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It is shown that the class of self-similar spherically symmetric solutions of Einstein's equations includes 
solutions with expanding and collapsing shock waves. The asymptotic behavior of these solutions and the 
topology of the spacelike sections are investigated. Attention is drawn to solutions with expanding shock 
waves in which the variation of the gas velocity after the passage of the shock wave has an oscillatory 
nature. 
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INTRODUCTION 

In the present paper, we investigate solutions of Ein- 
stein's equations and the equations of hydrodynamics 
that describe the propagation of a spherical shock wave 
in an ultrarelativistic gas'1' with equation of state p = 12G 
(p is the pressure and E the energy density, 0 c k i 1). 
It is natural to seek solutions with shock waves, a s  in 
classical gas dynamics, c2' in the class of self-similar 
spherically symmetric solutions. This class of solu- 
tions in the general theory of relativity was considered 
inc3"'; the metric for these solutions has the form 

~ n ~ ~ ' ~ ~  it is shown that Einstein's equations for self- 
similar spherically symmetric metrics reduce to a sys- 
tem of three ordinary differential equations. However, 
this system was not investigated (the investigation 
is complicated by the fact that the system does not re-  
duce to a two-dimensional one). 

In the present paper, we represent the metric of self- 
similar solutions in a conformally static form (this 
representation of the metric was not considered inc3'81). 
In Sec. 2, we investigate in detail the system of Ein- 
stein's equations and the equations of hydrodynamics by 
the methods of the qualitative theory of differential equa- 
tions (applied earlier 'I). In Sec. 4, we find solu- 
tions with expanding shock wave (solution of the self- 
similar problem of an explosion in general relativity) 
and solutions with a collapsing shock wave that arises 
during the collapse of matter in the presence of pres- 
sure. 

These problems have a number of properties in com- 
mon with the analogous problems in classical gas dy- 
namics ( ~ e e ' ~ ' ~ ' - ' ~ " ~ ~ ) .  1) The system of Einstein's 
equations has surfaces V,  across which the solutions 
cannot be continued; these separate the solutions with 
subsonic and supersonic flow of the gas. The impossi- 
bility of continuing the solutions leads to the formation 
of shock waves. 2) The explosion problem has a class 
of solutions corresponding to integral curves filling the 
two-dimensional separatrix Z of a certain isolated singu- 
lar point. 3) The solutions with collapsing shock wave 
correspond to integral curves passing through a certain 

interval Z1 + 1, of singular points on the surface V- dis- 
cussed above. 

However, besides these common properties, there 
are  a number of important properties characteristic of 
these problems. 1) In the explosion problem there is a 
further class of solutions corresponding to integral 
curves that fill a two-dimensional separatrix passing 
through an interval Zl of singular points on the surface 
V-. In these solutions, the spacelike sections have the 
same topology as  in the Kruskal solution. 2) In the 
explosion problem, there a re  solutions in which after 
the passage of the shock wave the coordinate R (see Eq. 
(1)) along the integral curves of the motion of the gas 
varies nonmonotonically and goes through an arbitrary 
finite number of oscillations. 3) The behavior of the 
solutions depends strongly on whether the self-similar 
variable C = l ; ( c t / ~ )  is spacelike (i. e. g, ,t;, ,g '' c. 0) or 
timelike. 4) In the solutions with collapsing shock wave, 
the spacelike sections have the same topology a s  in the 
Kruskal solution. 

5 1. BASIC EQUATIONS 

1. For spherically symmetric metrics, Einstein's 
equations Ri j  - i g i j ~  = aT,, with hydrodynamic energy- 
momentum tensor of the matter 

Ti,= (p+s) u,u,-pgu, p-ks, OGkGl, (1.1) 

a re  integrable onlyC1l for k = 0 (a = 87rk/c4, c is the ve- 
locity of light, and k is the gravitational constant). For 
0 < k c 1, metrics that depend on only one coordinate (on 
t o r  on R )  have been investigated in detail. [16' In this 
paper we consider for 0 < k < 1 spherically symmetric 
solutions of the conformally static form 

where m2 = d82 + sM0dq2, a= + 1, 1 is a constant with di- 
mensions of length, and the variables T and r are  di- 
mensionless. Besides (1.2), one can consider solutions 
with metric do2 of constant negative curvature ( m 2  = do2 
+ sinh28dq2) and zero curvature (dCf = do2 + dq2). After 
the substitution T=e7 the metric (1.2) takes the form 
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The energy density E and the matter four-velocity ui are  
given by 

where &, is a constant with the dimensions of energy 
density. If o = + 1, then u(r) = v/c, l ul < 1, but if a = - 1 
then u(r) = c/v, I ul > 1, where v(r) i s  the three-dimen- 
sional radial velocity of the gas. 

