
One can expect to observe this phenomenon in mate- 
rials that a re  perfect in the sense that the resonances of 
the polarization oscillations is of high Q, and the transi- 
tion is not masked by the domain structure (i. e., the 
strong decrease of the speed of sound in the vicinity of 
the transition is well pronounced). 

"In addition, in the analysis i t  was implicitly assumed that h 
< hp, where hP is the field amplitude at which parametric oscil- 
lations a re  produced in the syst6m. At h l m o  and 51= no the 
threshold of the parametric excitation of the spin waves is ac- 
cording toCi3' hp - (AH/4rm)"'AU, AH = r/g. At h = hp we ob- 
tain from (11) & / s t -  AH/47rm. 

"1t is assumedfor the sake of argument thatthe system is in a col- 
linear phase, LI1 nll 1. For anoncollinear phase, choosing a s  be- 
fore the axis 1 in the direction of the equilibriumvalue of L, we 
have (14), where Pi must be replaced by pz= (Hz -H:)/mHE. 
All the calculations that follow must be correspondingly modi- 
fied. 
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An analytic solution is obtained of the problem of diffraction of an electromagnetic wave by a domain wall 
in a ferroelectric. It is shown that the picture of the interference fringes is observed only in diffraction of 
light of sufficiently small wavelength. The distance between the interference fringes is determined not only 
by the geometrical dimensions of the wall, but also by the difference between the values of the refractive 
index inside the wall and far from it. 

PACS numbers: 78.20.Ls, 77.80.Dj 

1. INTRODUCTION 

We solve here the problem of diffraction of an elec- 
tromagnetic wave by a ferroelectric domain wall. This 
problem arises in connection with the possibility of using 
the diffraction of light for a direct measurement of the 
domain-wall thickness. In addition, the solution of this 
problem i s  also of independent interest, since analytic 
solutions of diffraction problems encounter a s  a rule 
great mathematical difficulties. 

The use of optical methods to measure domain-wall 
thicknesses is particularly pressing because of the sub- 
stantial discrepancies that exist between the a priori 
theoretical estimates and the data obtained from x-ray 
scattering. Theoretical estimates lead a s  a rule to a 
domain-wall thickness on the order of 10"-lo-' cm. 
Yet measurements made onsodium nitratec4] and tri-  
glycine sulfateC2' yield values larger than 10'~ cm. 

The general solution of the diffraction problem poses 
no fundamental difficulties. The formulas for the dif- 
fracted-wave amplitudes in quadratures a re  derived in 
Sec. 2. An investigation of these formulas, however, 
for the purpose of deriving expressions useful to experi- 
menters, entails great technical difficulties. This in- 
vestigation i s  the subject of an appreciable part of the 
paper. In the last section we discuss the form of the 
diffraction pattern in various cases and the possibility 
of extracting from it  information on the structure of the 
domain wall. 

We consider a plane 180" domain wall in a cubic uni- 
axial ferroelectric, or  one belonging to  a rhombic sys- 
tem, and exhibiting no piezoelectric effect in the para- 
phase. The wall thickness is assumed tobe much larger 
than the lattice structure, s o  that i ts  structure is de- 
scribed by a phenomenological theory. The length of the 
electromagnetic wave i s  also assumed to be much larger 
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than the lattice constant, s o  that the optical properties 
of the crystal can be described by the dielectric tensor 
cik. In the polarized phase, E,, acquires an increment 
proportional to the square of the spontaneous polariza- 
tion. This increment depends on the coordinates in a 
direction normal to the domain wall. It i s  the depen- 
dence of E,, on the coordinates which leads to the appear- 
ance of the diffraction pattern. 

The dependence of the optical permittivity on the spon- 
taneous polarization in ferroelectrics is usually quite 
weak. Therefore the change of the permittivity inside 
the domain wall is relatively small. Consequently only 
small diffraction angles turn out to be significant, and 
we shall solve the problem by the parabolic-equation 
method. The variables in this equation a re  separable, 
and the amplitude of the diffracted wave can be expressed 
in quadratures. These quadratures a re  calculated only 
in the most interesting limiting cases, principally by 
contour-integration methods. 

It turns out that the form of the diffraction pattern de- 
pends substantially on the wavelength of the diffracted 
light and on the character of the variation of the permit- 
tivity inside the domain wall. In the case of long waves, 
the diffraction pattern constitutes a single narrow maxi- 
mum. In the case of short wave, the diffraction pattern 
consists of interference fringes. The distance between 
fringes depends not only on the geometrical dimensions 
of the wall (as is the case, e. g., in diffraction by a slit 
in a flat screen), but also on the extent to which the per- 
mittivity inside the wall differs from the permittivity far 
from it. With increasing diffraction angle 9, the intensi- 
ty of the diffraction fringes falls off exponentially if ci, 
inside the wall is smaller than far from it, and like g2 
in the opposite case. The power-law decrease of the 
intensity is due to the existence of electromagnetic-wave 
modes that can propagate inside the domain wall a s  in a 
waveguide. 

