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The tunnel-Hamiltonian method is used to obtain the free interaction energy of charge-density waves 
(CDW) in quasi-one-dimensional and layered crystals as a function of the phase difference of the CDW of 
individual chains or layers. It is shown that a contribution to this interaction is made by tunneling of the 
electrons between the chains (layers) and by the Coulomb interaction of the CDW, and that the first of 
these mechanisms predominates in all cases. The experimental data for quasi-one-dimensional crystals are 
discussed on the basis of the results. For layered crystals, the three-dimensional ordering is determined 
from the condition that the free energy of the interaction of the layers be a minimum, with account taken 
of the commensurability effects. This approach explains the experimentally observed types of three- 
dimensional ordering of CDW in layered crystals. 

PACS numbers: 72.15.Nj 

1. INTRODUCTION e r s  (chains), with the second effect predominating. In 

Structural investigations show that charge-density 
waves (CDW) appear in layered crystals of dichalcogen- 
ides of transition metals and in quasi-one-dimensional 
compounds when the temperature i s  loweredc19e1 (see also 
the reviewscs1). In all the investigated layered crystals, 
the appearance of a CDW superstructure is connected 
with change of the lattice period inside the layers. Sim- 
ilarly, in quasi-one-dimensional compounds, the period 
of the lattice within the chains is altered. In most cases 
the appearance of a superstructure within layers or  
chains is accompanied by three-dimensional ordering of 
the CDW in the Erystal, ;wing to the interaction of the 
CDW of different layers or  chains. Such a distinct three- 
dimensional periodicity of the CDW was observed in the 
1 T and 2 H  modification of the purely layered crystals 
TaS,, TaSe,, and NbSe, in the entire region of the exis- 
tence of the two-dimensional ~ u ~ e r s t r u c t u r e . ~ ' * ~ ~  It was 
also observed in the quasi-one-dimensional TTF-TCNQ 
crystals below 54 K and in TSeF-TCNQ below 29 K."] 
In a number of disordered quasi-one-dimensional and 
layered crystals, however, no long-range three-dimen- 
sional order of the CDW is observed, and only the ap- 
pearance of correlations of the CDW of different layers 
or chains has been noted. This situation takes place in 
KCP below 120 KC"] and in the IT-Ta,,,ZrSe, alloys a t  
x>0.015.~'~ Finally, both possibilities a re  realized in 
Mb-TaSe, crystals-the CDW of the octahedral layers 
a r e  ordered in the crystal at those temperatures at 
which investigations of the superstructure were carried 
out (10 and 300 K), while the CDW of the trigonal layers 
remain disordered a t  10 K."] 

The present article deals with three-dimensional or- 
dering of CDW in similar systems. Within the frame- 
work of the microscopic theory based on the use of the 
Frzhlich Hamiltonian, we derive an expression for the 
free energy of the interaction of the CDW in different 
layers (chains) a s  a function of the phase difference of 
the CDW of the individual layers (chains). We shall 
show, that this free energy consists of two contributions, 
one from the Coulomb interaction of the CDW and the 
other from transitions of the electrons between the lay- 

the absence-of a commensurability energy, both contri- 
butions tend to  establish in neighboring layers CDW that 
a re  in antiphase. This result was qualitatively arrived 
at earlier by Barisich (who considered only the Coulomb 
interaction of the CDW) and one of us (seecs1). In the 
present article we have obtained the explicit of the cor- 
responding terms of the interaction a s  a function of the 
phase difference of the CDW of layers. This form has 
enabled us to  determine the type of the three-dimension- 
a l  ordering with allowance for the commensurability ef- 
fects. 

We note that the possible types of the three-dimension- 
a l  ordering were predicted earlier within the framework 
of the phenomenological Ginzburg-Landau theory,c10' with 
allowance for commensurabilities for layered compounds, 
in our short paper,c111 and by M c ~ i l l a n . ~ ' ~ ~  The proposed 
types of three-dimensional ordering are different in these 
papers. We shall show that both types of solutions can 
be realized (and a r e  apparently realized in experiments) 
in crystals, depending on the ratio of the parameters that 
characterize the interaction of the nearest and non-near- 
est  neighboring layers. We investigate also the depen- 
dence of the interaction energy of CDW of different lay- 
e r s  (chains) on the degree of disorder of the crystal and 
show that this energy decreases substantially with in- 
creasing disorder. The results explain qualitatively why 
long-range three-dimensional ordering of the CDW can 
exist in disordered crystals (KCP, IT-Tal,,ZrJee a t  x 
>0.015). 

2. GENERAL EXPRESSION FOR THE INTERACTION 
ENERGY OF THE CDW OF DIFFERENT LAYERS 
(CHAINS) 

The interaction of CDW of different layers or  chains 
in a three-dimensional crystal with strong anisotropy is 
due to two effects: transitions of the electrons between 
the layers (chains), and Coulomb interaction of the CDW. 
The interactions due to the tunneling of the electrons be- 
tween the layers (chains) is in effect similar to the 
Josephson interaction of superconductors, and particu- 
larly with the Josephson interaction of layers in layered 
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superconductors.C'9*141 To calculate this effect, we shall 
use in the greater part of this paper the tunnel-Hamilto- 
nian method, which was developed for the solution of 
analogous problems in the superconductivity region. 

