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A phase transition of the gas-liquid type in a system of electrons and holes in a quasi-two-dimensional 
(layered) semiconductor is considered. The phase diagram, critical temperature and density for the 
transition are obtained. It is shown that near the critical point the transition is of a purely plasma nature. 
In other words, bound states of the exciton type are absent in both (gas and liquid) phases. 

PACS numbers: 71.35. +z, 71.30. +h 

It was shown in a previous workC1' that the role of cor- 
relation effects in electron-hole plasma (EHP) turns out 
to be anomalously large in semiconductors and semi- 
metals possessing extremely strong anisotropies of the 
electron spectrum, in particular, layered systems. A 
significant decrease in the energy associated with inter- 
electron correlations creates a tendency to "self-com- 
pression" of such a plasma, i. e., the formation of an 
electron-hole liquid (EHL) with particular density n 
>> ai3 and binding energy per electron-hole pair l Emin I 
>> E,, where Ex and a, a re  the binding energy and the ef- 
fective r,adius of the hydrogen-like exciton. Formation 
of an EHL at  low temperatures takes place through a 
first-order phase transition, in which the concentration 
of the carriers,  free and bound in excitons, reaches 
some critical value n,,(T) that depends on the tempera- 
ture-the density of the saturated vapor. This situation 
can be realized both a t  thermodynamic equilibrium for 
a semiconductor with a sufficiently narrow forbidden 
band E, upon increase in the temperature o r  decrease in 
E,, and under essentially nonequilibrium conditions, in 
which the critical concentration is achieved by introduc- 
tion of selected carr iers  in intense excitation of the 
semiconductor. 

In the first  case, the formation of the EHL means a 
discontinuous change in the width of the forbidden band 
E, to some negative value (overlapping of the bands), 
i. e., a transition of the initial semiconductor to a semi- 
metal state. The second case corresponds to the so- 
called condensation of nonequilibrium carr iers  (or exci- 
tons) into EHL drops. With the same accuracy with 
which the nonequilibrium carr iers  can be assumed to be 
thermalized, the thermodynamics of both these transi- 
tions is identical and we shall consider them here using 
as an example one of the types of systems previously 
de~cr ibed"~-la~ered systems. Just as  in Ref. 1, we 
shall mean by a layered semiconductor or  semimetal 
an idealized model in which the motion of the electrons 
and holes i s  two-dimensional, i. e., i t  takes place only 
in the plane of the layers without transitions between 
them. For simplicity, the dispersion laws of the elec- 
trons E , @ )  and holes ch@) will be assumed to be quadrat- 
ic and isotropic in the plane of the layer: &,,,@) =p2/ 
2me,,. We shall also assume the permittivity tensor of 
the crystal to be isotropic in the plane of the layers. 
This tensor i s  characterized by two principal values 

&, and E , ,  for the directions along and perpendicular to 
the layers, respectively. 

We emphasize that we a re  speaking of a permittivity 
without any contribution of f ree  carriers.  We shall use 
a system of units defined by the relations 

where e and A a r e  the charge on the electron and Planck's 
constant, and m is the reduced mass, m-'=m;'+m;'. 
In this work, along with the parameter of the ratio of the 
effective masses of the electron and the hole, a = me /mh 
that i s  usually employed, we will find it convenient to use 
another parameter s = (1 - o)/(l +u). 

The system of electrons and holes in the considered 
model is described by the Hamiltonian 

where ai,l,,l and bi,,,,, a r e  the electron and hole crea- 
tion operators in the layer I (1 = 0, *I, a, . . . ), and spin 
projections s,,,  and momentum p in the plane of the lay- 
er;  plt2 and q a r e  two-dimensional vectors; the normal- 
ized area of the layer is set  equal to unity: 

V,, I--2nq-I exp ( - q  11 1 c') ; (2 

c* = c ( E ~ / E , ~  )lf2; c is the distance between the neighboring 
planes; pe and p, a r e  the chemical potentials of the elec- 
trons and holes, calculated from the bottom of the re -  
spective bands and connected by the condition of electric 
neutrality 

n is the volume density of the number of electron-hole 
pairs; nc is the surface density in a single layer. 