Under a certain coordinate transformation (see Sec. 
3), the metric (1.2) goes over into the metric (1) of self- 
similar solutions of Einstein's equations. 

2. To investigate solutions of the form (1.2), it i s  
convenient to use the system consisting of two of Ein- 
stein's equations and one equation of hydrodynamics: 

From the equation 4, = OT,, we obtain an expression 
for the energy density: 

It follows from the condition of positivity of E that 
signu= - signv'. 

The system (1.5) after substitution of the expression 
(1.6) and transition to the new variables 

is transformed into the system 

Here, signu= - signw. 

The Einstein equation @ - $R = f f ~ :  after the substi- 
tution (1.6) determines a constraint that is preservedby 
virtue of the system (1.8): 

Here, the constant x = * 1 or 0 is equal to  the constant 
curvature of the two-dimensional metric &?i2 (see (1.2)). 
In accordance with (1.9), the system (1.8) describes 
spherically symmetric solutions (x = & 1) in the region oL 
> 0; solutions with negative curvature, i. e., x = - 1, 
corresponding to the symmetry group SL(2, R )  in the re- 
gion o L < 0; and solutions with x = 0, corresponding to 
flat symmetry on the manifold L = 0 (it is easy to verify 
directly that the manifold L =  0 is invariant for integral 
curves of the system (1.8)). Two forms of the metric 
(1.2) (o=* 1) are  described by the system (1.8) in dif- 

ferent regions: if o = +  1, then I ul < 1 but if o =  - 1 then 
I ul > 1. 

On the invariant manifolds u = * 1, the system (1.8) 
describes directed fluxes of neutrinos (for classical 
specification of the energy-momentum tensor, seeCl7') 
and can be integrated explicitly. 

The presence of the denominator 11? - k in the third 
equation in (1.8) means that the solutions for certain r 
=r,, cannot be continued through the surfaces V,: u 
= * kU2 since the vector field of the system (1.8) on the 
two sides of this surface (u2 - k < 0 and u2 - k > 0) is di- 
rected in opposite directions and in the limit I ul - k112 
is perpendicular to  the surfaces V* since 1 & I  - 0, and 
and I 1.1 and 1 41 are  bounded. 

Because of this impossibility of continuing the solu- 
tions of the system (1. a), a shock wave is formed in the 
actual gas flow, just as  in classical gas dynamics. The 
real solution with shock wave can exist for all values of 
r: O <  r<-. 

3. The position of the shock front i s  determined by a 
certain constant value of the coordinate r. Therefore, 
the coordinate system (1.2) is comoving with the shock 
wave. On the shock front, one fits the solutions of the 
system (1.8) on the different sides of the surfaces V*, 
i. e., the subsonic solution ( I  uI2 < k = dp/&) is fitted to 
the supersonic ( I  ul >k1I2). One can consider a more 
general situation for which the matter in the region be- 
hind the shock wave has the equation of state p = kl& but 
in the region in front of it the equation of state p = k2& (0 

k2 S k,). The most interesting cases are  k2 = kl and k2 
=O. The limiting values of the parameters on the two 
sides of the shock a re  related by the following natural 
conditions. 1) The metric coefficients v, A, and r are 
everywhere continuous. 2) At the shock, the conserva- 
tion laws (seeClS') are  satisfied: [T!nk] = O  (here, nk 
= (0,1,0,0) i s  a vector orthogonal to the shock front). 
These conditions lead to the following equations (the in- 
dices 1 and 2 determine the parameters on the two sides 
of the shock): 

From this we obtain the relations 

which determine u, and 6 from the ul and & obtained 
from the solution, the supersonic value (4 > k2) being 
chosen from the two values of u, (for k2c  kl). It follows 
from the condition 1 u21 < 1 and (1.11) that I % I  > k,. If 
4 = kl, then ulu2 = kl, and if k2 = 0 then uz = (ut + kl)/ul(l 
+ k,). It follows from the expression (1.9), the continu- 
ity of the functions V, X, r, and the first relation in (1. 11) 
that the function w (and V' = wr) i s  continuous on the 
shock front. Thus, the functions V, X, r, v', w, Q are con- 
tinuous across the shock, and the discontinuities of u 
and E are determined by (1.11). It is natural to say that 
the shock is strong if l u, l = 1. Then l ul l = kl and 
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In the actual solution of the problem, the shock must be 
fairly strong. Indeed, if it is weak, i. e., E~ =cZ, u1 = 
=* kl", the impossibility of continuing such a solution 
cannot be avoided because I icl = m on the surfaces V,. 