We describe the CDW transitions within the framework 
of the Frijhlich model for a system of electrons and pho- 
nons (see, e. g. , C'5'171). We consider two layers: 1 and 
2. The Hamiltonian of this subsystem, without allow- 
ance for the Coulomb interaction of the electrons, is 
given by 

and %, has a similar form. a:, (cis) a r e  the operators 
for the production of the electrons with spin s on the 
sites n of layers 1 (2), and t, i s  the matrix element of 
the electron transition between the sites n of layers 1 
and 2 (we use the strong-coupling approximation to de- 
scribe the motion of the electrons between layers, and 
assume for simplicity that the lattices of layers 1 and 2 
a re  equivalent). We designate the electron energy in 
layer 1 by el@); b'(Q) is the operator of the production 
of a phonon with quasimomentum Q and energy a,, where 
k i s  the wave vector of the CDW. We assume that the 
vectors Q a r e  identical to layers 1 and 2, for otherwise 
there is no interaction of the CDW of layers 1 and 2 in 
first-order approximation. The interaction of the elec- 
trons with the Q phonons, which determine the instability 
is described by the parameters g,,, for layers 1 and 2; 
N is the density of the atoms (molecules) in the layer or  
chain. All the vectors n, k, and Q in (1) a r e  two-dimen- 
sional for layered crystals and one-dimensional for the 
quasi-one-dimensional systems. Since the phonons with 
quasimomentum Q which condense in the CDW transition 
correspond to longitudinal acoustic oscillations or  to 
fully symmetrical intramolecular oscillations,c151 there 
is no direct interaction of phonons with quasimomenta 
Q in different layers (chains) in the linear approximation. 

We take into account the influence of the tunnel Hamil- 
tonian %, on the interaction of the CDW of layers 1 and 
2 by using perturbation theory in a,. The limits of ap- 
plicability of this approach to quasi-one-dimensional 
crystals a r e  discussed below. To use perturbation the- 
ory we must know the solution for CDW of individual lay- 
e r s  1 and 2. We introduce the order parameters 

A1.2= 1 A1,2 1 exp(icF,,2) =2ig,,?(b ( Q )  )/A,'.'. 

To describe the electron system, we use the Nambu rep- 
resentation 

In (2) and hereafter we reckon all  the energies from the 
Fermi level E F. 

For the free energy of an individual layer we have 

and the gap 1 A l is determined from the equation 

which has a nontrivial solution at T < To, where To is the 
temperature at which the CDW appears in the self-con- 
sistent field approximation for an isolated layer o r  chain. 

For the single-electron Green's functi_on G(& @)we 
have in the temperature technique (iw - a0)G =I and 

w = nT(2m + 1). The components of the densities p,(Q) and 
pi(Q) of electrons and ions with wave vector Q a r e  defined 
by the following expressions: 

where N(0)  is the state density on the Fermi surface, po 
and M are  the density and mass of the ions and u stands 
fo r  their displacements in the CDW transition. 

We can now obtain an expression for the free-energy 
density of the interaction of the CDW of layers 1 and 2. 
We a r e  interested here only in that part of the free en- 
ergy which depends on the phase differences q1 and q, 
of the CDW of the layers, since only this part of the en- 
ergy determines the three-dimensional ordering of the 
CDW in the crystal. For the density of the Coulomb in- 
teraction of the CDW we obtain from (6) 

+- 
cos Qr Ko(RQ) for chains 

G(RQ)= dr ( R * + , ) j ,  = { 
- IQI-'e-RIQ1 for layers 

where R is the distance between the layers (chains) and 
K,(x) is a Bessel function. The tunnel Hamiltonian makes 
a contribution to the f ree  energy of the interaction in 
second-order perturbation theory and this contribution 
is determined by 

where F,, is that part of the interaction free energy 
which does not depend on the phases of the phases of the 
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layers, and will hereafter be left out from the expres- 
sions for FT. The total interaction of the layers is de- 
scribed by the sum of the contributions (7) and (8)." 

The theory that we use for the CDW of an individual 
layer describes a case when the period of the CDW is 
not commensurate with the period of the main structure. 
In the case of commensurability, i t  i s  necessary to add 
to the free energy (3) of the layer 1 the commensurability 
energy Fc(pl). This energy contains an additional small 
parameter of the type ( I A I/&,)", p 21, compared with the 
energy (3).C171 When three-dimensional ordering is con- 
sidered, however, Fc(pl) must be taken into account, 
since this is the only part  of the energy that depends on 
the absolute value of the phase of the CDW of layer 1. 
In the expressions for FT and FQ, the commensurability 
effects can be disregarded, since they yield small cor- 
rections to the expressions obtained by us. 

