
described by the Hamiltonian (1) is itself extremely 
idealized. In real  layered semiconductors and semi- 
metals, the probability of an electron transition from 
one layer to another differs from zero; this leads to the 
dependence of the energies of the electrons and holes on 
the quasimomenturn components p, perpendicular to the 
planes of the layers. If the transition probability is suf- 
ficiently small, this dependence i s  of the form Wcos(p,c), 
where W is proportional to the overlap integral of the 
wave functions of the electrons on neighboring layers. 
The consideration given above, which does not take into 
account the dependence of E., on p,, is therefore valid 
only s o  long a s  all the energies entering into the calcu- 
lations significantly exceed the width W of transverse- 
motion band, i. e., w<<c-'". In the case of opposite 
sign of this inequality, the motion of the electrons is 
essentially three-dimensional and for the description of 
the EHL we must use the approach based on the strong 
anisotropy of the effective masses for motion in the lay- 
e r  (m,) and perpendicular to i t  (m,)."' The role of the 
small parameter of the theory i s  played in this case by 
m ,/m, << 1 instead of c. 

 he coefficient All of Ref. 1, which determines the correla- 
tion contribution to the total energy, differs by the factor $ 

from the A coefficient used in the present work in the self- 
energy parts of the electrons and holes. Moreover, in formu- 
las  (10) from Ref. 1, there a r e  errors .  The correct form of 
these formulas agrees with formulas (30) and (31) of this 
paper. 
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Phase transitions in the Potts three-component model 

All-Union Research Institute for Physicotechnical and Radio Measurements 
(Submitted April 19, 1977) 
Zh. Eksp. Teor. Fiz. 73, 1174-1 179 (September 1977) 

It is shown by the renormalization-group method that the Potts three-component model has a second-order 
phase transition. The dependence of the critical exponent of the susceptibility on the dimensionality of 
space is determined. 

PACS numbers: 05.70.m 

A model introduced by Potts back in 1952C'1 has re -  interaction energy assuming only two values, depending 
cently become the subject of intensive study, with par- on whether the nearest si tes a r e  in identical or  differ- 
ticular attention paid to the question of the order of the ent states. The Potts model with various q describes 
transition. The point is that the Hamiltonian of this different r ea l  systems: electric circuits a t  q =o,"' 
model contains invariants of third order, and calcula- percolation a t  q = 1,"' and nematic liquid crystalsc51 or  
tion within the framework of the self-consistent field"' crystals with cubic symmetryC6'81 at q =3. Of course, 
yields a first-order transition a t  a number q 3 3 of the a t  q =2  we obtain the usual Ising model. 
components of the order parameter of the model. On 
the other hand, an exact calculation of the two-dimen- In the q-component Potts model, a phase transition is 

described by a tensor order parameter Q,,."] The ten- sional q-component Potts modelCS1 yields a t  q a 4  a sec- 
so r  Q,, has no trace, is symmetric, and has the dimen- ond-order phase transition. 
sionality q. In particular, in the phase transition from 

We investigate here the three-component Potts model. a nematic liquid crystal into an isotropic liquid, the role 
We show that if the dimensionality d i s  less than the crit- of the order parameter can be played by the anisotropic 
ical d,,  a second-order phase transition takes place. part  of the dielectric tensor.c51 The Hamiltonian of the 
The obtained critical dimensionality dc=4. 58 greatly ex- model i s  of the form 
ceeds 3, and in all probability a more exact calculation 
will not lead to d, < 3. H=AQ'+BQS+CQ4, (1 ) 

The Potts model is a generalization of the Ising mod- where Q2, Q ~ ,  and Q4 denote respectively invariants of 
el, in which each site can be in one of the q states, the second, third and fourth order in Q. 
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We consider a continuous variant of the three-compo- du"/drc-2=8~ar.s-du"z-48brc8~'~~z+~/J~r~o~d X6, 
nent Potts model. By a change of variables, we can re- (6)  
duce the Hamiltonian (1) in this case to the formcQ1 d~ /dr , -"48ar f -~ i i  X. 

where r = (T - T,)/Tc i s  the deviation from the critical 
temperature, k i s  the wave vector, and d is the dimen- 
sionality. The coupling constants a re  subject to the fol- 
lowing relations: 

ul=u,=uJ2=u, hl=-3h2=h. (3 

Relations (3) stem from the fact that from three-dimen- 
sional zero-trace tensors it i s  possible to make up only 
one third-order invariant, T r  Q9, and one fourth-order 
invariant T r  Q' = $ ( ~ r  

The equations for the total quadruple and triple ver- 
tices are  of the form 

and 

In expressions (4), the vertices u,, %, y, XI, and X, are  
respectively designated as  follows: 

The straight and wavy lines represent the complete 
Green's functions of the fields cp, and cp,. 

As will be shown below, at d =4  there exist non-Gauss- 
ian fixed points (FP), so  that the &-expansion (& =4 - d) 
cannot be used. We therefore use a method proposed by 
S. ~inzburg.~"] Neglecting the critical exponent q, 
which characterizes the deviation of the correlation func- 
tions from the Ornstein-Zernike form, we differentiate 
the equations in (4) with respect to the square of the 
reciprocal correlation radius r b .  Taking into account 
the relations (3) between the coupling constants, which 
remain in force also after the renormalization, we ob- 
tain equations for the complete quadruple (u) and triple 

vertices (the last two graphs in Eqs. (4b) cancel 
each other identically): 

The constants a, b, and c depend on the dimensionality 
d"21. 