$2. INVESTIGATION OF THE DYNAMICAL SYSTEM 

We consider the system (1.9) for spacelike variable r 
(i. e. a= + 1 and l ul <I). The system (1.9) i s  defined in 
the region s,: Q > 0, I u l < 1, L 2 0, and signu = - signw. 
To investigate the system (1.9) in the region St by the 
methods of the qualitative theory of differential equations, 
we transform this system into one defined on a certain 
three-dimensional manifold S with boundary r (one can 
imagine S as  a parallelepiped, and then r consists of the 
six faces). 

1. We show first  of all that in each solution for u > 0 
it becomes impossible to continue the solutions, and this 
cannot be avoided by introducing a discontinuity (it is 
helpful to remember that the region 0 S u G 1, L c 0 is 
bounded: here, - 1 6 w c 0, 0 s Q c 1). This assertion fol- 
lows readily from the behavior of the integral curves of 
the system (1.9) in the region 1 > u > 0, L a  0; for 0 < u 
< k1I2, by virtue of iL < 0, Eir > 0, all  integral curves with 
increasing Y leave the surface V+(u = klrZ) at  a certain 
finite r= rl and at a certain finite r= r- r rl enter the line 
ll(u = w = 0,O Q 1). All integral curves in the region 
kl" < u c 1 leave the surface V+ a t  r= rl and in the limit 
r- 03 enter, by virtue of w > 0, one of the singular points: 
Yl(w = 0, Q = u = 1) or Y,: 

Thus each integral curve in the region 0 < u < 1 leaves the 
surface V+ a t  some r= rl. Therefore, in this region, 
even if a discontinuity i s  introduced, one cannot obtain 
any solution defined in the limit r- 0. Because the solu- 
tions cannot be continued to u > 0, we shall seek solutions 
that remain in the region u < 0 for all r > 0. 

2. For - 1 u S O(w 2 0) the region S is not bounded 
withrespecttow, andif - k < u < O t h e n  Q c . 1  andif -1 
< u < - k t h e n  Q<(k+lt?) / ( l+k)lul .  On the plane u = O  the 
condition L 2 0 cuts out two straight lines: ll(u = w = 0, 
O c  QS 1) and Iz(u=Q=O, m a  0), on which the system 
(1.8) becomes singular. To investigate the system (1.8) 
in the neighborhood of the straight lines ll and 12, and 
also for w >> 1, we make the following substitution of the 
coordinates Q, u, w and the variable 5 = lnr: 

a )  in the neighborhood of the line h we use the coordi- 
nates Q, u, w and the new variable p: 

b) in the neighborhood of the line 12, we use the vari- 
able S and the coordinates 

c)  in the region w >> 1, we use the coordinates q, u, v 
and the variable pi: 

FIG. 1. Integral curves of the dynamical system on the bound- 
ary component rk (the numbers under the figures correspond 
tothevalues o f k = l ,  ..., 6 ) .  

The system (1.8), transformed to  these coordinates, has 
only nondegenerate singular points. Below, we shall al- 
so denote it by (2. l), (2.2), (2.3). 

We describe the three-dimensional manifold S (with 
boundary r) on which the system (1.8) has nondegenerate 
singular points. In the neighborhood of the  lines ll and 
12 and for w 7> 1 we shall use the coordinates we have in- 
troduced and the equivalent systems (2. I), (2.2), and 
(2.3), while within S we shall use the system (1.8). The 
manifold S is distinguished by the conditions - 1 S u s  0, 
Q 2 0, w 2 0, L 2 0 and has boundary r consisting of six 
components: r l (v  = 0), rz(u = - 1), r , (u  = 0) (here system 
(2.2) is used), r4 (L  = 0), r5(Q = O), rg(w = 0). The integral 
curves of the dynamical system on the boundary compo- 
nent r, (k = 1, . . . , 6 )  a re  shown in Fig. 1 (the symbols on 
the figures is explained below). 