The introduction of the chemical potentials p, and ph 
is necessary for the description of nonequilibrium sys- 
tems, when the electrons and holes assumed to be dif- 
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ferent types of particles and their concentration n is 
specified arbitrarily. In a thermodynamically equilibri- 
um situation, the chemical potential of the electrons in 
both bands should be the same, which adds an additional 
condition for pe and p,: 

where E:" is the width of the forbidden band, i. e., the 
distance between the initial values of the energies of the 
electrons and holes in (1). It should be noted that E:') 
i s  the unrenormalized width of the forbidden band, a 
width that enters into the bare  dispersion law. The ac- 
count given below of the interaction of electrons and 
holes leads to a significant difference between E:" and 
the real  width E, of the forbidden band right up to the 
transition from the semiconductor unrenormalized con- 
tinuous spectrum (E;O)>O) to the semimetal (E,<O) after 
renormalization. 

The investigation of the thermodynamics of the con- 
sidered model is most conveniently carried out by start-  
ing from the dependence of the particle number density 
on the temperature and the chemical potential 

where G, ,  i s  the Green's function of the electrons and 
holes in the Matsubara techniquec2' (see also Ref. 3), 
C,,, a re  the self-energy parts, ck = aT(2k +I),  and k is 
an integer and r - +O. 

Further consideration is based on the assumption that 
the distances between the layers c a re  small in compari- 
son with the radius of the two-dimensional exciton, i. e., 
with account of the scales employed, 

We shall show below (formulas (43)-(49)) that upon sat- 
isfaction of the condition (6), in the region of concentra- 
tions and temperatures defined by the inequalities 

the self-energy parts C,,, do not depend in f i rs t  approxi- 
mation on either the temperature or the arguments p and 
E ~ ,  and have the form 

where the plus sign corresponds to electrons, and the 
minus to holes, 

Thus, in this region of concentrations and tempera- 
tures, the interaction in the electron-hole plasma leads 
to a narrowing of the forbidden band without any appre- 
ciable change in any other of the parameters of the elec- 

tron spectrum. We shall also show that the entire re- 
gion of existence of the electron-hole liquid, including 
the critical point, falls in the interval of concentrations 
and temperatures satisfying the conditions (7) and (8). 
In order to  establish this, we consider first  the thermo- 
dynamics of the electron-hole plasma, starting out from 
the formulas (9) and (lo), and then give the basis of the 
formulas themselves. Carrying out the summation and 
integration in (5) with account of the independence of E 
of p and zk, we obtain 

Solving the relation (11) for pe,, and combining the equa- 
tions thus obtained, we find the dependence of the chem- 
ical potential of a single electron-hole pair p = pe + 1, on 
n and T: 

nnc ( I +  s) nnc ( l  - s )  
y ( n , T ) = Z , + X h + T I n  

T 

= - A  ($1 + T [ I T  (ch - ''F - ch?)], (12) 

where the coefficients A =a(s)  +a(- s )  is connected in the 
following fashion with the function f(o) introduced pre- 
viously ''I: 

The relation (12) is essentially the equation of state of 
the electron-hole plasma, written in the variables p and 
n instead of the more customary pressure and volume. 
Several typical curves, described by these relations for 
the simplest case o = 1 (s =0), a r e  given in Fig. 1. It is 
seen that they have the typical van der Waals character, 
i. e., a t  temperatures T < T, there a r e  two stable branch- 
e s  n,,(p, T) and nli,(p, T) and one thermodynamically 
unstable branch (8p/8n),<O of the solutions. The lesser 
of the two stable solutions n,, corresponds to the gas- 
eous phase, the greater-nli,-corresponds to the elec- 
tron-hole liquid. The critical point (T,, n,) is determined 
by the two equations 

which reduce to a single transcendental equation for the 
parameter z,  = ncn,/T,: 

The critical parameters of the liquid a re  expressed 
in terms of z ,  by the formulas 

