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New properties due to the influence of the collectivization of magnetic electrons on the spatial distribution 
and the temperature dependence of the magnetic moment are predicted for collinear antiferromagnets. In 
contrast to the molecular-field theory, in which the local magnetic moment is proportional to the 
temperature-dependent energy of the electron spin splitting (to the molecular field), the new temperature 
dependence of the magnetic moment of antiferromagnets, adduced in this paper, is due to the variation of 
the electron wave functions with temperature. It is shown that the critical exponent /3, which 
characterizes the behavior of the local moment ( - (TN-~)@) near the Nee1 temperature T,, takes on the 
value 1/2 that follows from the molecular field theory only for antiferromagnets whose chemical and 
magnetic unit cells coincide. When the cells do not coincide, the critical exponent turns out to be 3/2 in 
the model considered by us. New regularities have been observed, characterizing the properties of 
magnetic excitations of antiferromagnets, and due to the motion of the collectivized magnetic electrons. 
The effect of the interaction with the Stoner excitations on the dispersion law of the antiferromagnons is 
determined. It is shown that the magnon spectrum can differ significantly from the linear spectrum typical 
of dielectrics, and has a square-root singularity near the boundary of the region of the Stoner excitations. 
Interband spin waves and collisionless damping of antiferromagnons by single-particle interband excitations 
is considered; this damping can be predominant in pure crystals at low temperatures. 

PACS numbers: 75.10.L~ 

1. Weiss's molecular-field hypothesis has led to sub- 
stantial progress in the theory of magnetically ordered 
substances. A definite interpretation of this hypothesis 
i s  given by the model of direct (Heisenberg) exchange 
between electrons of neighboring atoms. In this model, 
each of the atoms has its own magnetic moment with a 
value determined by Hund's rule. The deviations be- 
tween the atomic magnetic moments of rea l  magnets 
from those predicted by Hund's rule has led to the de- 
velopment of the band theory of magnetism, the success 
of which i s  due to Stoner's relatively simple molecular- 
field r n ~ d e l . ~ "  In Stoner's theory, the collectivized elec- 
trons a re  situated in an effective magnetic field due to 
the self-consistent action of the electrons and propor- 
tional to the magnetization. This theory is  not directly 
applicable to the description of complex magnetic struc- 
tures, say antiferromagnets, in which there is no macro- 
scopic magnetization. In the theory of antiferromagne- 
tism the approach mainly developed i s  one with an as- 
sumed localization of the magnetic moments on atoms 
that interact either directly (direct exchange) o r  indi- 
rectly (via the conduction electrons o r  via the localized 
electrons of nonmagnetic  atom^).^'-^] 

The band theory of antiferromagnetism deals also 
with conducting antiferromagnets, in which the ground 
state of the collectivized electrons is the spin-density 
wave.c51 The study of such substances was initiated by 
~ v e r h a u s e r ' ~ ~  and has led to a definite success because 
of the observation of the unusual magnetic properties of 
pure chromium, in which, in particular, the period of 
the magnetic structure turned out to be commensurate 
with the period of the crystal lattice. 

ducting AF with two bands in which the electrons were 
fully polarized in opposite directions. Neglecting the 
intraband interaction of the electrons, they obtained the 
spectrum of the transverse spin waves, antiferromag- 
nons, which have, just a s  the Heisenberg AF, a linear 
dispersion law. 

The excitations in an  antiferromagnetic Fermi liquid, 
using a model of two degene~ate  band, were considered 
by Akhiezer and ~ h u d n o v s k i i , ~ ~ ~  who obtained for the 
antiferromagnons, just a s  inc7], a linear dispersion law. 