2. GENERAL SOLUTION OF THE PROBLEM 

We consider the simplest experimental situation, 
wherein a monochromatic electromagnetic wave i s  nor- 
mally incident on a plane-parallel ferroelectric plate of 
thickness L, cut in such a way that one of the crystallo- 
graphic axes parallel to the domain wall i s  perpendicular 
to the faces of the plane. We direct the z axis perpen- 
dicular to the faces of the plate, in the direction of the 
incident wave, and the x axis along the normal to the 
domain wall. The wave electric-field intensity in the 
plate can then be written in the form 

where k i s  the wave vector of the wave propagating in 
the homogeneous sample along the z axis. 

In view of the smallness of the alternating part of the 
permittivity, the diffraction angles a re  small, and the 
dependencesof F' and F' on z can be regarded as  small. 
Discarding all the small terms in the equation div D = 0 
(D is the electric induction vector), we easily obtain the 
relation 

where is the dielectric tensor in the paraphase. Dis- 
carding second-order quantities in the wave equation and 
using (2), we obtain the following equations for F, and 
F,: 

where w is the frequency and c is the speed of light in 
vacuum. 

In cubic and uniaxial ferroelectrics belonging to  the 
rhombic system and having no piezo-effect in the para- 
phase, the off-diagonal components of &,, are  equal to 
zero. Using the results of the phenomenological the- 
ory,C31 we can express the diagonal elements in the 
form 

where I a, I ,  I a, I<< 1. Putting now k2 = w2 (1 + a , ) ~ ~ ,  /c2 
for a wave polarized along x and k2 = w2(l + (U~)E:,/C? for 
a wave polarized along y, we obtain equations of the 
same type for the waves with both polarizations: 

The boundary conditions for each of these waves a re  
also of the same form. We put 

E=Eo exp( ikox)  +El ( x ,  z )exp ( - ik ,z )  at z<0, (8) 
E=Ez(z,  z )exp( ikoz)  a t  z>L, (9) 

where k2, = w2/c 2. Neglecting the small terms in the 
boundary conditions, we get 

The intensity of the light propagating in a unit angle in- 
terval is given by 

where 

a re  the dimensionless amplitudes of the reflected and 
transmitted light. 

Since Eqs. (6) and (7) a re  obtained from each other 
by a scale transformation along the x axis, we consider 
only waves polarized along the y axis, and omit the sub- 
script y for the sake of brevity. 
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We expand F* in terms of the eigenfunctions of the 
problem 

with rp(t;) bounded as 5 - *m. The equations resulting 
from the expansion, which a re  of first  order in z ,  can 
be easily solved for the suitable boundary conditions. 
The final expressions for A,(q) and A,(q) can be written 
in the form 

where 

i k k  +- -+L sin - -  
2 (ko k )  ( $ 2  k ~ ) l - ' *  

a r e  the partial reflection and transmission coefficients, 

with the rp,([) normalized to a 6 function of A, while the 
integrals (15) and (16) a re  taken over the entire continu- 
ous spectrum. 

If the problem (14) admits of a discrete spectrum on 
top of the continuous one, the appropriate sums must be 
added to the integrals (15) and (16). 

Equation (14) reduces to the equation of Legendre func- 
tions. The continuous spectrum occupies the region X 
>O. The even eigenfunctions (the odd functions make no 
contribution to the integrals (15) and (16)) a re  given by 

where v(v + 1) = ~ ( k d ) ' ,  and 

At a<O there exists also a discrete spectrum, and 

a -  V -  cp, ce) =c.p:-"(th k), (22) 

where n i s  an integer in the interval 0 cn v, and 

The functions (p,([) tend to zero a s  [ - * m , and cor- 
respond to electromagnetic waves propagating in the do- 
main wall a s  if it were a waveguide: 

To obtain the diffraction picture it remains now to cal- 
culate the integrals (19), (15), and (16). These inte- 
grals a re  so complicated, that we shall hereafter calcu- 

late only the amplitude of the transmitted light, and con- 
fine ourselves to an investigation of the simplest limiting 
cases. 

We assume first that the permittivity E,, satisfies the 
condition 

((e:-~)/(e:+i))~<i. (25) 

This inequality is satisfied in known ferroelectrics with 
"thick" domain walls, namely in triglycine sulfate and 
sodium nitrate we have ~ ~ ' ~ ' " 1 .  5.C4151 

Condition (25) allows us to  disregard entirely, when 
the transmitted wave is considered, the reflections from 
the plate boundaries. When the reflected wave is con- 
sidered, we need take only single reflection into account. 
As a result we get 

The amplitude A,(q) can be expressed in terms of the 
Fourier representation of the Green's funciion of the 
problem (14): 

The integration contour in (28) follows the real  axis and 
circles from above all the singularities of the integrand. 
Expression (29) for the Green's function contains an in- 
tegral over the continuous spectrum and a sum over the 
discrete spectrum. 