FIG. 1. Dependence of the chemical potential on the density in 
relative units a t  various temperatures: curves 1) T = 0, 2) T 
= 0. 5Tc, 3) T = T,, 4) T = 2Tc. The semi-axis n = 0, p 6 0 also 
belongs to the isotherm 1 at T =  0. 
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A ch z.-ch (2,s) 
nee= [- where 

4n exp ( 2 , )  -ch (2,s) -s sh (2,s) (16) 0.166f1.(a) 
ch 2,-ch (2,s) 

exp (za) -ch (2,s) -s s~ l ( z , s )  (17) 1.57f1.(a) 

sh 2.-s sh (sz,) ) - 1  2 - 1  z - c h ( s z )  ] . (18) 
ch 2,-ch (sz , )  

By virtue of (15), z, depends only on a single parame- 
ter-the ratio of the masses of the electron and hole u 
(or s). The dependence of z, on u is very weak: 

With accuracy to one hundredth, the function z,(o) can be 
obtained in explicit form by expansion of the right side 
of (15) in a series in z, up to terms of third order: 

With the same accuracy, the formulas (16)-(18) reduce 
to the form 

At temperatures less than critical, one of the two 
stable solutions n,,(p, T) and nliq(p, T) i s  generally 
metastable. Only for a single value of the chemical po- 
tential p(T), determined for each temperature T, is the 
existence of both phases possible with balanced densi- 
ties n,,(T) =n,,(p(T), T) and nIi,(T) =n,,,(p(T), T). The 
quantities p(T), n,,(T) and nliq(T) a re  determined by the 
conditions that the chemical potentials and pressures be  
equal in both phases: 

with the accuracy shown above, near the critical point, 
T, - T << T,: 

1 ( ~ ) - = { 2 - l n z ( l - s ~ ) - - ( l t s ~ ) ]  T - T .  (27) 
12 

At low temperatures T << T,: 

I -s 
25n2 152 2 

p ( ~ ) = p . { i  +r(t)vs (1-s ) [ I  +-(I+s')z: 9 

2 1 
[ I  +T'~+')z'] (&)'}_. (29) 

a r e  respectively the equilibrium density and minimum 
energy of the ground state of the EHL at T =O. In this 
limiting case, the expressions (28), (29) go over into the 
formula (10) of Ref. 1." It is seen from Eqs. (21)-(23) 
and (30), (31) that the region of existence of the EHL 
satisfies the inequalities (7) and (8). 

It should be noted that the expansion used in (20) and 
subsequently assures an accuracy to within a few per- 
cent in all the formulas. This accuracy will obviously 
be quite sufficient when a comparison is made with the 
experimental data, the more so  that, in the region of 
real  values of the distance between the layers c, the 
expressions (21)-(23), (31) and (32) will be satisfied 
only qualitatively. The problems of the applicability of 
the present consideration a r e  discussed a t  the end of 
the article. 

Figure 2 shows a phase diagram in reduced units kn/ 
n, and T/T,, constructed numerically according to (24), 
(25) for. the case u =  1. The form of the phase diagram 
does not depend on the parameter c and depends weakly 
on the parameter u. It follows from the calculation that 
for all  values of the parameters, the following relation 
between the critical temperature T, and the binding en- 
ergy of the EHL I Em,, I at T = O  i s  well satisfied: 

This relation turns out to be quite general. Thus, it 
holds approximately for the experimentally observed 
phase diagrams of the EHL in germznium and silicon, 
which a r e  never layered materials. The experimental 
data a r e  for germaniumc41: T, =6.5 i 0.1 K, I Em,, I 
= 5.66 & 0.15 meV; for  siliconc5]: T, = 28 * 2 K, I Em,, I 
=22.6 i 0 . 2  meV. Calculations of the critical point in 
germanium and silicon were also carried out in other 
researches.c61 A similar relation evidently exists for 
liquid-gas transitions generally; see  the note on page 
288 of the book of Landau and ~ i f s h i t z . ' ~ ]  