9 

Making the change of variables 

we obtain 

where 

The series for r+b,(x, y), as all  other power-law series of 
field theory, are  asymptotic. In the model with the cp4 
interaction, the best approximation i s  that of $(x) by the 
first two terms of its We have therefore 
confined ourselves in (9) to the terms quadratic in x and 
y. That the choice of this approximation i s  reasonable 
i s  confirmed also by the fact that we obtain for the criti- 
cal exponent of the susceptibility values (see expression 
(15)) that a re  close to those obtained by other methods. 

Solving the system of equations I), =$, =0, we obtain 
four FP: 

The first two points were obtained earlier in calculations 
within the framework of the &-expansion.L1k161 The last 
two points were not obtained in the cited papers, since 
the renormalized vertices a re  not small as d-4. The 
only stable F P  among these obtained i s  the fourth one at 
d<dc, where 

It i s  known that the free energy can be represented as 
a series in powers of the quantity M = (9). The averag- 
ing is over the distribution function with the total Hamil- 
tonian of the system. The coefficients of the series a r e  
in this case the renormalized vertices. In particular, 
the terms quadratic and cubic in M take the forms X'11L8 
and XM', where x is the susceptibility of the system. 
To ascertain whether the triple vertices influence the 
thermodynamics, let us compare these two terms. Rec- 
ognizing that M" X"d"*"'/2(2-" and defining the dimen- 
sionality of the triple vertex by the expression - X'A3J(2-'J), we get 

]IMS/X-LMZ,XIS(2-q)-ZAs-d1/2(2-n)- I -X - 
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-g FIG. 1. 

In accord with the work of Vigman, Larkin and ~ i l e v , ~ ' ~ ~  
the triple vertices do not influence the thermodynamics 
at z <O, and the system undergoes a first-order phase 
transition at z > 0. If z = 0, the free-energy terms 
quadratic and cubic in M are of the same order, and 
the thermodynamic quantities depend on X . However, 
allowance for does not change the kind of the phase 
transition. It is  easy to verify that for our stable FP the 
condition z = O  is satisfied, so  that this point describes 
a second-order phase transition. 

The phase plane of the system (8) for d < 4  is shown in 
Fig. 1. The arrows on the trajectories show the direc- 
tions of the motion as  r, is increased, i. e., t is  de- 
creased. The thick lines are the separatrices that de- 
limit the stability region of the fourth FP. The numbers 
at the F P  correspond to those in (10). It is easily seen 
that only one quadrant of the phase plane need be con- 
sidered, inasmuch as  y >O by definition (7), and the 
condition x>O (u>O) ensures stability of the system. 
The trajectories that go outside the limits of this qua- 
drant corresponds to a system that undergoes a first- 
order phase transition. 

At  d =4, the first and second F P  ((10a) and (lob)) coin- 
cide. In this case the region of stability of the fourth 
point includes arbitrarily small values; of the fourth 
quadruple constant. A t  d f 4, even in the case of a small 
constant of the triple interaction, a second order transi- 
tion takes place only if the value of the quadruple con- 
stant x exceeds a certain x,. At d <4, x, coincides with 
the value of the second FP (see the figure). ~ o l n e r ~ " ~  
investigated the three-component Potts constant at d =3 
with the aid of ~ i l s o n ' s ~ ' ~ ~  approximate recurrence re- 
lations and found that the phase transition is of first 
order. This may be due to the choice of too small a 
bare quadruple constant (uo = 0.1). Our conclusion is 
confirmed by the results of Burkhardt et al.c'91 who used 
 ada an off's^^^' renormalization transformations to obtain 
astable F P a t d = 2  andd=3. 

To calculate the critical exponent y of the susceptibili- 
ty, we consider, following ~inzburg,~"] the vertex t, de- 
fined by the expression 

dr,-'/dr=tn. (11) 

The equation for the derivative dt,/dr, is of the form 

(1 2) 

where the triangle stands for t, and the dashed line for 
differentiation of the G function. As a result we get 

d ln t . /dt=f ( x ,  y) , 5 ( x ,  y) =32x-4 ( 6 - 4 )  y. ' (13) 

The exponent y is  determined by the expression 

from which we obtain, in particular 

These values agree with those obtained either from a 
numerical solution of the renormalization-group equa- 
t i o n ~ ~ ' ~ '  (y = l. 451 at d =2 and y =O. 9761 at d =3) or with 
the aid of power -law expansions (y = 1.5 * 0.2,t91 1.45 
rt0.15,"11 1 .42 i0 .05~"~  at d=2; y = l . ~ r t O .  15"s1 at d 
= 3). 

Experimental investigationsC6s241 of systems describa- 
ble by the Potts model reveal a first order transitions, 
with the discontinuities of the thermodynamic quantities 
smaller than those predicted by the self-consistent- 
field theory. These results can be understood by as- 
suming that the bare values of X and u a re  not too large. 
Thzn the distance to the stability limit x = O  along the 
trajectory (see the figure) exceeds the shortest distance 
appreciably. Since a longer path corresponds to a larg- 
e r  r, (and accordingly to a smaller T), the phase transi- 
tion will in fact take place at a value of t smaller than 
in accord with self-consistent-field theory, and the dis- 
continuities of the thermodynamic quantities will be cor- 
respondingly smaller. 

The author thanks E. E. ~orodetskif for useful dis- 
cussions. 
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