

where A =  dlngcr/dlnR. The values of -dl, /& for 6 = 1 
are given in Table 11; they enable us to recalculate LC, 
for any desired values of the proton density, which are 
not too different from the value of niO' adopted by us. 

6. CONCLUSION 

1. In connection with the problem of anomalous nu- 
clei the dependence of the critical charge 2, on the pro- 
ton density has been obtained. It is shown that super- 
dense nuclei, the possibility of which is indicated by the 
theory of Migdal, 110-13' will be above critical for A 
> 320-330. 

2. For an atom with an arbitrary degree of ionization 
we have calculated Z,, and also we have obtained the 
change in 2, due to the screening of the field of the nu- 
cleus by the vacuum shell. An estimate of these effects 
is particularly important in connection with designing an 
experiment on the spontaneous production of positrons 
in collision of heavy nuclei (of the type U+ U). Indeed, 
the total charge of the two nuclei from the neighborhood 
of uranium exceeds by only 15-20 units the value of Zcr 
= 170 calculated without taking screening into a c c ~ u n t . ~ ' ~ '  
Therefore an increase in 2, by 10-15 units would have 
made the carrying out of such an experiment consider- 
ably more difficult. 

However it turns out that screening decreases the crit- 
ical charge only by an amount AZ,,- 1.5, which does 
not close off the possibility of carrying out an experi- 
ment with heavy elements known at present. 

3. Numerical calculations have been carried out of 
different physical quantities characterizing the state of 
an electron at the boundary of the negative continuum 
(Z =Zc,). From these results, which were discussed in 
detail in Sec. 5, we note the following one. 

It is shown that the probability of an electron existing 
within the nucleus is wR = cR- lo*, while the mean radi- 
us of the electron state 7 exceeds the nuclear radius R 
by an order of magnitude. Therefore the quantities g, 
8, v, . . . have only aweak dependence on the specific form 
of cutting off the Coulomb potential inside the nucleus; 
basically they are determined by the region Y >  R inwhich 
the potential V(Y) is known. This guarantees good ac- 
curacy for theoretical calculations of the critical param- 
eters (t,, 8, xtr(r), etc. ), in spite of the fact that these 

quantities are nonanalytic with respect to R at the point 
R= 0 and the limiting transition to the point charge R -  0 
in the region g > 1 is in principle impossible. 

APPENDIX. ALLOWANCE FOR SCREENING IN  THE 
THOMAS-FERMI MODEL 

As x- 0 the solution of (3.3) has the expansion 

(the Baker series). Here 

c3 =-f, c4= 0; the remaining coefficients c, are expressed 
as polynomials in terms of y (explicit expressions for 
them up to n = 1 are given in the paper by Feynman et 
al. Cz51 and up to n = 17 in the paper by Kobayashi et 
It is more convenient to utilize the series (A. 1) for 
small x, however in this case it is necessary to know 
the dependence of the slope y on the degree of ionization 
q and for this it is necessary to solve equation (3.3) 
over the whole region 0 xc  xo(q) taking into account the 
boundary conditions (3.4). We obtain y = y(q) in two 
limiting cases: q- 0 and q - 1. 

In the former case xo(q) - m. Setting 

cp ( z )  =cpo ( 2 )  Y ( z )  r (A. 3) 

where cpo(x) is the w e l l - k n ~ w n ~ ~ ~ ' ~ ~ '  solution for a neu- 
tral atom we obtain 

y~1+2y1cp;/cpo+ ( c F o ~ ~ ) " 2 ( ~ - ~ " ~ )  =O. (A. 4) 

Since cpo(x) = 1 4 4 ~ ' ~  as x- -, then in the region 1 << x 
e x o  the exact equation (A. 4) is simplified: 

and its solution has the scaling property: y (x) = w(t), t 
= x/xo, 0 < t < 1. The solution which we require is fixed 
by the boundary conditions w(0) = 1, w(1) = 0. Numerical 
integration of equation (A. 5) shows that the functionw(t) 
is a monotonically decreasing one with 

1-p,F'+. . ., t+O , 
w ( t ) = (  p 2 ( l - t ) +  ..., t-+i ' 

(A. 6) 
p-(vT3+7)/2=7.772, p,=1.040, p r= -w1( l )=7 .439 .  