When the coordinates (1.7), (2.1)-(2.3) a re  used, S is 
represented a s  in Fig. 2. Here, there is a single point 
of noncompactness X: q = m, u = 0, w = 0, corresponding 
in the coordinate system (2.1) to the line 4: u = w = 0, 
O c  QS 1. The line h consists of repulsive singular 
points of the system (2.1): the eigenvalues at these sin- 
gular points a r e  h, = h, = (1 + 3k)/(l+ k) r 0, % = 0. There- 
fore, near l1 (for Q#O) every integral curve for p =  - - 
comes out of a certain singular point u = w = 0, Q (one 
can also show directly that the point of noncompactness 
X is repulsive or that for all integral curves in the 
neighborhood of X we have q(y) - m, u(r) - 0, w(r) - 0 as  
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ones in the problem we are  considering. At them, the 
system (1.8)-(2.2) has the following eigenvalues (the 
subscript indicates the corresponding proper direction): 

FIG. 2. Singular points and separatrices of the dynamical 
system on the manifold S. The surface V-(u = - k t / * )  i s  the 
surface through which the solutions cannot be continued. 

r decreases). It is important that at the same time (p - - w ) r  - r, > 0. In the corresponding solution u(ro) = 0 
and for r < yo the solution is defined in the region u > 0 
(w < 0). As was shown above, none of these solutions 
can be continued to r =  0 even if a discontinuity is intro- 
duced. Therefore, none of the integral curves that come 
out of the point of noncompactness X have physical signif- 
icance, and we shall therefore ignore them. 

3. AU singular points of the dynamical system on the 
manifold S a re  nondegenerate and lie on the boundary r. 
Among the singular points, there are  eight isolated sin- 
gular points: 

and the straight line DF(Q = 1, u = - 1,0 c u < w) of singu- 
lar points (see Fig. 2). On the surface V, there lies the 
line of singular points I, and these will be considered 
separately below. 

The singular points A, B, C, G, H are unstable saddles 
and all their separatrices lie on the unphysical compo- 
nents of r, i. e., no exact physical solutions corre- 
spond to their separatrices. 

The singular points on the straight line DF have the 
following eigenvalues: XI = & = w - 2, = 0. Thus, the 
segment DE(0 G w 4 2) consists of attractive singular 
points, and the segment EF(2 < w m) of repulsive ones. 
AU integral curves of the system (1.8) on the boundary 
component r2(u = - 1) begin at a certain w = wo on the 
segment E F  and end for m = 4/wo on the segment DE; this 
follows from the existence of the first integral K =  wQ(1 
+ w + Q)-'. The integral curves of the system (1.8) near 
the boundary component y2(u= - 1) behave similarly. The 
metric corresponding to integral curves that enter the 
singular points of DE (as r- 03) or  Eli  (as r- 0) is in- 
complete and can be smoothly continued in the synchro- 
nous frame of reference (see Sec. 4 below). 

The singular points Z1, Z2, Z3 are  the most important 

Thus, the singular points Z1 and Z, are  unstable saddles; 
the singular point 2, (also unstable) on the boundary 
component I?, is an attractive focus and has a one-di- 
mensional separatrix 3, emerging from it within the 
manifold S. All integral curves on the boundary compo- 
nents r6 (for o > u > - P2) and r3 go into, respectively, 
the attractive (on these boundary components) singular 
points Z2 and Z3. On the boundary component r6 this 
follows from the fact that 4 > 0 on r, while on r3 it fol- 
lows from the absence of limit cycles on r3 (this last 
can be shown by going over to the coordinates q, I;l= w 
+ 1 + kwq/(l + k) and using the Dulac-Bendixson criteri- 
o n ~ ~ ~ ~  ). In accordance with (2.4), a two-dimensional 
separatrix Z leaves the singular point Z1. The one- 
dimensional separatrices obtained by the intersection of 
Z and the boundary components r6 and r3 join the singu- 
lar point Z1 to Z2 and Z3. Therefore, the one-dimen- 
sional separatrix F2 that comes out of the singular point 
Z2 (see Fig. 1, k = 4) is the intersection of the separa- 
trix Z with the boundary component r,(L = O), and the 
one-dimensional separatrix 9, that comes out of the sin- 
gular point Z, is a limiting line onto which the two-di- 
mensional separatrix Z is wound (see Fig. 2). 

We give the asymptotic behavior of the metric (1.3) 
in the limit r- 0 corresponding to the separatrices Z, 
22 (X = O), and p3: 

eo(l-uzZ) P (2.6) 
u-u,<O, E =  7, d = ( l - k )  luzllk; 

4. The surf ace Vm(u = - &'I2) through which the solu- 
tions cannot be continued is cut by the line I: 

into left- and right-hand parts: V! and IT (see Fig. 2). 
The left-hand part V! repels the integral curves into the 
manifold S (in the neighborhood of V! we have k > O  for 
u > - klf2 and ti < 0 for u < - PI2), while the right-hand 
part E attracts the integral curves out of the manifold 
S. In both cases, the integral curves intersect the sur- 
face V- at a finite value of r .  