We now take into account the influence of the disorder 
of the lattice on the CDW interaction. According to the 
theory and the experimental data, the disorder of the 
crystal lowers the transition temperature To (or else 
suppresses the transition completely) ( ~ e e ' ~ * ' ~ ~ ) .  To an 
even greater degree, the disorder lowers the commen- 
surability energy and the temperature T, of the transi- 
tion to the commensurate state.[181 However, the effect 
of the disorder of the crystal on the values of the ma- 
trix elements t, and correspondingly on the three-dimen- 
sional ordering of the CDW should apparently be even 
stronger, since the overlap of the electron wave functions 
of neighboring layers (chains) is small, and in this situa- 
tion the phases of the matrix elements t, a r e  sensitive to 
the introduction of impurities or  defects into the crys- 
tals. We shall therefore consider henceforth crystals 
in which the disorder is so small that i ts  influence on the 
commensurability effects (and all the more on the CDW 
transition itself) inside the layers can be neglected, but 
the influence of the disorder on the values of t, is not 
small. This assumption agrees with the experimental 
situation in KCP and IT-Tal,,Zr$e2 (at x>O. 015), a t  
which the correlation length of the superstructure inside 
the chain (inside the layer) is large, and there is no 
three-dimensional order. In the situation considered by 
us, it is necessary to average expression (8) for FT over 
the parameters that describe the randomness of t,, while 
all  the remaining expressions, including that for FQ must 
be left unchanged. Introducing the correlation function 
P(n) of the matrix elements, we obtain 

where ( ) denotes averaging. We assume henceforth 
that the function P(n) is given by 

where I is the correlation length of the matrix elements, 
t,. On the basis of the obtained expressions, we consid- 
e r  in Sec. 3 the ordering of CDW in quasi-one-dimen- 
sional crystals, and in Sec. 4 the ordering in layered 
crystals. 

3. QUASI-ONE-DIMENSIONAL CRYSTALS 

We assume that the appearance of CDW in quasi-one- 
dimensional crystals is due to  the congruence of the 
Fermi-surface sections k, and-- k,, such that Q = 2 k ,  
where kF is the Fermi momentum of the electrons inside 
the chains. The Fermi surface for the chains i s  a point, 
and the crystals become dielectric after the appearance 
of the CDW, since the entire Fermi "surface" is sub- 
merged by the gap. We obtain f i rs t  the f ree  energy of 
the interaction of the chains within the framework of the 
method of the tunnel Hamiltonian [ ~ q s .  (8) and (9)], after 
which we discuss the conditions for the applicability of 
this method to real quasi-one-dimensional crystals. 

In the one-dimensional electron systems, a t  electron 
momenta k << k ,  the condition & a ~ / ~  = - Cr-Q12 is satis- 
fied, and by taking this condition into account together 
with the estimate pi(Q)=p,(Q) we obtain from (7)-(9) the 
expressions 

In the case of identical chains, the "tunnel" interaction 
of the CDW takes the form 

2(lt.lZ) cos(cp, - cpz) 
F,  ( cp t -  cp,) = 

Ua 

In the limit of a system without impurities, I - m, the 
tunnel interaction can be reduced to the form 

where ~ ( x )  is the Riemann function. 

An analysis of expressions (12) and (13) for FT shows 
that the disorder leads to a considerable decrease of the 
CDW tunnel interaction. At I << E(v, v ~ ) ' ~ '  I A I the val- 
ues of FT decreases in proportion to I with decreasing I. 
If ( It, 1') remains unchanged, FT decreases by an ap- 
proximate factor &,/TO when I decreases from m to  dis- 
tances on the order of interatomic. However, a com- 
parison of FT and FQ even in the most disordered system 
(when FT is minimal) shows that FQ is smaller than FT 
by at  least a factor of cF/TO if It, 1' decreases with in- 
creasing R not faster than &$exp(- 2 k , ~ ) .  

Before we proceed to an interpretation of the experi- 
mental data, let us discuss the conditions of the applica- 
bility of perturbation theory for the tunnel Hamiltonian 
in the case of quasi-one-dimensional compounds. We 
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consider a system of identical chains and start from a 
three-dimensional band structure with a spectrum c(k) 
= & (kg) - 2 t(cosk, + cosk,), where k, i s  the momentum 
along the chain and (k,, k,) i s  the transverse momentum. 
The Hamiltonian of the system takes the same form as 
in (I), but all the vectors must be regarded as three- 
dimensional (including the superstructure wave vector 
Q). By a procedure similar to that used in Sec. 2, we 
obtain next expression (3) for the free energy and the 
self-consistency equation (4) for the order parameter 
A (T). We consider only strongly anisotropic systems 
with t << EF. The vector Q, which determines the three- 
dimensional period of the superstructure, has a compo- 
nent Q, = 212, and its transverse component & = (Q, , Q,) 
should be determined from the condition that the free 
energy be a minimum. In real systems in which ~(k , )  
i s  not linear, the transition of the CDW takes place if 
~ ' / E ~ s ? " ,  (seeC1g1), and we shall consider below separate- 
ly systems for which t 6 To or t '/&=< TO < t . 

In crystals with t ST, the self-consistency equation (4) 
for A has a solution for all values of &. The free en- 
ergy takes in the self-consistent-field approximation the 
form 

and the first nonvanishing term of the expansion of F in 
t yields expression (14), the expansion parameter being 
t/cF at T = O  or t/To near To. 

Similar results a re  valid also at ~ , < t  < (&F~o)"2 ,  ex- 
cept that in the weak-coupling limit A << 1 a solution with 
A#0 exists only when the phase difference cpl - q, satis- 
fies the condition t cos[(cpl - q2)/2] $ I A (T) 1. This in- 
equality determines the limits within which deviations of 
cpl - cp, from n a s  a result of the commensurability ef- 
fects a re  permissible. 