However, we now return to layered system. In the 
considered model, the gas phase i s  a nondegenerate 
plasma, and the excitons in it do not play any significant 
role. Even a t  very low temperatures T << T,, their con- 
centration a exp[(p,+l)/T] is much less  than the concen- 
tration of the free carriers,  which is of the order of 

1 , o t  1 f 1 I t  I I  
111r5 fn-' ro lo-' ion n/n, 

FIG. 2.  Phase diagram of the EMP-EHL transition on the 
(n, 2') plane in relative units, a= 1. 
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e ~ p ( ~ ~ / 2 T ) ,  by virtue of the condition 1 1 " ~ ' ~ ' ~  >> 2. 
At temperatures that a re  close to  critical, the density 
of the carr iers  in the gas phase i s  so  large that the exis- 
tence of excitons in it is generally impossible. 

We also give the formulas for the symmetric case o 
= 1. The equation for z, is materially simplified: 

its solution is z, = 0.5501 and Eqs. (21)-(23) reduce to 

Up to now we have had in mind a nonequilibrium situa- 
tion, in which the total number of electrons and holes in 
the sample i s  given by the external source of the excita- 
tion, although in all the other parameters, these carr iers  
a re  in equilibrium with the crystal lattice and with one 
another. In the case of complete thermodynamic equilib- 
rium, i. e., in the absence of an excitation, the formulas 
(12)-(36) obtained above remain in force, but their mean- 
ing is modified somewhat. The condition that the chem- 
ical potentials of the electrons be the same in the va- 
lence band and the conduction band (4) leads to the re-  
placement inEq. (12) of p by E:O'-the unrenormalized 
width of the forbidden band: 

Equation (37) determines the dependence of the electron 
and hole concentration n on the temperature T and on 
E;O). 

The actual (renormalized) width of the forbidden band 
Ec, by virtue of (9) and (lo), is equal to 

E,(T) =E, -A (c/c')'"n" (T) . (38) 

The gas-liquid phase transition means a discontinuous 
increase in n(T) and therefore a decrease in E,(T), i. e., 
semiconductor-semimetal transition at sufficiently 
small values of the bare forbidden band. In the plane of 
the variables (T, EJO)) (Fig. 3) the curve EjO' = - p(T), 
described by the formulas (22)-(25), (271, (29), (31), 
divides the regions of existence of the semimetal (SM) 
and semiconductor (SC) phases. In the region T <T,, 

I lo I E:" < I pc I the carr ier  concentrations n and the 
width of the forbidden band Ec depend in discontinuous 
fashion on T and E:": 

for the SC phase and 

for the SM phase. In the actual phase diagram, in place 
of E:') (Fig. 3), we should have some thermodynamic 
parameter whose change causes Ei0) to change, for ex- 
ample, the external pressure o r  the concentration of one 
of the cow-ponents in the case of solid solutions. 

0-m) 1 1.05 1.f Eg 

FIG. 3. Phase diagram of the semiconductor-semimetal tran- 
sition on the plane of the variables (T, EJO)), with bothvariables 
in units of I Emi, l = I I . The continuous curve separates the 
semiconducting ( S C )  from the semimetal (SM) phase. 

We now proceed to  the derivation of Eqs. (9) and (lo), 
on which all the previous consideration was based. The 
irreducible self-energy part E, (C, can be obtained from 
E, by the obvious substitution s - - s  in all formulas), is 
expressed by the well known formula 

where the screened interaction is determined by the 
equation 

The polarization operator 

E ~ ,  = ?rT (2kl + 11, wk2 = 27rk2 T; klW2 a r e  integers; rj:;, is 
the vertex part, defined as the sum of all the irreducible 
diagrams with a single incoming (into the layer I , )  inter- 
action line and two out external electron o r  hole lines on 
the same layer 1. 

In the region of high concentrations nc >> 1 of interest 
to us, classification of the terms of the series of per- 
turbation theory in powers of the density n i s  possible. 
The set  of principal diagrams forms, as is well known, 
the so-called diagrams of the random phase approxima- 
tion (RPA), corresponding to the use for rlf;, and lT13-14 
of their f irst  nonvanishing approximations: 

where f,,,@) i s  the Fermi distribution function. The 
form of the expression (42) is the usual one (see, for 
example, Ref. 3, p. 250); in the summation, however, 
it is now assumed that C, i s  independent of i ts  argu- 
ments, an assumption discussed below. 