To study the behavior of the integral curves in a small 
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neighborhood of the line I, we make the following change 
of coordinates and (nonmonotonic) change of variable C 

The line 1(1= - 4k3I2(1 + k)-l, u = - k1I2, a > 0) consists of 
nondegenerate singular points of the system (1.8) in the 
coordinates (2.8). The eigenvalues of the resulting sys- 
tem at these singular points have the form 

z, = ----- 2k"'(3+k) ( l-k)2(1+4k-kz) (2.9) 
a+l-  

l - k  1+3k 4k"(1+3k)( l+k)  1 ' 
The line of singular points I within the manifold S is 

split into three segments: Il(m > a > q), 12(q  > a > a2), 
> a > as), where a1 and a2 are the largest roots of 

the quadratic equations Zo(al) = 0 and Zo(a2) = - (1 - k)/2; 
a, is the coordinate of the point I, of intersection of the 
line I with the boundary component r4 ( L  = 0, see Fig. 1, 
k =  4); we shall not give expressions for a,, a2, cu, be- 
cause they are  cumbersome. 

It follows from (2.9) that the singular points of the 
segment Il are  unstable saddles; the singular points of 
I, are  attractive nodes; and the singular points of I, are  
attractive focuses. The segment I, intersects the bound- 
ary component r5 (Q=  0) at the point io((z= -, see Fig. 1, 
k = 5). 

Returning to the original coordinates w,  Q, u, we find 
that from the subsonic region of the manifold S(I ul < k"') 
the two-dimensional separatrix XI enters the segmentZ1 
and the two-dimensional separatrix Y1 leaves it .(i. e., 
Z1) (see Fig. 3). 'The three-dimensional separatrix Y 
enters the segment 12. At the same time, there is the 
two-dimensional separatrix Xz, which is the smooth con- 
tinuation of X, corresponding to the eigenvalues k,(~); 
all the other integral curves that go into the segment 
touch the two-dimensional separatrix Y2, which corre- 
sponds to the eigenvalues ~ ( a ! ) .  In all cases, when the 
integral curve enters the segment I the parameter f = lnr 
remains finite. 

$3. TRANSFORMATION OF THE CONFORMALLY 
STATIC METRIC TO SELF-SIMILAR FORM 

1. The metric of self-similar spherically symmetric 
solutions of Einstein's equations has the form 

L d  

FIG. 3. Qualitative picture of the behavior of the tra- 
jectories in the vicinity of the singular points on the 
segments It, 12, and IS. 

and in the synchronous frame of reference (v, = 0): 

2. The metric (1.2)-(1.3) is mapped a s  follows into 
the synchronous metric of the form (3.4): 

where the functions f l  and f2 satisfy the equations 

Under this mapping, the coefficients of the metric (3.4), 
the radial velocity v, and the energy density E have the 
form 

Using Eqs. (3.5)-(3.7) we convert to the synchronous 
system (3.4) the asymptotic behaviors of the solutions 
that in the limit b -  + enter attractive singular points 
on the segment DE (see 82). We obtain the asymptotic 
behaviors 

fl=ei, ft=CPez, R/c t=fa / f imCzt  

where the functions YO, Xg) p0 satisfy the arbitrary (non- 
degenerate) constraint x ~ ,  po, ct/R) = 0. The energy 
density c and the matter four-velocity u, are  determined 
by 

where cv(ct/R) is the three-dimensional radial velocity 
of the matter. 

In this paper, we use the expression (3.1) of the metric 
in coordinates of the form (1) (po = 0): 

Thus, under the mapping (3.5) the metric (1.2) in the 
limit f - goes over into the metric (3.4) defined in the 
region R/ct<C2, and in the limitR/ct- C2 the metric 
(3.4) is nondegenerate. Therefore, the solution can be 
continued smoothly to the region cl/R <c;'. At the same 
time, the self -similar variable ct/R becomes timelike, 
and the straight line ct/R = c;' is isotropic. Such con- 
tinuation is possible, for example, to ct/R = 0; under it, 
all parameters of the solution remain regular and no new 
qualitative features of the solution arise. In the region 
c t / ~  < c;', the metric (3.4) corresponds to the metric 
(1.2) with o= - 1, and the integral curve of the system 
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(1.8) corresponding to it continues smoothly into the 
region u < - 1 of the original integral curve. 