Adding now to the chain interaction energy the com- 
mensurability energy (which i s  significant if 2k,b i s  
close to a rational fraction, where b i s  the period of the 
chain) and minimizing the total free energy with respect 
to the phases, we obtain the solution of the problem of 
three-dimensional ordering of CDW in a quasi-one-di- 
mensional crystal within the framework of the self-con- 
sistent-field (SCF) approximation. However, the ques- 
tion of the applicability of the SCF approximation to 
quasi-one-dimensional crystals calls for an additional 
investigation. It is clear that at very small values of t 
this approximation i s  certainly not applicable, and a 
critical value t, exists below which (at t <t,) the fluctua- 
tions are  large in the entire temperature region T<To. 
At t >> t,, the fluctuations are  small and the SCF approxi- 
mation i s  valid everywhere except the immediate vicinity 
of To. For a Peierls tra.nsition, it i s  the phase fluctua- 
tions that are  mainly significant (allowance for only the 
fluctuations of the modulus of the order parameter yields 
t , = ~ t / & ~ ) . ~ ~ ]  An estimate of the region of the strong 
phase fluctuations without allowance for the long-range 

Coulomb forces which arise under these fluctuations 
yields t, = T,.'~'~ NO consistent calculation of the phase 
fluctuations with allowance for the Coulomb interaction 
has been performed so far, and all that can be stated is 
that t, lies in the region between T t /cF and To (see the 
note added in proof). 

At To S t  j ( E ~  T~)"' the SCF i s  certainly applicable. 
In fact we a re  dealing here with an ordinary three-di- 
mensional transition, in which the CDW wave vector Q 
is determined from the condition that the ~ermi-surface 
sections be maximimally congruent, and Q in the weak- 
coupling approximation is of necessity close to the vec- 
tor (r, n, 2kF) in the entire temperature region below To, 
owing to the conditions t cos[(ql - qz)/2] 2 I A(T) I .  

In the region t, < t  < To (if t, << To) we can again use the 
SCF approximation, a solution with A#O exists at any 
phase difference q1 - q2, and the three-dimensional or- 
dering i s  determined in this range of parameters by the 
usual procedure for minimizing the free energy with re- 
spect to the phases. 

At t 5 t, the SCF approximation i s  not valid. In this 
region, the free energy must be regarded a s  a Ginzburg- 
Landau functional that depends on the phases of the 
chains, and all  the thermodynamic characteristics are  
determined by averaging over the phases. Within the 
framework of this analysis, the long-range three-di- 
mensional order, which corresponds to the maximum 
value of the free energy of the chain interaction [( l l )  
and (12)], appears at a temperature T,,<To/4 and the 
value of T, can be obtained in the self-consistent-field 
approximation from the chain interaction.c2b31 In the 
region T, < T there i s  no correlation of the Peierls dis- 
tortions between the chains. A three-dimensional super- 
structure appears below T,, but the fluctuations remain 
strong also at temperatures T T, , i. e., (A)' <<(A') 
(at low temperatures it i s  necessary to take the quantum 
fluctuations into accountceo1). 

It appears that the situation t >> To i s  not encountered 
in all those quasi-one-dimensional compounds in which a 
superstructure has by now been observed. In fact, in 
crystals containing chains of two types with incomplete 
charge transfer, the hybridization gap at t >> To i s  large 
in comparison with the Peierls gap, so that the CDW 
transition cannot be energy favored. In addition, at t 
>> To the three-dimensional order i s  determined by the 
form of the three-dimensional Fermi surface, and the 
latter must of necessity affect directly the entire sys- 
tem. It is difficult to reconcile this conclusion with the 
fact that in TTF-TCNQ, in the interval 49-55 K, three- 
dimensional ordering i s  observed only in TCNQ 
chains.c5s211 At the same time, in all  the quasi-one-di- 
mensional compounds with the exception of KCP, abrupt 
changes of the magnetic susceptibility and of the resis- 
tivity a re  observed at the three-dimensional-ordering 
temperature. Experiment has revealed in TTF-TCNQ 
at 55 K a specific-heat discontinuity of the same order 
a s  that given by the SCF approximation. None of these 
facts a re  possible in the t << t ,  situation. A s  a most 
probable situation in TCNQ salts is therefore t, i t i To, 
to which the SCF approximation is applicable2' (the case 
t <<t, is not excluded for KCP). 
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Thus, the form of the three-dimensional ordering is 
determined from the minimization condition of the free- 
energy density (13)-(15): 

where n and m a r e  the numbers of the chains in the crys- 
tal. We do not take into account here the commensur- 
ability effect, inasmuch as in all the quasi-one-dimen- 
sional crystals investigated to data the CDW is not com- 
mensurate with the period of the host lattice." The in- 
teraction of the chains falls off rapidly when they move 
apart, so  that we need retain in (16) only the interaction 
of the nearest neighboring chains if the crystal i s  made 
up of chains of the same type, and the interaction with 
the nearest and next-nearest neighbors in complicated 
crystals with chains of two types, for the directions in 
which the different chains alternate. 