In the present paper we discuss, on the basis of the 
electron-fluid theory, C9*101 the spatial distribution and 
the temperature dependence of the magnetic moment in 
a collinear AF. We show here that the magnetic mo- 
ment per lattice s i te  is, generally speaking, not a linear 
function of the energy of the spin splitting of the bands, 
E&2,,, a s  i t  is  assumed, following ~ e i s s , ' "  in the mo- 
lecular-field theory, and has a complicated temperature 
dependence governed not only by the functional a,, de- 
pendence, but also by the variation of the wave functions 
of the electron-fluid quasiparticles with changing tem- 
perature. Analysis of magnetic excitations in conducting 
AF has revealed that the motion of the collectivized mag- 
netic d-electrons leads to a substantial change of the 
spectrum of the transverse spin waves in comparison 
with the case of dielectrics. For waves that a r e  not too 
long, the magnon spectrum differs significantly from 
linear because of the interaction with the single-particle 
(Stoner) excitations of the magnetic electrons, which 
leads under certain conditions also to a collisionless 
damping of the spin waves. In addition to magnons, con- 
ducting AF can have also interband spin-wave modes 

It can be stated that the band theory of collinear anti- having-a zero-sound character. We discuss also the 
ferromagnets (AF) i s  st i l l  not sufficiently advanced. A possibility of collisionless damping of antiferromagnons, 
simple model of a collinear band AF was proposed by due to the decay of the spin wave into single-particle in- 
Englert and ~ntonoff . '~]  They have considered a noncon- terband excitations. 

569 Sov. Phys. JETP 46(3), Sept. 1977 0038-5646/77/46030569$02.40 O 1978 American Institute of Physics 569 



We consider f i rs t  the ground state of an AF, which 
we shall assume to be determined essentially by the d- 
electrons of the transition-element atoms. The influ- 
ence of the "nonmagnetic" s and p electrons will hence- 
forth be assumed small. Neglecting the weak spin-orbit 
interaction, the wave function cp,,(r) of the quasiparti- 
cles of the electron fluid of a magnet i s  the product of 
the spin wave function cp,,(r) and of a coordinate-inde- 
pendent spinor. The band subscript t, the quasimomen- 
tum p, and the spin variable u = * 1 are  here the quantum 
numbers of the Bloch representation. The density of 
the magnetic moment in the groundstate of a collinear 
magnet is determined here mainly by the relation 

where n,(&YD) is the Fermi distribution function of quasi- 
particles with energy &:, = &,, - u ~ ~ ,  @)/2. The spin- 
splitting energy En,, is determined from the equationc"] 

The function 9, a s  is customary in Fermi-liquid theory, 
takes into account here, in addition to the exchange ef- 
fects, also the correlation interaction of the electrons. 
In the Hartre:-Fock approximation the expression for 
the function 9 is given in the Appendix. 

Integrating (1) over the crystal volume we obtain the 
magnetization M (per unit volume). In the antiferromag- 
netic state there i s  no magnetization: 

but since the electrons a re  polarized in each d band, i t  
follows that 

mi=pp C [ n p ( ~ t p + )  - n p ( ~ t P - )  I+o. (4) 
P 

It is convenient to expand the functions cp,,(r), which 
correspond to magnetic d electrons, in the atom-like 
wave functions @, (r  - n,): 

cpw (1) exp (ipn,/h) a,, (p, a )  0, (r-n,) , (5) 

in analogy with the procedure used in the strong-coupling 
approximation (seet"'). The subscript p ( p  = 1,2, . . . , 5 )  
numbers here the states of the d electron in the atom; 
n, a re  the lattice vectors corresponding to the magnetic 
sites of sort  a; N is the number of magnetic atoms in the 
crystal. We neglect here the effect exerted here on the 
d-band structure by the nonmagnetic atoms contained in 
the AF, and assume that the magnetic atom a re  chemi- 
cally indistinguishable. The non-equivalence of the 
(magnetic) si tes in the AF leads to a dependence of the 
expansion coefficients a,,@, a )  on the sort  of si te a. 

Confining ourselves to AF with two sorts of si te ( a  
= 1,2), we consider for simplicity only two d bands (t, 
p = 1,2), and neglect the dependence of the coefficients 

a,,@, a )  on the momentum p. In this case we obtain for 
the magnetic-moment density (I), using relations (2)- 
(5) and regarding a s  usual the overlap of the atomic func- 
tions @,(r -nu)  corresponding to different si tes a s  small, 
the simple expression 

where the coefficients a,,(a) a re  connected by the rela- 
tion 

which follows from the normalization of (5) to unity. 