Similarly, in the synchronous system (3.4) one can 
continue the metrics (1.2) corresponding to integral 
curves that in the limit b- - = leave the segment EF of 
repulsive singular points. 

3. The metric (1.2) can be transformed to the form 
(3.3) by means of the transformation 

where @/dt = Q2. The components of the metric, the 
matter velocity v, and the energy density c have the 
form 

The asymptotic behavior of the solutions correspond- 
ing to the separatrices Z in the limit 6- - = have, after 
the transformation (3.9), the form (as R/ct - 0) 

As b - + .o, we have R/ct = C1, as  under the mapping (3.5). 
The metric (3.3) can be smoothly continued to the region 
ct/R < C;', but in the limit ct/R- 0 this metric has in 
general an unphysical singularity with asymptotic be- 
havior X =  (ct/R)T Y -  const. This singularity can be 
eliminated by means of the transition (3.5) to the syn- 
chronous frame of reference. 

$4. SELF-SIMI LAR SOLUTIONS WITH EXPANDING 
AND COLLAPSING SHOCK WAVES 

1. Our investigation in 82 of the system (1.8) shows 
that in the subsonic region of the manifold S(0 > u > - k1I2) 
the system (1.8) has five types of integral curve: A) in- 
tegral curves that come out of the repulsive singular 
point X and go into the surface VI; B) integral curves 
that begin on V! and end on C) integral curves that 
fill the two-dimensional separatrix Z of the singular 
point Z1 (in particular, the separatrices L, and L3 of the 
singutar points Z, and 2,); D) integral curves that fill 
the two-dimensional separatrix Y1 that comes out of the 
segment of singular points XI; E) htegral curves which 
fill the separatrices X1 and Y  and enter the segments Il 
and I2 of singular points. (The hypothesis is made that 
there are no integral curves in S wound onto any invari- 
ant subsets. ) 

All five types of integral curves determine the solu- 
tion (metric) only on a finite interval of r values. Inte- 
gral curves of the types A and B are defined for 0 < r~ 
< r < rz, and, therefore, to continue the corresponding 
solution for all r> 0 it is necessary to introduce at least 
two discontinuities in the region u < 0 (for integral curves 
of the type B this follows from their definition, while for 
integral curves of the type A continued smoothly into the 
region u > 0 this follows from the fact that in the region 

u > 0 the impossibility of continuing the integral curves 
cannot be avoided, even by introducing a discontinuity; 
see 62). Then to an external discontinuity there will 
correspond a compression shock wave and to an internal 
discontinuity, a rarefaction shock wave (see (1.11)). 
Since rarefaction shock waves in matter with normal 
properties are impossible (seec1''), all integral curves 
of the types A and B are unphysical. 

2. Integral curves of type C filling the two-dimen- 
sional separatrix Z are defined for 0 < r< r1. These in- 
tegral curves can be continued for all r > O  by introduc- 
ing a single discontinuity, to which there corresponds 
an expanding shock wave; for suppose the discontinuity 
is introduced at r = ro. In the subsonic region we have 
r < r, and therefore the gas velocity u < 0 is directed in- 
to the subsonic region, i. e., the shock wave is a com- 
pression wave. The radius Ro of the shock wave is Zerro 
= Rd therefore, Ro- 00 as T- 00, i. e., the shock wave is 
an expanding one. 

In the case of a strong discontinuity, i. e., for u1 E- k, 
the supersonic solution fitted to the given solution has u2 
= - 1 at the discontinuity, and therefore, as  was noted in 62, 
the corresponding integral curve moves along the bound- 
ary component r,(u= - 1) until it reaches in the limit r - a certain attractive singular point on the segment 
DE. At the same time, the self-similar variable t = ln r  
becomes isotropic and, a s  is shown in 83, for timelike 
variable the solution can be continued in the synchro- 
nous system (3.4) in the region c t / ~ a  0. A discontinu- 
ity in the solution arises for constant I; = lnro, i. e. , ct/R 
= const corresponds to a shock wave. Therefore, in the 
synchronous system (3.4) the shock wave moves with a 
certain constant velocity vo. 

The shock wave is formed (the explosion occurs) in 
the symmetry center R = 0 at t = 0. At this instant, the 
three-dimensional metric (3.4) u(0 dR2+ R~V(O)I@ has 
a conical singularity at the origin for U(0) # V(0); at in- 
finity, the metric is obviously flat; the gas velocity v(0) 
is constant throughout space and directed toward the 
center; the energy density is c = co/lZ2 (such a distribu- 
tion of the energy density in a finite region can be real- 
ized, for example, by the continuous escape of matter 
from a star). 