The expression (39) for C reduces in this approxima- 
tion to 

619 Sov. Phys. JETP 46(3), Sept. 1977 Andryushin et a/. 619 



where Vo is obtained by solution of the Eq. (40): 

The f i rs t  term in the right side of (43) is the exchange 
correction to the dispersion of the electrons; the second 
is the correlation correction. The exchange part is ob- 
viously -nc& and, as we shall see  below, is small in 
comparison with the correlation part at concentrations 
satisfying the inequalities (7) and (8). For estimates of 
the correlation contribution C,,,, we consider (44) in 
more detail. 

For the behavior of the polarization operation, a 
knowledge of the quantity 

is essential, where j5 is the average momentum of the 
particles, j5-ma~[(2nnc)~/~, T 'I2]. In the two limiting 
cases, we have 

In the region of (7), (8) we have Ji<< C-'I2. Therefore, 
the transferred momenta q 2 c" correspond to the asymp- 
totic form (46) of the polarization operator, 

and the contribution of the region qc Z 1 to the integral 
for the correlation part Z, is very small. The basic 
contribution is made by the region qc << 1. Using this 
inequality and the condition 1 IJ I <  1, which is obvious by 
virtue of (45), (46) and the definition of p ,  we get 

Substituting (45) and (46) successively in (47), we can 
easily establish the fact that at Ji>> n'I4 the basic contri- 
bution to (47) is made by qS (p/P)lJ2 <<j5, to which cor- 
responds the asymptotic form (45), and at Ji << n'I4 by the 
momenta q "n1l4>>7i, which corresponds to the asymp- 
totic form (46). But the inequality j5<<n1I4, by virtue of 
the definition of j5, is equivalent to the inequalities (7) 
and (B), so that in the region of concentrations and tem- 
peratures of interest to us we should use the polariza- 
tion operator in the form (46). Moreover, in (47) we can 
omit p in the argument of G, because of the inequality q 
>>Ji and, consequently, for real  momenta of the particles 
C,,, does not depend on p. In the summation over the 
frequencies, the basic contribution under these conditions 
is made by 10% l~n'", a s  is easily understood from (45) 
and (46). Therefore, by virtue of (8) and of the defini- 
tion of w,, = 27rk, T, the summation over k, can be re-  
placed by the integration 

.Z-J$, kr 

which is equivalent to neglect of the temperature depen- 
dence, i. e. , the replacement of C,,,, by i t s  value at T = 0. 

Finally, the dependence on &,, in the argument G, in 
(47) also turns out to be unimportant for IzRl l ~ n ~ l ~ ,  i. e. , 
right up to  energies significantly greater than the mean 
energy of the particles j5,. With account of all these 
simplifications, (47) takes the form 

dqdo 
= J,[ { 1+4nn ( 

I+S 

oZ+ [ (I +s) ?q2/2  ] = 

or, after the introduction of the new integration variables 

The system of equations (11) and (49) together deter- 
mines the dependence of p,,, and Z,,, on n. With rela- 
tive accuracy -n1I4 the terms ( p  - Z)/n'I2 from the right 
side of (49) and, after integration over y, (49) reduces 
to (9) and (10). In connection with this solution, i t  i s  
necessary to  make the following remark. The approxi- 
mation that we have used is, strictly speaking, not the 
random phase approximation, although it is similar to 
it. In the approach that is usual for the RPA, one must 
use in (5), (39) and (41) the zeroth approximation for 
the Green's function 

Neglect of Z,,, in the integrand of (49) actually corre- 
sponds to this. However, the total Green's functions 
(in the principal approximation in n) 

must be used in (5), ( l l ) ,  (41) and (42). This difference 
is very important, since the Matsubara diagram tech- 
nique is developed at fixed p and not a t  fixed n. There- 
fore, substitution of G"' in (5) and (41) would have yield- 
ed, at large negative values of p of interest to us, ex- 
ponentially small current carr ier  densities no-e'lT and, 
correspondingly, exponentially small  screening of the 
interaction II-no. In other words, we would have found 
for each p only a single solution corresponding a t  low 
temperatures to the gas phase and generally not suitable 
at T-T,. The analysis given above shows the existence 
for the nonlinear system of Eqs. (39)-(41), (51) of a 
second solution of the form (41), (9), corresponding to 
high concentrations n at negative p, i. e., to  a liquid 
phase. 