The density of the magnetic moment, as seen from 
formula (61, is concentrated to a considerable degree 
near the (magnetic) lattice sites, because of the spatial 
localization of the atomic functions @,(r - n,). Accord- 
ing to (6) and (7) we have for the magnetic moment Ma 
per site of sor t  a 

In the band model of antiferromagnetism, where i t  is as- 
sumed that the overlap of the atomic functions corre- 
sponding to neighboring sites is small, just a s  in the 
Nee1 model (see, e. g. ,C21), we can therefore speak of 
two magnetic sublattices with magnetizations * NM,/~. 

It follows from (8) that in the band theory of antiferro- 
magnetism the atomic magnetic moment has in the gen- 
era l  case a fractional value (in units of the electron mag- 
netic moment po). For a nonconducting AF, whose 
magnetic electrons a r e  fully polarized, we have 

In our model of two d bands, we have one d electron 
per atom, and accordingly Eq. (8) takes the form 

The whole-number result Mo = p,, which corresponds to 
the Heisenberg theory of magnetism, follows from (9) 
only when the electrons of the t-th band a r e  localized 
near the sites of sor t  a = t  of the dielectric: 

Let us discuss briefly the temperature dependence of 
the magnetic moment Mo(T) per site. This dependence, 
just a s  in ferromagnets, can be the result of the redis- 
tribution of the Bloch electrons over the energy states 
following a change of temperature. As follows from (2), 
the spin splitting energy E~,,(T)"rnl(T) depends then on 
the temperature. Furthermore, the magnetic moment 
(8) has an additional temperature dependence because of 
the variation of the coefficients a,,(@) with temperature; 
this variation appears in the electron-fluid theory be- 
cause the wave function of the quasiparticles is deter- 
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mined not only by the crystal potential of the lattice ions 
but also by the temperature-dependent self-consistent 
potential of the electrons." C11*131 TO make this clear, 
we consider first  the case when the chemical and mag- 
netic unit cells of the AF coincide (as, e. g., in MnF2). 
Then the (magnetic) si tes of the two types have not only 
different magnetic moments concentrated near them, but 
also non-equivalent positions in the crystal lattice. In 
the absence of magnetic order (a,, =0) the sites there- 
fore remain non-equivalent: a,,(l) +a,,(2) and, a s  fol- 
lows from (7), the quantity 

i s  generally speaking different from zero. In the mag- 
netically ordered state under conditions when the spin 
splitting energy Ea,(T) = A  l not (T) I is small, the quantity 
Q(T) can be approximately regarded a s  independent of 
the temperature. This situation ar ises  near the Neel 
point, when T = TN -PiSlo(0), or  in weakly antiferromag- 
netic metals, in which ftS1,/2 is small compared with 
the Fermi energy. Formula (8) then leads, just a s  in 
the molecular-field theory, to the linear relation 

between the magnetic moment and the energy of the spin 
splitting (the molecular field). 

The situation is entirely different if the chemical cell 
contains one magnetic atom and does not coincide with 
the magnetic cell (e. g., MnO). Then in the disordered 
state (51, =0) there is no difference between the sites. 
This means that a,,(l) =a,,(2) and, a s  follows from (7), 
Q vanishes. At small !2,(T), since the state of the crys- 
tal  i s  not changed When the quantization axis is reversed 
(a,, - - a,,), we assume that Q(T)-s~:(T). Under this 
assumption i t  turns out that the atomic magnetic moment 
(8) depends on the temperature like the cube of the spin 
splitting energy 

Near the antiferromagnetic-transition point T = TN the 
spin splitting energy depends on temperature, just a s  
in fe r r~magne t s ,~"  but like a,(T)- (T, - T)"~. We em- 
phasize that in our microscopic model of antiferromag- 
netism the magnetic order i s  characterized by a bans 
spin splitting energy EQ,(T) that corresponds to the or-  
der parameter in the theory of phase transitions. Near 
the Neel temperature we obtain for the diamagnetic mo- 
ment from (10) and (11) 

where the exponent p can take on the value 1/2 that fol- 
lows from the usual molecular-field theory only if the 
chemical and magnetic cells of the AF coincide. If they 
do not, then P = 3/2. 