Solutions of type C depend on two essential parame- 
ters: the choice of the one-dimensional separatrix of 
the singular point Zl and the choice of the point of dis- 
continuity on this separatrix. One can consider an addi- 
tional condition: The gas velocity at spatial infinity in 
the static frame is v(0) = 0 (and then at the initial instant 
v(t = 0) = 0). This condition will be satisfied if the dis- 
continuity is introduced in the solutions on a certainline 
P on the separatrix Z (on the line P we have - kiJ2 < u 
< - k). The points of the .line P are determined by the 
requirement that  for the solution corresponding to them 
the functions f and v in (3.6) and (3.7) vanish simulta- 
neously. 

As is shown in 03, the solutions corresponding to the 
separatrix Z a s  b - - 00 in the frame of reference (3.3) 
have the asymptotic behavior (3. ll), where R/ct- 0. 
From the form of the asymptotic behavior (3.11) we ob- 
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tain an important conclusion: 1) Solutions of type C with 
expanding shock wave can be continued to the symmetry 
center R = 0, and at it the metric after the departure of 
the shock wave (t > 0) does not have a singularity; 2) the 
gas in the neighborhood of the symmetry center moves 
away from the center, and for R/ct<< 1 the velocity cv 
has the same asymptotic behavior a s  in the well-known 
solution of the explosion problem in classical gas dy- 
namic~'~'; 3) the energy density near the center is ap- 
proximately constant with respect to R and decreases as  
co/t2. 

Let us consider the solutions corresponding in the sub- 
sonic region to the separatrices of the singular point Z1 
that pass close to the boundary component I',. These 
separatrices for small u c 0 make an arbitrarily large 
number of turns around the singular point 2,; see Fig. 
1, k =  3, and Fig. 2. We write the expression (3.lO)for 
the velocity v in the coordinates (2.2): 

It is obvious that along these separatrices the velocity 
v has an arbitrarily large number of zeros (since 1 + q 
= 0 at the singular point Z3). Therefore, for such solu- 
tions, the coordinate r along the trajectories of the mo- 
tion of the gas (the streamlines) in the region behind the 
shock wave varies nonmonotonically and executes an 
arbitrarily large number of oscillations. 

3. Integral curves of the type D can be smoothly con- 
tinued for decreasing parameter f; through the segment 
Zl into the supersonic region (see Fig. 3). After this 
unique continuation, the integral curves of type D (of the 
separatrix Y1) passing throggh the segment Z1 in the 
neighborhood of the point io can be+app_f;oximated by the 
sequence of separatrices ?G, zio, ioC, CZ,, Z (see Fig. 1, 
k = 5, and Fig. 2). Thus, integral curves of type D with 
increasing f; move in the neighborhood of the separatrix 
Z and therefore, like the integral curves of type C, cor- 
respond to solutions with expanding shock wave. After 
the introduction of a discontinuity, these integral curves 
can also be continued in the static frame of reference 
(3.4) in the region Vl: C12 C ~ ~ / R ~  2 0 (where the self- 
similar variable t; is timelike). 

However, the behavior of solutions of the type D in the 
region behind the shock wave is very different from that 
of the type C solutions. It follows from the separatrix 
approximation given above that solutions of type D after 
the smooth continuation through the points of the seg- 
ment Z1 into the supersonic region in the limit t;- - m go 
into attractive (for this direction of f;) singular points of 
the segment EF. At the same time, the self-similar 
variable t; again becomes isotropic and, as  i s  shown in 
53, the solution can be continued smoothly for timelike 
variable 6 in the static frame of reference (3.4) into the 
new region V2: C2B ct2/R22/ 0. 

The complete solution of type D is fitted together from 
the regions V,, V,, V,, Vlc, Vl, which are  contiguous in 
the given order. The subsonic region -V, is described 
by the motion of the integral curve along the separatrics 
i;i?, a1,2 to the point of discontinuity (see Fig. 1, k  

= 5, and Fig. 2). The region Vz, is described by 3 e  20-  
tion of the integral curve along the separatrices FG, Gio. 
The region Vk is fitted to the region V, through the 
shock wave and is described by the motion of the inte- 
gral curve in the supersonic region of the manifold S 
from the discontinuity point to the attractive segment 
DE. 