For x<< xo the function cp(x) can also be obtained by 
another method, specifically by means of the perturba- 
tion theory developed by FermicZ7': 

Here k is a small parameter: 

k=y ( q )  -y  ( 0 )  ; (A. 8) 

(A. 9) 
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FIG. 6. Dependence of the quantity qit3xo on the degree of 
ionization q for positive ions; the radius of the ion in atomic 
units i s  r o =  0 . 8 8 5 ~ * ' ~ ~ ~ ~ ( ~ ) .  The solid curve i s  constructed 
using equation (A. 11); in doing so  the first two terms of the 
expansion are  taken into account. Points denote results of a 
numerical solution of the Thomas-Fermi equation. 

As q -  0 there is a connecting region 1 <<x << xo(q) in 
which the solutions of (A. 3) and (A. 7 )  coincide; from 
here one determines the dependence of y on q. In carry. 
ing out this calculation we utilize the expansion 

* 

p (x) -144x-a [I + (-1) "q"z-n.], 
"-1 

(A. 10) 

where~",281 6 = (4%-7)/2 = 0.7720.. . , q1 = 13.271. From 
(A 9) as x- we obtain: 

We state the final formulas for q - 0: 

(A. 1 1 )  

(A. 12) 

Here 

The expansion parameter in (A. 11) is qs. We can 
verify this by substituting (x)  into (A. 4 )  in the form 

* $, (x) = C w" ( t )  x-"". 

For w,(t) we obtain a chain of equations from whichthese 
functions are  determined sequentially. The first of 
these coincides with (A. 5); we note that wo(t) =- w ( t ) .  The 
boundary conditions have the form w,(O) = 6,,,, w , ( l )  = 0. 
The smallness of the exponent s leads to the fact that in 
the practically important region 0.01 < q < 0.1  one cannot 
restrict oneself to only the first  term of the series 
(A. 11). Taking into account two terms of this series al- 
ready guarantees very good accuracy (cf., Fig. 6 ) .  

The dependence of the slope 9' (0) = - y (0)  - C,qT + . . . 
on q is exceedingly weak for small q, and this creates 
definite difficulties in numerical calculations. The only 
attempt known to us of determining the asymptotic ex- 
pressions for x, and 6 a s  q - 0  is due to Fermi and 
~ m a l d i ~ ' ~ ~  who have proposed on the basis of numerical 
calculations the interpolation formula k = 0.0838.  As 
can be seen from (A. 12) the power exponent r in the ex- 
act asymptotic expression differs somewhat from 3. 

The case q -  1 is simpler. The substitution cp = q#, 
t = x/xo brings the Thomas-Fermi equation into the form 
($ = d$/dt)  

with the boundary conditions 

$ ( O )  =TI,  $ ( I )  ==O, +(I) =-,I. (A. 14) 

Since xo and 13- 0 ,  it is convenient to represent $(t)  in 
the form of a series in powers of p (cf., the work of 
Plindov and ~ m i t r i e v a ~ ~ ~ l ) .  As a result we have as  q - 1 

(A. 1 5 )  

The expansions (3 .7)  follow directly from (A 11) and 
(A. 15); in these expansions a, = [c,Y(o)]" r; 0.062, a, 
= ~ ( 0 ) " ( n / 1 6 ) ~ / ~ =  0.21. 

The evaluation of the quantities y(q),  xo(q) and F(q) 
for q 2 0 . 1  was carried out utilizing equation (A. 13). 
The values of the corrections for screening AZ:: given 
in Table I were obtained by a numerical solution of the 
Dirac equation with the aid of the phase method. For 
the ground state this correction had been calculated pre- 
viously. C23' 

')A brief explanation of the results of this section has been 
published previously. Taking advantage of the present 
opportunity we wish to correct a misprint on p. 256 of Ref. 
17 [p. 228 of the translation]: the estimate of the change 
AZ, due to the diffuse nature of the nuclear boundary amounts 
to 0.7% (instead of the 7% given there). 