It follows from (16) that in a crystal made up of iden- 
tical chains there should be observed a superstructure 
with a doubled transverse period. In crystals with in- 
ternal disorder o r  with impurities, there may be no 
phase transition with appearance of three-dimensional 
long-range order. In fact, according to the results, the 
disorder greatly weakens the CDW interaction of differ- 
ent chains. In the case of weak CDW interaction of the 
chains, the structure defects cause loss of phase coher- 
ence of the CDW within the chains, and no long-range or- 
der is established either along or  across the chains even 
at zero temperature.c2B231 Under these conditions, only 
a correlation (in the antiphase) of CDW of different chains 
should occur. This is precisely the situation observed 
in KCP crystals. In these crystals, constructed of 
chains of the same type, the internal disorder is due to 
the random disposition of the Br ions among the conduct- 
ing chains of the Pt atoms. A disorder of this type leads 
to a maximum suppression of the tunnel interaction ( I  
=b), and as a result, a tendency to a doubling of the 
transverse period is observed in these crystals below 
120 K, whereas the "one-dimensional" superstructure 
with period bf=6. 70 is observed already at 300 K, 

In TSeF-TCNQ the superstructure b' = 3.15 b appears 
below 238 K. In these crystals, just as in TTF-TCNQ, 
chains of donor and acceptor molecules alternate along 
the a direction. The experimental situation with the 
three-dimensional ordering of the CDW in TSeF-TCNQ 
is still unclear. According to the experimental datac6] 
the superstructure has a doubled period along the a di- 
rection (a' =2a) below 29 K. According to (11) and (12), 
this period of the superstructure, within the framework 
of the SCF approximation (t Lt,) can be observed in the 
case when the Peierls displacements a re  present only 
on chains of one type ( I A I, < l A I,) in the region where 
the transverse period is doubled. Since most of the 
scattering by the superstructure is due to Se atoms,c61 
it follows that in TSeF-TCNQ the Peierls instability 
should be due principally to the TSeF chains, if the ex- 
perimental data ofL6] a re  correct. 

In TTF-TCNQ, a s  shown incs1, the superstructure b' 
= 3.4 b has a period a' = 2 a from 54 to  49 K, and below 
49 K, down to  38 K, the period a increases with decreas- 

ing temperature, becoming jumpwise equal to 4a at 38 K. 
Within the framework of the SCF approximation and of 
relations (11) and (12), a period a 1 = 2 a  corresponds to  
the appearance of distortions in the TCNQ chains, while 
the change of a below 49 K is due to the onset and growth 
of distortions in the TTF chains.c241 In this analysis, 
however, the jump to a' = 4 a  has in our opinion not been 
satisfactorily explained. It is possible that the three- 
dimensional behavior of the superstructure b' =3.4 b de- 
pends on the superstructure b' = 1.7 b observed inc251. 

4. LAYERED DICHALCOGENIDE CRYSTALS 

The total interaction of the CDW of different layers is 
determined by the form of their Coulomb interaction FQ, 
defined by formula (7), and the tunnel interaction TT 
(relations (8) and (9)). To calculate FT we must know 
1 A1 and the electron spectrum of the crystal in the phase 
without the CDW. The calculations of  att the is^^^ yield 
information on the spectrum, and FT(A) can in principal 
be calculated for pure crystals. However, even without 
such calculations we can draw on the basis of (7)-(9) the 
following qualitative conclusions, which will be needed 
later on to determine the possible types of three-dimen- 
sional CDW ordering of layered compounds. 

1. A comparison of FT with FQ suggests that FQ <<FT, 
just as in quasi-one-dimensional crystals. Actually, 
FQ must contain an additional small factor of the type 
(To/&=) in comparison with FT, and we have FQ << F, 
even if It, l 2  decreases with decreasing distance R be- 
tween layers, in analogy with the Coulomb interaction 
of the CDW, i. e., It, l 2  =c$ e-OR. In fact, however, 
the matrix elements t,, a t  least for the nearest neighbors 
(t,,), turn out to be larger than The estimate 
It,, I = ~ ~ e - ~ ~ ' ~  would yield It,, I=0.02 eV and an effective- 
mass anisotropy of the order of 100 (at zF=2  eV). Ac- 
cording to Mattheis' calculations, It,, I is larger by ap- 
proximately one order of magnitude, and the experimen- 
tal  anisotropy of layered crystals does not exceed 1 0 . ~ ' ' ~ ~  

2. We shall be interested below in the interaction of 
the f i r s t  and second neighboring layers FT1 and FT2. Un- 
doubtedly, FT2 << FTl, but in principle there a r e  no 
grounds for assuming that F,, decreases exponentially 
with increasing n. 

3. Just as in the one-dimensional case, the disorder 
weakens the tunnel interaction between the layers F,,, 
and all the more FT2. 

We now write down that part of the f ree  energy which 
depends on the CDW phases. We recognize first  that, 
owing to the hexagonal symmetry of the layered crys- 
tals, there always appear three CDW with vectors Qk 
(k = 1,2,3) turned 120" relative to one another. We in- 
troduce three parameters *, of the internal order in the 
layer, assuming that +, = l A lcos(Q,r + cp,). In the low- 
est  order in A, waves with identical Qk interact between 
different layers, and the total free energy is given by 
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where ~,(q,,) is the free-energy density of the layer n 
(see'"]), K is the reciprocal-lattice vector of the layer, 
and q,4 Vnl. 