2. We proceed to  consider the magnetic excitations 
in collinear AF at low temperatures, confining ourselves 
to transverse excitations that a r e  described by a non- 
equilibrium spin density matrix 66"eiwt,  which is polar- 

ized in a plane perpendicular to the quantization axis. 
For circularly polarized components 6 3  of the density 
matrix we have in the absence of a constant magnetic 
field the equationclll 

xz'f' ( tp ,  t lrpl-hk; t ,p,,  t'p-hk) 60*(t ,p l .  t,'p,-hk) =O.  (13) 
f,f,'P, 

This equation does not take into account the magnetic 
anisotropy and the alternating magnetic field of the ex- 
citations, that lead in our case to  small  changes in the 
spin-wave spectrum. 

Being interested in the qualitative differences between 
the properties of conducting AF and dielectrics, we shall 
approximate, for simplicity, the energy structure of the 
crystal  d bands by two degenerate bands with a quadratic 
dispersion law E,, =pe/2m. From Eqs. (2)-(4), letting 
!2,,(p) on the Fermi surface tend to  zero, we obtain the 
condition for the onset of the antiferromagnetic state: 

' ~ ~ F ( E * , ~ , )  , tf t,. 
11'.=--2C ilr ( lp ,  t , p , ;  t , p , ,  t p )  

'I e 
PI 

where the function Q(tp, tlpl; tlpl, tp) for vectors p and pl 
lying on the Fermi surface depends only on the angle be- 
tween them. 

On the basis of the results ofc"' we can state that the 
dependence of the correlation function 4 on the momenta 
leads, just as in ferromagnets, to the existence of polar 
spin waves (~f.~'")  with frequencies u"G3,. We shall, 
however, not investigate here such high-frequency waves 
and confine our_selves to low-frequency excitations. The 
dependence of * on the momenta can be neglected for 
these excitations and i t  can be assumed, following En- 
glert and ~ n t o n o f f , ~ "  that 

lr ( tp ,  t,'p,-hh; t ,p,,  t'p-hk) =Y ( t ,  t,'; t , ,  t'; k ) .  (15) 

We note that the need for taking into account the de- 
pendence of the functions G ( k )  on the wave vector k was 
demonstrated by Lowde and ~ i n d s o r ~ ' ~ ~  in a study of in- 
elastic scattering of neutrons in ferromagnetic nickel?' 

The correlation function * has symmetry properties 
that decrease the number of the independent components. 
Besides the relations 

which follow from- hermiticity a s  well as from the fact 
that the function Q i s  the second variational derivative 
of the energy of the electron fluid with respect to the 
spin density matrix, we have also the equationL1'l 

X Y ( ~ ,  p i ;  pi, p') [ n F ( p g l + ) - n F ( ~ ~ , - )  I = %  p+Bfl (16) 
81 

which follow from the diagonality of the quasiparticle 
energy operator .'lll 
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In the case of two degenerate bands, has five inde- 
pendent components 

Y ( t ,  t ;  t ,  t )  =Y,, Y ( t ,  t,; t,, t )  =Y,, Y ( t , ,  t ;  t,, t )  =Y,, 
Y ( t ,  t i  t i ,  t , )  =Y,, (17) 

Y (t,, t ;  t ,  t )  =Y ( t ,  t,; t ,  t )  =Y ( t ,  t ;  t,, t )  =Y ( t ,  t ;  t ,  t,) =Y,, t#t,, 

which a r e  even functions of k. 

The assumed~'isotopic invariance" used by Akhiezer 
and Chudnovskii (see alsoc181) reduces the number of 
independent components of the correlation function to 
two: GI, \lr, #O. In this case 

However, a s  shown in the Appendix, this model can 
hardly be justified in the analysis of phenomena con- 
nected with antiferromagnetic order. 

Using relations (3), (4) and (fir, we have for the ener- 
gy of the spin splitting from Eq. (2) at zero temperature 

We have introduced here the notation Bi (k) = Qi (lc) VF , 
where V, is the electron state density in one zone on 
the Fermi surface. The Fermi energy &, is assumed 
here large in comparison with Eao/2, which in our case 
is of the order of the Nee1 temperature. 