')see Ref. 7. The possibility of obtaining for Z, an equation of 
the form (2.2) is associated with the fact that the Dirac and 
the Klein-Gordon equations in a Coulomb field V(r) = - S/r at 
an energy E = - 1 have exact solutions expressed in terms of 
the MacDonald function. We note that the function Ki , ( z )  is 
real for - m < v < m  andz>O. 

3'~11 lengths a re  measured in units of E/./m,c = 386 F; in these 
units the Bohr radius i s  given by aB = a-I = 137. According to 
the Thomas-Fermi model the average radius of the atom is 
Fa- Z-'I3aB= 27 5-'I3>> 1. 

"Here N i s  the total number of electrons in the atomic shell. 
For a neutral atom q = 0, for a bare nucleus q = 1. The quasi- 
molecule formed in the collision of a bare nucleus with a 
neutral atom corresponds to the values q =  Z2/(Z1 + 2,) - 0.5. 

5 ) ~ s  long a s  the positron is  inside the Coulomb barrier its 
contribution to the charge density completely compensates 
the charge of the electron of the vacuum shell. Therefore 
the correction to 2, due to screening by the vacuum shell i s  
absent for T<< y-l. 

 he value of the parameter C( = 0.247 differs from the one 
given in Table I for the 2 p l l ,  level ( I =  0.272) due to the fact 
that here we have used the cut-off model I. 

7 ) ~ n  investigating the states near the boundary of the lower con- 
tinuum it is  convenient to reduce the Dirac equationun7' to 
the SchrSdinger equation with the effective potential U(r). 
For a Coulomb field U(r) = t/r - (5' - x2)/2./2 for e = - 1. The 
formula given above for ro follows from the condition U(rO) 
= 0. We note that for the Is-level F coincides with the radius 
YK introduced above. 

8)~n the course of this, one in fact determines the dependence 
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of the critical parameters (L,, T ,  r, etc. ) on the proton 
density np. 
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Single-nucleon absorption of slow pions by atomic nuclei 
and ~r condensation 

M. A. ~roitski, M. V. Koldaev, and N. I. Chekunaev 

I. V. Kurchatov Institute of Atomic Energy 
(Submitted May 4, 1977) 
Zh. Eksp. Teor. Fiz. 73, 1258-1270 (October 1977) 

The problem of the single-nucleon absorption of slow pions by atomic nucld is solved. The presence of a 
pion condensate ~ i ~ c a n t l y  increases the single-nucleon absorption probability. The measurement of the 
single-nucleon absorption probability may be a critical experiment for the elucidation of the question of 
the existence of a condensate in nuclear systems. 

PACS numbers: 21.65. +f, 25.80. +f 

1. INTRODUCTION 

In 1971 Migdal pointed out the possibility of a recon- 
struction of the pion field in a sufficiently dense nucleon 
system, i. e. ,  the formation of a "pion condensate. " 
The main physic* consequence of such a phase transi- 
tion i s  the possibility in principle of the existence of ab- 
normally dense nuclei. "I In these nuclei the energy 
loss due to the change in the nucleon density i s  compen- 
sated by the energy gain from the phase transition. The 

quantitative theory developed by ~ i g d a l ' ~ '  led to a criti- 
cal-density value (the density at which the phase transi- 
tion occurs) of no 2 0. 6no for nuclear matter with N = Z 
and %L 0.8% for a neutron material (N>> Z), where no 
i s  the normal nuclear density. This allowed the exis- 
tence of a condensate in real atomic nuclei to be postu- 
lated. In subsequent investigationscg"' the estimate for 
the critical density did not change in comparison with 
the estimate obtained in Migdal's first papers. A more 
exact computation of the critical density is not possible, 
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