A second important condition assumed by us to be sat- 
isfied is that the investigated plate has a large thickness, 
i. e., 

For plates of thickness of the order of a millimeter this 
inequality seems to be satisfied with a large margin. 

Expression (28) turns out to be exceedingly convenient 
in the limiting case (30). The Green's function (29) has 
singularities of two types. First, poles on the real  axis, 
corresponding to the discrete spectrum. Second, a 
branch point A = O  corresponding to the end point of the 
continuum. Third, a pole a t  the point x = (qd)2. By shift- 
ing the integration contour in (28) into the lower half- 
plane we obtain, first, the sum over the poles, and sec- 
ond, the integral along a contour drawn along the imagi- 
nary axis and bypassing the point X =O.  By virtue of the 
condition (SO), the main contribution to the integral i s  
made by the pole at the point X = 0. 

3. CASE OF LONG WAVES l c ~ l ( k d ) ~  <<1 

In this case we can put 
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The last inequality makes it possible to  simplify consid- 
erably the expressions for the eigenfunctions. We use 
the expression for the Legendre function in terms of the 
hypergeometric function 

("', Vo1. I) and note that in each term of the hypergeo- 
metric series we can put 

Then 

In the derivation of this expression we used an elemen- 
tary transformation of the hypergeometric function con- 
tained in the square brackets ("], Vol. 1). The calcu- 
lation of F,(t) reduces now to a Mellin transformation of 
the hypergeometric function ("I, Vol. I). As a result 
we have 

Here 6 i s  an infinitesimally small  positive parameter 
that arises when the Fourier transformation i s  regular- 
ized. 

At a < 0  there is only one discrete-spectrum function: 

To calculate the contribution of the continuum to A,(q) 
we use formula (16). After simple transformations with 
(30) and (31) taken into account, we get 

The remaining integral (which does not contain a depen- 
dence on q) can be expressed in terms of the probability 
integral. 

The contribution of the discrete spectrum of A,(q) (at 
a i 0 )  is 

The first  term in the square brackets of (36) describes 
the non-diffracted wave. The diffraction pattern com- 
prises a single maximum of width A9- I v I / k ,  d" I CY I kd. 

4. CASE OF SHORT WAVES, lal(kdI2 >> 1, a >O 

In this case, a t  XL 1, the functions q,(( )  are  exponen- 
tially small everywhere except in the region I f I>> 1. 
But in this region it is simpler not to s tar t  with the ex- 
act solution, but to  consider the simplified equation 

d2cp/dbz+ (h-4 lv 1 Ze-2't') cp=O (38) 

The spectrum is double degenerate, and the eigenfunc- 
tions a re  expressed in terms of Macdonald functions: 

It follows therefore that 

c t - v h  
g).,(t)=~~(i-+h)r(ifi+6), 4 2 2  

@ i 2  ( t )  = g h l  ( - t )  

(['I, Vol. 11). It i s  now easy to verify that the Green's 
function can be written in the form of a contour integral: 

1 '"-'rp*r,(t) +rp*,r(t) i i; , ,(~y*h',  
c;( t ,O;h)=- j 

2 h-h' - 
The singularities of the contour integral a r e  due to the 
fact that a s  X - 0 and X - t the pole of the integrand a t  
the point X' = X  and the branch point A' = O  or  the pole at 
the point X' =t - ic straddle the integration contour. To 
separate the singular part of the Green's function it suf- 
fices to replace the integration contour in (42) by another 
that circles around not only the point A' = O  but also the 
point X' = X, adding the corresponding residue to the inte- 
gral. It is possible to separate similarly the singulari- 
ties that ar ise  a s  6 - 0. The result i s  

+ regular function (43) 

Using now expression (28) and taking the inequality (30) 
into account, we obtain 

A, (q )  -. (nqd sh nqd)  -'" ch (nqd /2 )  cos [qd In I v / 
-T (qd )  1 exp ( ikL-iqZL/2k) ,  (44) 

where y(x) =arg  r(ix). 

Thus, the diffraction pattern assumes the form of in- 
terference fringes, the distance between which is deter- 
mined from the condition qd ln l v I -  n. With increasing 
qd, the intensity of these fringes attenuates like (qd)-'. 