The f i rs t  term in F, is in fact not connected with com- 
mensurability effects, takes the wave interaction into 
account, and leads to a first-order transition from the 
normal metallic phase into the CDW phase a t  the point 
To (if b, is small, then the transition can be very close 
to second-order). The second term in Fc takes into ac- 
count effects of commensurability of the CDW and of the 
hexagonal host lattice. The term with the coefficient bl 
is significant for 2H modifications, in which 191 is close 
to I K/3 I .  This term leads to a transition from a non- 
commensurate CDW phase (NCDW) to a commensurate 
phase (CCDW) in 2H-TaSe, at Td =90 K." The t e rm with 
the coefficient c l  leads to a f i rs t  order NCDW-CCDW 
transition in 1T-TaSe, at T, =473 K and in 1T-TaSe, a t  
T, =200 K. This transition is attained by rotating the 
vectors Qk through 13"54', after which the conditions 
3% - Q,, = K a r e  satisfied in the commensurate phase. 
Minimizing (17) with respect to the phase q,,, we can 
now determine the possible types of three-dimensional 
CDW ordering in the layers. 

Noncommensurate CDW phase 

An important role in the NCDW phase is played by the 
tunnel interaction of the layers and by the first  term in 
F,. In the general case, minimization of (17) yields a 
system of nonlinear finite-difference equations. The 
situation can be analyzed to conclusion in two limiting 
cases F, << F, and FT >> Fc . 

We consider first  the solution for F, << F,. An in- 
equality of this type can be satisfied in 1T-VSe, '271 and 
in 2H modifications of TaSe,, TaS,, and NbSe, in the en- 
t i re  temperature interval. If in fact i t  is not satisfied 
atlow temperatures, as a result of the relations F,- A' 
and F, -Am, m 2 for second-order transitions (or of 
first-order transitions close to those of second order) 
we still obtain F, << FT near To.5' It follows from (17) 
that a t  F, << F, and h, >> h, there exists a unique solution 
for which the CDW of neighboring layers should be ap- 
proximately in antiphase. In 1T  modifications, a l l  the 
layers a r e  equivalent and a superstructure c' =2c should 
be observed. In the 2H modification, the neighboring 
layers a re  not equivalent with respect to  the chalcogen 
atom positions, and in this case c l=c .  

Let us investigate now the solution (17) a t  F, >> FT, 
assuming that the interaction F,, of the nearest layers 
greatly exceed the interaction FT2 of the next-nearest 
layers. In this situation, the minimization of (17) can 
be carried out within the framework of perturbation the- 
ory in the interaction of the layers. At bo > 0 we obtain 
the minimum of Fc at qnl + qnz + qn3 = 2m, where s a re  
arbitrary integers. Under this condition the minimum 
of FT1 in first  order in F,, is reached if the phase dif- 
ferences of a l l  three waves a r e  the same for the neigh- 

boring layers and Iq,,,, - q,, I =  1 2 d 3  +27rs I .  Thus, the 
minimum of Fc+FTl  is realized in f i rs t  order in FTl for 
the phase-shift sequence f 2 d 3 ,  f 2 ~ / 3 ,  . . . (accurate to 
insignificant terms that a r e  multiples of 2n). The choice 
of the signs in this sequence can be arbitrary, and the 
energy Fc + FT1 does not determine the three-dimensional 
ordering in f i rs t  order of perturbation theory in F,,. 
The degeneracy with respect to the signs of the phase 
shifts is lifted if one takes into account the term FT2 o r  
the interaction FTl in second order of perturbation the- 
ory in FT1. 

The energy FT2 i s  minimal if the phase shifts a r e  of 
the same sign, i. e., cpnk = qOk f 2 d 3 .  In this case c' 
=3c, and the f ree  energy of the CDW (per layer) is 

A solution of this type was obtained by us earlier.'"] A 
sequence with alternating signs of the phase shift leads 
to  McMillan's ~o lu t ion . ' ' ~~  Taking the phase sequence in 
the form E, 2n/3 - E, E ,  . . . , we obtain 

F ( E )  =-3 (boA3 cos 3 ~ - h ,  cos Z E - ~ ? ) .  (19) 

Minimizing (19) with respect to E, we obtain a t  h, << bo 

Comparing (18) and (20) we verify that at h2 < hal /9bo A3 
McMillan's solution is energywise more favored. For 
this solution the phase shift of the neighboring layers is 
2n/3 a t  h, << bo A3 and approaches n with decreasing A. 

Thus, the solution obtained inCB1 goes over continuously 
to the unique solution realized at Fc << FT. The solution 
with c' =3c is energywise more favored than a t  h, >h: /  
9b0 A'. If it is realized at T << To, then as the tempera- 
ture approaches To (if To i s  the point of the transition of 
second order or  of f i rs t  order but close to  second) the 
value of A decreases, and a t  the point where h2 =h:/ 
9boA3, the solution c r = 3 c  goes over jumpwise into 
McMillan's solution with double the period. It is seen 
from this, in particular, that our solution incu1 can be 
realized only if the condition FT << Fc is satisfied. Thus, 
a t  FT << Fc we obtain in the I T  modification either c' = 2c 
o r  c'= 3c, depending on the ratio of the parameters h, 
and hi /9b, h3. In the 2H modification we have respec- 
tively c' = c o r  d = 3c. 