The regions V1 and V2 are  bounded by the isotropic 
surfaces ctl/R, = C1 and ctz/R2 = C2, and therefore can- 
not be connected by physical signals. The shock wave 
moves along the common boundary of the regions V, and 
Vlc. The formation of the shock wave (the explosion) 
takes place at the symmetry center, a s  in the solutions 
of type C, but for t + 0 the spacelike section has ag'throat" 
and is topologically the product of a two-dimensional 
sphere and a straight line, a s  in the Kruskal solution. 

4. With increasing parameter f;, the integral curves 
of type E can be continued smoothly through the segment 
Z into the supersonic region of the manifold S (see Fig. 
3). The separatrices XI passing through the segmentZ1 
in the neighborhood of the point io can be approximated 
as the parameter g-decreases by the stable sequence of 
separatrices ig, BA, and they arrive at the attrac- 
tive (when t decreases) point X. With increasing t; the 
separatrices X1 move along the separatrices Q,& 
and, therefore, arrive at the segment of attractive sin- 
gular points DE. The separatrices Xi determine solu- 
tions with a collapsing shock wave, the discontinuity in 
them being introduced in the region u < 0 in the neighbor- 
hood of the separatrix so (see Fig. 2). 

It follows from the investigation of the singular points 
on the segment Iz that there i s  an entire region of inte- 
gral curves that leave V! and enter the segment Zz touch- 
ing the separatrix Yz (see Fig. 3). To these integral 
curves, like the separatrices Xl *and X2, there corre- 
spond solutions with collapsing shock wave." 

Indeed, the solutions of Einstein's equations of the 
form (1.2) again go over into solutions under the trans- 
formation rl = - T, ul(y) = - ~ ( r ) ,  all the other functions of 
r remaining unchanged. Under this transformation, the 
metric (1.2) takes the form 

Suppose the discontinuity on-these -integral curves is in- 
troduced at r= ro (a discontinuity is needed because these 
integral curves come out of X and V!). In the region be- 
hind the shock wave, where the gas flow is subsonic, r 
> ro. The gas velocity ul(r) = - u(r) > 0 is directed into 
this region, and therefore the shock wave is a compres- 
sion wave. The radius of the shock wave is & = leqlro; 
therefore, Ro- 0 as  rl - + 00, i. e., the shock wave is a 
converging wave. 

The complete solution of type E is fitted from the fol- 
lowing regions: V2, V2,, V,, Vlc, Vl. The region Vt i s  de- 
scribed by the motion of the integral curve with increas- 
ing variable t; in the subsonic region of the manifold S 
from the discontinuity until it reaches the segment of 
singular points Z2. The region Vlc is described by the 
motion of the integral curve in the supersonic region of 
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the manifold S from the segment I2 until the segment DE 
of attractive singular points. As is shown in 83, the 
solution can then be continued in the region V1, in which 
t is timelike, In the static system (3.4), the region V1 
is defined by the condition - C1 9 c t l /& s 0; the region 
V, + Vl, is defined by the condition - COG c t i / &  S - Cl, 
and the equation of the shock wave is c t 1 / ~ ,  = - Co. The 
shock wave collapses with a certain constant velocity in- 
to the symmetry center at tl = 0. 

The region Va is fitted to the region Vc through the 
shock wave and is described, as  the variable de- 
creases, by the motion of the integral curve in the super- 
sonic region of the manifold S from the discontinuity to  
the segment EF. The solution then goes over into the 
region V,, where the variable 5 is again timelike. The 
region V2 in the static frame of reference is determined 
by the condition - C2 9 ctz/R, c 0. Since the surfaces 
c t l /R ,  = C1 and ctz /& = - C2 are  timelike, the regions V1 
and V2 cannot communicate by physical signals. The 
spacelike sections in these solutions a re  topologically 
the product of a two-dimensional sphere and a straight 
line, a s  in the Kruskal solution, and have a throat, which 
contracts into a point as the shock wave collapses into 
the center. 

The listed properties of the type E solutions indicate 
that these solutions a re  a certain asymptotic regime for 
the collapse of matter (in the presence of pressurejlead- 
ing to the formation of a shock wave, 

')when the integral curve i s  continued through the singular 
point on the segment Il + 12, the solution as  a function of C 
ceases, in general, to be smooth (infinitely differentiable). 
Smoothness of the solution is  preserved only for the separa- 
trices Y2, X1, X2. This property can evidently be used to 
restrict the set of solutions of type E that have physical 
meaning to the solutions corresponding to the separatnces 
y2, Xl, x2. 
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