In conclusion, we discuss the limits of applicability 
of the results. The model used in the present work and 
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described by the Hamiltonian (1) is itself extremely 
idealized. In real  layered semiconductors and semi- 
metals, the probability of an electron transition from 
one layer to another differs from zero; this leads to the 
dependence of the energies of the electrons and holes on 
the quasimomenturn components p, perpendicular to the 
planes of the layers. If the transition probability is suf- 
ficiently small, this dependence i s  of the form Wcos(p,c), 
where W is proportional to the overlap integral of the 
wave functions of the electrons on neighboring layers. 
The consideration given above, which does not take into 
account the dependence of E., on p,, is therefore valid 
only s o  long a s  all the energies entering into the calcu- 
lations significantly exceed the width W of transverse- 
motion band, i. e., w<<c-'". In the case of opposite 
sign of this inequality, the motion of the electrons is 
essentially three-dimensional and for the description of 
the EHL we must use the approach based on the strong 
anisotropy of the effective masses for motion in the lay- 
e r  (m,) and perpendicular to i t  (m,)."' The role of the 
small parameter of the theory i s  played in this case by 
m ,/m, << 1 instead of c. 

 he coefficient All of Ref. 1, which determines the correla- 
tion contribution to the total energy, differs by the factor $ 

from the A coefficient used in the present work in the self- 
energy parts of the electrons and holes. Moreover, in formu- 
las  (10) from Ref. 1, there a r e  errors .  The correct form of 
these formulas agrees with formulas (30) and (31) of this 
paper. 
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It is shown by the renormalization-group method that the Potts three-component model has a second-order 
phase transition. The dependence of the critical exponent of the susceptibility on the dimensionality of 
space is determined. 

PACS numbers: 05.70.m 

A model introduced by Potts back in 1952C'1 has re -  interaction energy assuming only two values, depending 
cently become the subject of intensive study, with par- on whether the nearest si tes a r e  in identical or  differ- 
ticular attention paid to the question of the order of the ent states. The Potts model with various q describes 
transition. The point is that the Hamiltonian of this different r ea l  systems: electric circuits a t  q =o,"' 
model contains invariants of third order, and calcula- percolation a t  q = 1,"' and nematic liquid crystalsc51 or  
tion within the framework of the self-consistent field"' crystals with cubic symmetryC6'81 at q =3. Of course, 
yields a first-order transition a t  a number q 3 3 of the a t  q =2  we obtain the usual Ising model. 
components of the order parameter of the model. On 
the other hand, an exact calculation of the two-dimen- In the q-component Potts model, a phase transition is 

described by a tensor order parameter Q,,."] The ten- sional q-component Potts modelCS1 yields a t  q a 4  a sec- 
so r  Q,, has no trace, is symmetric, and has the dimen- ond-order phase transition. 
sionality q. In particular, in the phase transition from 

We investigate here the three-component Potts model. a nematic liquid crystal into an isotropic liquid, the role 
We show that if the dimensionality d i s  less than the crit- of the order parameter can be played by the anisotropic 
ical d,,  a second-order phase transition takes place. part  of the dielectric tensor.c51 The Hamiltonian of the 
The obtained critical dimensionality dc=4. 58 greatly ex- model i s  of the form 
ceeds 3, and in all probability a more exact calculation 
will not lead to d, < 3. H=AQ'+BQS+CQ4, (1 ) 

The Potts model is a generalization of the Ising mod- where Q2, Q ~ ,  and Q4 denote respectively invariants of 
el, in which each site can be in one of the q states, the second, third and fourth order in Q. 
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