In the 1T modifications of TaS, and TaSe, experiment 
reveals c' =3c,'11 thus indicating a large value of Fc 
(F, >> F,) and a substantial role of the FT, term in com- 
parison with the energy F;,/F,. We note that the CDW 
Coulomb interaction can by itself not lead to this result, 
since when the estimates b,-  E$ and A << E= are  taken into 
account we obtain F, << F;, /9b0~3.  For a tunnel inter- 
action FTm that decreases with m exponentially, we ob- 
tain analogously F,, << F 2,' /9bO~'. Thus, the existence 
of the superstructure c r = 3 c  above Td in 1T-TaS2 and 
1T-TaSe, is due to  the strong interaction of the three 
waves with a noticeable overlap of the electron wave 
functions of the next-to-neighboring layers. 

In the 2H modification experiment yields in the non- 
commensurate phase c' = ~ , ' ~ ' l  and in these modifications 
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we have Fc << FT or Fc >> FT, but h, <hf /9bo~ '  (i. e., 
McMillan's solution is realized). Although in both these 
cases the crystal period is the same, the solution for 
the sequence of the CDW phases of the layers i s  differ- 
ent in these two situations. At Fc <<F, the phase differ- 
ence between neighboring layers i s  close to * at all tem- 
peratures. In the second case it i s  close to 2 ~ / 3  in 
modulus and alternates in sign at low temperatures, but 
approaches as  To i s  approached. This difference makes 
it possible to explain the relative role of the commen- 
surability effects and the three-dimensional effects in 
2H crystals. If these two types of superstructure can 
be distinguished experimentally. 

We note that the difference between the types of the 
NCDW superstructures in the 1T and 2H modifications 
(c' = 3c and c' =c) of TaS, and TaSe, i s  undoubtedly due 
to the smaller values of A (and To) in the 2H crystals. 
In experiment, the displacements of the atoms in the 
2H crystals (which a re  proportional to A) i s  smaller by 
approximately one order of magnitude than in the 1T 
m~difications,"'~' and the energy Fc in (17) i s  corre- 
spondingly smaller. It i s  therefore of interest to in- 
vestigate the superstructure in IT-VSe,. In this com- 
pound, owing to the low value of To, one cannot exclude 
a solution c' = 2c in the NCDW phase, at least near To. 

Commensurate CDW phase 

For the 2H modification in the commensurate phase, 
an important role i s  played by the terms with the coef- 
ficients bo and bl, the role of the terms with b, being 
completely analogous to the role of the term with the co- 
efficient bo. In the commensurate phase, just as in the 
noncommensurate one, two situations a re  therefore pos- 
sible: c' = c and c' = 3c. In experiment below T,, in 
2H-TaSe, c' = c  i s  again realized"' for the reasons indi- 
cated above. 

In the 1T modifications, the terms of significance are  
those with the coefficients bo and c1 >O. 

Let us obtain the solution at FT << Fc (the solution c' 
=2c i s  realized at FTZFc). The minimum of Fc is  
reached if  the phases q,, satisfy the equations 

(S, a re  integers). The solution of these equations is of 
the form 

and the same form i s  assumed by the changes of the 
phases on going from layer n to layer n +l .  Minimiza- 
tion of F,, in first order of perturbation theory yields 
an optimal phase shift *2*(2,6,5)/13 between neighboring 
layers. When account i s  taken of the term F,, and of 
the term F,, in second order of perturbation theory, we 
obtain the solution for the phases in the forms (q,,, qnz, 
q,,) = 2r(2,6, 5)n/13,. if h2 is large en~ugh,~"' and a dou- 
bling of the period at small h, (a solution of McMillan's 
typen2]). 

Experiment has revealed in IT-TaSe, below T, =473 K 
a superstructure with wave numbers (2,6,5)~*/13.~~' A 
superstructure c8= 13c i s  also observed in IT-TaS, be- 
low 200 K.'" Thus, our solution ofCu1 i s  realized for 
CCDW in these compounds. 

In 4Hb-TaSe, crystals, octahedral layers analogous 
to the IT-TaSe, layers alternate with the trigonal layers 
analogous to the layers in 2H-TaSe,. In the octahedral 
layers, according to the data cited incg1, the superstruc- 
ture inside the layers i s  similar to the IT-TaSe, super- 
structure, and at T,, =410 K one observes an NCDW- 
CCDW transition identical with the transition in IT-TaSe, 
at T, =473 K. In contrast to the 1T modification, how- 
ever, below T,, the period of the crystal is c' = c  (the 
unit cell of the 4Hb modification contains two octahedral 
and two trigonal layers which a r e  not equivalent with 
respect to the arrangement of the chalcogens). In trigo- 
nal layers, CDW appear at T, = 75 K, but there i s  no 
three-dimensional ordering of this superstructure down 
to 10 K. Inside this layer this superstructure is analo- 
gous to that observed in 2H-TaSe,, except that no transi- 
tion to the commensurate state is observed). The super- 
structures of the trigonal and octahedral layers do not 
interact with one another-their wave vectors Q, are  
different. Therefore the three-dimensional ordering in 
these subsystems i s  established independently. For oc- 
tahedral layers, according to the results obtained above, 
we can have c l = c  (McMillan's solution) or c1=13c (see 
the solutions inc"]). The fact that the first possibility 
i s  realized i s  obviously due to the small value of the in- 
teraction of the non-nearest-neighbor octahedral layers 
h, (these layers a r e  separated, besides the one octa- 
hedral layers, by two additional trigonal layers). 