We ndte that if not too strong a magnetic field B (poB 
<<liQ0) is present in the AF, then the magnetic structure 
differs insignificantly from the simple collinear one. 
The magnetization vectors mi lie then in the plane of the 
vector B and the angles they make with i t  a r e  
"*arc cos(p,~/ES2,). This result for the magnetization 
mi agrees with the theory of a Heisenberg AF in a mag- 
netic field.c21 

From (13) and (15) we obtain a dispersion relation that 
determines the spectrum of the transverse magnetic ex- 
citations 

116~~~6,,t,.-Y ( t ,  tif;  t,, t'; k)S,,.'(ro, k )  II=0, (20) 

where 

We assume f i rs t  for simplicity that Q, =O. It will be 
shown below that many qualitative results obtained in 
this approximation remain in force also in the general 
case. The dispersion eqat ion (20) then splits into two: 

( i - y 3 s t 2 * )  ( I-Y ,is2,+) -IF ,:s,~*s>,- =o. (23) 

The first  of these equations determines the intraband 
excitations-the antiferromagnons and the single-particle 
excitations, which a re  analogous to  the Stoner excita- 
tions of ferromagnets and a r e  described by the diagonal 
(in the band index) components 66*(t, t) of the density ma- 
trix. Equation (23) corresponds to interband excitations 
described by the matrix 66*(t, t ') (t # t  '1. 

9. We consider first  the intraband-excitation spec- 
trum defined by Eq. (22). Single-particle excitations 
with spin flip, which we shall call Stoner excitations as 
in the case of ferromagnets, correspond to the frequency 
and wave-vector region defined by the inequality 

In the region (24), the intraband spin wave attenuate 
strongly because of the possibility of decay into Stoner 
excitation (Landau damping). 

In the absence of a magnetic field and of anisotropy 
effects, ,Eq. (22) yields a doubly degenerate spin-wave 
branch corresponding to antiferromagnons with two dif- 
ferent polarizations. Not too close to the boundary of 
region (24) we have for the antiferromagnon spectrum 

-- 
Here k, =m (v* - v-)/ii"Sa, /up corresponds to the inter- 
section of the boundary of the region (24) with the line 
o = 0, vu = [2(zF + U ~ Z S ~ ,  /2)/m]112 is the velocity of the par- 
ticles with spin o on the Fermi surface, pF =muF 
= ( 2 m ~ ~ ) l ' ~ ,  

D(k )  =(hk/pF)'/12+B, ( k )  -B, (0)+Bi(O) -Bl (k) .  (26) 

Formulas (25) and (26) a r e  valid if 

It follows from (26) that in the long-wave limit k2 << k i  , 
just a s  in dielectric, the antiferromagnons have a linear 
dispersion law 

The first  term in expression (26) to D@), which enters 
in the right-hand part  of (27), is determined here by the 
motion of the collectivized magnetic electrons. The re-  
maining terms in the right-hand side of formula (26) for 
?@) a r e  due to  the dependence of the correlation function 
Q on the wave vector k and a r e  of the same nature a s  in 
dielectrics where, for example at Q1 =0, the magnon 
frequency is determined according toC7' by the relation 

According to (26) and (27), the magnon frequency is 
real, and therefore the antiferromagnetic state is stable 
to intraband spin oscillations if 

We note that the magnetically ordered state ar ises  a t  
zero temperature if 

The ferromagnetic state in a magnet with two degenerate 
bands i s  stable under the conditions 
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With increasing wave vector k, the antiferromagnon 
dispersion law differs substantially from the linear law 
typical of dielectrics, because of the interaction of the 
spin waves with the Stoner excitations. As follows from 
(25), near the boundary of the region of the Stoner ex- 
citations, when k approaches the value k = k,, the magnon 
frequency decreases like 

The singularity of (29) in the antiferromagnon spectrum 
is of the square-root type, in contrast to the compara- 
tively weak logarithmic spectrum in the ferromagnon 
spectrumL191 (see alsoceo1). It is to  be expected that a 
similar strong singularity will appear in the AF spec- 
trum in the case of an arbitrary Fermi surface. The 
dispersion curve of the antiferromagnons crosses the 
boundary of the region (24) of the Stoner excitations a t  
an end-point wave vector value &, =&[I - o&,)/C2,]. 
The frequency of the spin wave a t  the end point of the 
spectrum, w(k,,), is given by 