5. CASE OF SHORT WAVES, lal(kd)2 >> 1, a<0 

In this case the total amplitude of the diffracted wave 
i s  a sum of the contributions A: (q) and A: (q) of the con- 
tinuous and discrete sections of the spectrum: 

We consider f i rs t  the continuum. At large values of 
v, the Legendre functions take the asymptotic form 

2 
~ ~ ~ ~ c o s @ ~ - v ~ ( - ) ' " c o s [ ( v + $ ) ~ + ~ - ~ ]  nv sin @ (46) 
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("I, Vol. I) which is suitable in the region I vsin 9 I>> 1. 
When &(t) is calculated, the integration with respect to  
8 is from zero to n. We break up the cosine in (46) into 
a sum of two exponentials and shift the integration con- 
tour of one of them to the upper half plane and of the 
other to the lower half-plane of the complex variable 8. 
It is then obvious that the integrals over the sections 
where Re 8-1 and Re(n - 8) " 1 make an exponentially 
small contribution. The onljj substantial integration re-  
gions a re  those where I v sin8 11; 1. For the region I8 1 
<< v"I2 there exists another asymptotic formula that ex- 
presses the Legendre functions in term of Bessel func- 
tions: 

([63, Vo1. II). In the region I n - 8 1 << v -'I2 it is easy to 
obtain an analogous formula by using the relation 

(['I, Vo1. I) and the asymptotic form of Legendre func- 
tions of the second kind, analogous to (46): 

(C61, Vol. II). Combining these relations, we obtain 

PVu (cos 6 )  +PI(-cos e) = 
sin np 

-1-,(ve)sin ( =  a)] (50) 

in the region 18 1 << u-"~. In the region v-' << 18 1 << v-'Ie, 
the asymptotic forms (50) and (46) a re  joined together. 

Calculation of &(t) with the aid of (49) yields 

(Ip1, Vo1. II). The remaining calculations a r e  made in 
the same manner as when a!>O. The contribution of the 
continuous spectrum to the amplitude is of the form 

2 ~ ~ s i n ( n v / 2 )  nqd (chnqd - cos nv)'" 
8 z C ( q )  = 

(nqd sh n q d ) ' ~ ~ ~  2 ch 2nqd - cos 2nv 

2k 

Comparing this expression with (44), we can note that 
A: (q) can assume anomalously large values when nqd 
<< 1 and cos(nv/2) << 1. The physical reason for this is 
resonance with a discrete-spectrum level close to X = 0. 
In addition, the function A,C (q) falls off exponentially with 
increasing q. 

As to the contribution made to  A: (q) by the discrete 
spectrum, it comes principally from values of n for 
which v - n << v. For these we can use the cited asymp- 
totic expressions for the Legendre functions. Then 

where y = v- 2[v/2]. This rather complicated expres- 
sion has two important properties. First, A: (q) is an 
oscillating function of q, with a period determined by the 
condition qd lnv- n. Second, the function A: (q) falls off 
with increasing qd not exponentially but like (qd)-'. It 
is of interest to note that this is precisely the fall-off 
typical of the amplitude of a wave diffracted by a slit 
in a flat screen. 

6. DISCUSSION OF RESULTS 

The presented calculation shows that the most informa- 
tive, from the point of view of investigations of the struc- 
ture of a domain wall, is the diffraction of short waves 
for which the condition l a! l (kd)2 >> 1 is satisfied. Only in 
this case does the diffraction picture take the form of 
interference fringes. The distance between fringes de- 
pends both on the geometric dimensions of the wall and 
on the dielectric constant inside the wall. This means, 
in particular, that to investigate the wall structure it 
may not be enough to obtain the diffraction pattern for 
only one wavelength. 

The character of the decay of the intensity of the inter- 
ference fringence can tell us whether the domain wall has 
waveguide properties. The characteristic diffraction an- 
gle at which the intensity of the interference fringes is 
appreciable is determined by the condition qd" 1. Thus, 
the number of such interference fringes is of the order 
of In I c ~ ( k d ) ~  I .  This means that for a reliable observation 
of the diffraction pattern the necessary condition is not 
only I c ~ ( k d ) ~  1 >> 1, but also a sufficiently large value of 
ln I ~ ( k d ) ~  I .  

It i s  obvious that the condition I ~ ( k d ) ~  I>> 1 can be sat- 
isfied only in crystals with sufficiently thick domain 
walls. Among the ordinary ferroelectrics, such crys- 
tals seem to be triglycine sulfate and sodium nitrite, 
for which x-ray measurements yield d"5X lom5 ~ m . ~ ' ' ~ ]  
We can therefore attain values kd-5 for the violet edge 
of the spectrum. Only experiment can show whether 
these values a re  sufficient to  obtain a distinct diffraction 
pattern. It is important, however, that the thickness of 
the domain wall can be measured also in the case 

I c ~ ( k d ) ~  1 << 1. The diffraction pattern then takes the form 
of a single maximum, and the entire information on the 
wall thickness is contained in the character of the inten- 
sity fall-off with increasing diffraction angle. 

In conclusion, we thank F. L. Gurevich and R. Katily- 
us for a discussion of the work. 
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