We now examine the influence of the disorder of the 
lattice on the three-dimensional ordering of the CDW of 
layered crystals. In addition to suppressing the tunnel 
interaction, the disorder suppresses also the long-range 
order within the layers.c2s' Since the three-dimensional 
ordering i s  controlled by the small terms F,, or F ,2, / 
Fc, which decrease rapidly with increasing disorder, it 
i s  not surprising that the three-dimensional ordering i s  
very sensitive to the degree of disorder in the crystal. 
According to experimental datac8' three-dimensional 
ordering i s  realized in IT-Tal,,Zr$e2 alloys at x<0.015. 
When x increases above 0.015, the correlation of the 
CDW phases of the remote layers decreases and vanishes 
completely at x 2 0.03. The short-range order i s  de- 
termined in this case as before by the wave numbers 
(2,6,5)c*/13, a fact that manifests itself in the existence 
of a broad peak at the average value c*/3."' 

We see thus that the three-dimensional ordering of the 
CDW is determined by the joint action of two factors: 
by the three-dimensional character of the band structure 
(and by the Coulomb interaction of the layers), and by 
the commensurability effects in the layer. From the 
type of the three-dimensional superstructure we deduce 
the degree of two-dimensionality of the CDW in the sys- 
tem. Thus, experimental data show that in 1T crystals 
the CDW are  two-dimensional to an appreciable degree. 

However, as  noted above, from calculations of the 
band structure and from the experimental data for the 
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electronic properties of 1T crystals it follows that the 
transitions of the electrons between layers a r e  not very 
weak in these crystals. Therefore, the relative small- 
ness of the three-dimensional effect for the CDW in 
1T-TaSe, and 1T-TaS, i s  due primarily to the large 
commensurability energy. This seems to indicate un- 
equivocally that in the 1T modification we a re  dealing 
with a strong electron-phonon coupling (A z 1). 

The authors thank the participants of V. L. Ginzburg's 
seminar, and particularly Yu. V. Kopaev, for a useful 
discussion of the work and for critical remarks. 

Note added in proof ( ~ u l y  21, 1977). A detailed cal- 
culation shows that the influence of the Coulomb inter- 
action of the electrons on the phase fluctuations i s  insig- 
nificant at those parameter values which a re  realized in 
practice in quasi-one-dimensional compounds. There- 
fore the estimate tczTc remains in force also when the 
Coulomb interaction i s  taken into account. 

"1f the chains 1 and 2 a re  not equivalent with respect to the 
positions of the atoms (molecules) and the atoms 1 are  shifted 
relative to the atoms 2 by the half-period b/2, so that an 
atom of chain 1 has two nearest neighbors in chain 2, then an 
adidtional factor 2 1 cos (Qb/2) I appears in the term propor- 
tional to cos(q -qz).  

 or crystals of the TTF-TCNQ type, the influence of the 
Coulomb interaction of the phase fluctuations is insignificant, 
since the charges produced in the course of the phase fluc- 
tuations are  of opposite sign on the cation and anion chains. 
For such crystals we therefore have tc To and t >, To. This 
estimate for TTF-TCNQ agrees with the data obtained for t 
from quantum-mechanical calculations. C221 

3'In systems with a fixed degree of charge transfer and corre- 
spondingly with a fixed value kF, the transition to a commen- 
surate phase with a change of the superstructure period Q i s  
possible only at  very small differences between 2kFb and the 
rotional fraction q / p .  In fact, a t  Q z 2kF the system i s  not a 
dielectric, some of the electrons a re  located above the gap 
(or some of the holes below the gap), and the corresponding 
loss of energy i s  I Q - 2kF11 A I . The energy gained from the 
transition to the commensurate state is (I A1 /zF)*-' I A I N(O), 
and should not exceed the value I Q - 2kFll A I , in order that 
the transition to the commensurate state be energywise 
favorable. In compounds with chains made up of donor and 
acceptor molecules (of the TTF-TCNQ type), a change of Q 
can result from a change in the degree of charge transfer, 
and in this case the energy loss i s  proportional to (Q - 2 k ~ ) ~ .  
The same situation obtains in layered compounds, which a re  
metals or  semimetals in the CDW phase. In these compounds 
the change of Q is accompanied by a redistribution of the 
electrons over the Fermi surface, and the energy loss in the 
transition to the commensurate state is proportional to 

I Q - Qo I 2, where Qo i s  the wave vector of the noncommen- 
surate CDW. 

4 ' ~ c ~ i l l a n  has shown that the NCDW-CDDW transition can be 
of second order. C'21 The continuity of the order parameter 
$(r) is ensured in this case by the appearance of non-com- 
mensurability embryos in the commensurate phase. A solu- 
tion of this type i s  valid if the characteristic length of varia- 
tion of the phase of the CDW in the embryo i s  large in com- 

known layered compounds, this solution is not satisfied and 
the NCDW-CCDW transition is of first  order. 

5'In IT -TaS2 and 1T-TaSe, a t  low temperatures, the opposite 
inequality is satisfied (see below), so that the condition Fc 
<< FT could be observed only near To. Indirect estimates 
yield for these compounds To- 600 K, and the 1 T  modification 
is destroyed a t  TFL: 500 K, SO that the region of To cannot be 
reached. 
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