At wave-vector values k > k,,, the conditions (24) for 
collisionless spin-wave damping due to decay into Stoner 
excitations a re  satisfied. This leads to a strong damping 
of the antiferromagnons Rew " - Imw > 0. For example, 
at Iko-kl/ko<<l we have 

We note that the results (24)-(30) remain valid also in 
the presence of a magnetic field if the wavelengths of 
the antiferromagnons a re  not too large: kvF>> B/E. 

In a number of cases, for example under conditions 
of the quantization of the motion of electrons in a mag- 
netic field or in thin films, collisionless damping may 
turn out to be suppressed. Formula (25) will then give 
in the wave-vector region k >ko imaginary values of w, 
corresponding to perturbations that increase with time. 
This indicates that the collinear AF considered by us is 
unstable. A more complicated magnetic structure may 
be realized in this case. 

4. Proceeding to a discussion of the properties of the 
interband magnetic excitations described by (23), we 
note that such excitations have heretofore not been con- 
sidered for AF. To solve (23) in a region with not too 
short waves, we represent the quantities Sit ,  with t # t  ' 
in the form 

s2,*=s,2i=--"f (""), 
v, ku* 

where 

Equations (23) and (31) yield, besides the single-particle 
interband excitations that occur in the region w a kv', 
two spin-wave branches with a linear dispersion typical 

of zero-sound oscillations.C91 Each of the branches is 
doubly degenerate with respect to  the two possible polar- 
izations of the transverse spin waves. The phase veloci- 
ty of such waves is close to the velocity of the v'd elec- 
trons on the Fermi surface. We note that under certain 
conditions, one interband branch (when I Bs I < I B, I ) or  
both branches (when BS < - I B, I ) will attenuate strongly 
because of decay into single-particle interband excita- 
tions (Landau damping). These waves will not increase 
with time if  the inequality 

which corresponds to stability of the electron fluid of 
antiferromagnets relative to interband spin oscillations, 
is satisfied. The interband spin waves a r e  due to mo- 
tion of collectivized electrons in partially filled d bands 
of conducting AF and do not take place in dielectrics. 

We have neglected s o  far  the influence of the nonmag- 
netic s and p conduction electrons. According to Kon- 
d r a t e n k ~ , ' ~ ~ '  in antiferromagnetic metals such electrons 
ar? not polarized and can lead to the onset of one more 
zero-sound branch of spin waves with a phase velocity 
close to the velocity of the s (p) electrons on the Fermi 
surface. Besides the differences in velocity, the inter- 
band branches of the spin waves and the branch corre- 
sponding to nonmagnetic electrons can differ also in their 
behavior in a magnetic field, which lifts the degeneracy 
in the polarizations of the transverse spin waves in the 
AF and leads to  the onset of nonzero end-point frequen- 
cies w (k = 0) - B/E. Each of the doubly degenerate in- 
terband branches splits in this case into two branches, 
for which the dispersion law remains linear in the re-  
gion of not too large wavelengths kv' >> P,B/E. The mag- 
netic field leads also to the possible existence of such 
interband waves that attenuate strongly in the absence of 
a field. There a r e  thus altogether in a magnetic field 
four different undamped interband spin-wave branches. 
The branch corresponding to the nonmagnetic electrons 
can have a left-hand polarization (described by a density 
matrix 60'"e""') in the presence of a magnetic field 
and behaves in the same way as in a normal metal.c101 

5. In the general case *,&) #O, as follows from (9), 
i t  i s  necessary to take into account the interaction of the 
intraband and interband excitations that a re  defined by 
(22) and (23), respectively. Since the phase velocity of 
the interband spin waves i s  close to the Fermi velocity 
v' and exceeds significantly the velocity -fiS1,/pF of the 
antiferromagnons the interaction with the intraband ex- 
citations leads to small  corrections to the frequency of 
the interband spin waves, of the order of B ~ ( E ~ ~ , / E , ) ~ .  

The antiferromagnon spectrum is not changed quali- 
tatively in this case and i s  given by formulas (25)-(27), 
in which i t  i s  necessary to make the substitution 

Near the boundary of the region of the Stoner excita- 
tions, the magnon frequency is determined a s  before by 
relations (29) and (30), and the antiferromagnon spec- 
trum has likewise in the general case *, + 0  a square- 
root singularity. 
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It follows from (27) and (33) that for the antiferromag- 
netic state to be stable in the general case it i s  necessary 
to stipulate, besides satisfaction of conditions (141, (28), 
and (32), also 

The substantial difference from the case *, = O  lies in 
the appearance in the antiferromagnon spectrum of col- 
lisionless damping due to the decay of the spin wave into 
single-particle interband excitations. This damping of 
the magnons, in contrast to collisionless damping due to 
decay into Stoner excitations, which occurs at relatively 
short wavelengths k >ko, is possible also in the region of 
large wavelengths if the condition w kv' is satisfied. 
For the magnon damping decrement y = - Irnw we obtain 
from (20) 

koZ k ko+k 
x [ Z B ~ ~ - ( B ~ ~ B . )  o'- k2 (gin 1- ko-k 1 )'I-'. 

As follows from (35), in the region of not too short 
wavelengths (k, - k " k,) the relative damping is y/Rew 
" ~ F i X 2 0 / & F .  A s  the wave vector approaches k =ko, the 
ratio y / ~ e o  decreases like 

A t  not too small values of the ratio FiC2,/&, and of B:, 
the relative damping at k < k, may turn out to be large: 
y/Rew " 1. The antiferromagnons have no long-wave 
spectrum in this case. On the otherhand if B:FiX2,/&, 
<< 1, the magnons constitute a well defined collective 
mode everywhere in the region k<k,. We emphasize 
that the collisionless mechanism of the magnon damping 
may be the principal one in sufficiently pure AF at low 
temperatures. 

APPENDIX 

In the Hartree-Fock approximation, the function 9, 
which describes the exchange interaction between the 
electrons, is of the formcu1 

Y (tp, ti'p,'; tipi, t'p') 

1 
=- -J dr art cp,; (r) cpt:.,,.(rr) ~ ( r ,  r')~l,P% (r)cpt.~* (r'), (A. 1) 

2 

where U(r, r') i s  the energy operator of the electron- 
electron interaction. Substituting in (A. 1) the expansion 
(5) of the Bloch functions cptD(r) in the atomlike functions 
Qlr (r - na), we get 

'I' (tp, t,'p'-q; ttp-q, t'p') 

xu,,; (a)a,:*,,, (a,')a,,,,, (a , )a ,* ,*  (a') jdr  dr' 0,. (r-11,) @,,,, (rr-n=,,) 

X U(r, r') mu, (r-na,) Ose (rl-nz.). (A. 2) 

Since we consider antiferromagnetic ordering under 
conditions of small overlap of the atomic functions cor- 
responding to different sites, we confine ourselves in 
(A. 2) to "two-center" integrals. 

If we assume that the electrons of the different bands 
have identical spatial wave functions cp,,(r) =cpD(r)x,, 
where the spinor X ,  describes the band state of the elec- 
tron (X:Xt. = 6, , .  because of the orthogonality of the wave 
functions), then the general expression (A. 2) leads to 
relations (18) of the "isotfpic invariance" model of 
Akhiezer and ~ h u d n o v s k i i . ~ ~ ~  In this case, however, the 
magnetic-moment density (6) and the atomic magnetic 
moment (8) a re  zero everywhere. This -means that in 
the Hartree-Fock approximation the "isotopic invariance" 
model cannot be used to describe phenomena connected 
with magnetic order. 

i he effect of spin wave on the magnetization has been investi- 
gated theoretically in relatively great detail (see, e .  g. ,  "*") 

and will not be discussed here.  
2 ) ~ u c h  a dependence of the correlation function on the wave 

vector was used in the theory of ferromagnetic electron 
fluid by Akhiezer and Chudnovskii. c'61 
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