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1. INTRODUCTlON found that the relation r, > 1 is valid over a range of 

The correlation function of spatial thermal fluctuations 
in the high-temperature phase of cholesteric liquid c ~ y s -  
tals has been found by de ~ennes'" and by Brazovskii 
and ~ m i t r i e v . ~ ~ '  In the second of these papers, the re-  
sults a re  presented in tensorially covariant form. In 
the case of the low-temperature phase, where a spon- 
taneous spiral  anisotropy is present, such comprehen- 
sive results have s o  far not been obtained. In papers 
of ~ubensky '~]  and in the review by Stephen and straley,14' 
the correlation function was found under the additional 
limiting assumption that not only for the mean orienta- 
tion tensor, but also for the fluctuational part, the uni- 
axiality condition 

is satisfied, where n, is the director (directing vector). 
Then the fluctuations 6S,, reduced to the fluctuations 6n,. 
Furthermore, fluctuating angles of rotation of the direc- 
tor were introduced, and additional assumptions were 
made about slowness of variation of these angles in com- 
parison with the period of the helix. This was stated 
with especial clarity in the review of Stephen and Stra- 
ley.c41 In the present paper we shall free ourselves from 
these limitations. 

Tensorially covariant will be applied. As 
in Ref. 2, we shall use an expansion of the tensor S,, 
in terms of the basis 

Here a, 1, and m a re  unit vectors forming a right-handed 
system. In contrast to  Ref. 2, however, i t  is for some 
purposes convenient, in the presence of a spontaneous 
spirality, to  direct the unit vector a along the axis of 
the helix. The medium is assumed to be homogeneous 
and infinite in all  three directions. 

Cholesteric liquid crystals have been investigated ex- 
perimentally in a number of papers.c6'81 In them atten- 
tion was paid primarily to  the high-temperature phase. 
By using the results of these papers, one can estimate 
the width of the temperature interval, near the critical 
point, in which the correlation radius r,  is comparable 
with the period 1 of the spiral  or  larger than it. It is 

thousandths of a degree. The relation between the cor- 
relation radius and the pitch of the helix i s  important for 
the theory, because different variants of the theory a r e  
valid for the different inequalities r, >> 1 and Y,  << I. Both 
variants will be expounded below. In Refs. 3 and 4 i t  
was implicitly assumed that r, >> I. In Sec. 4 the results 
of these papers will be compared with our results relat- 
ing to that case. The contrary case r, << 1 is treated in 
Sec. 5. This is, a s  far as we know, the first calcula- 
tion of the correlation function of the fluctuations in this 
case. 

The results found can be applied primarily to the cal- 
culation of the differential cross section for scattering 
of light by fluctuation inhomogeneities (Sec. 6). Here i t  
is possible to test  the predictions of the theory experi- 
mentally. 

2. THE FIELD THAT MINIMIZES THE FREE ENERGY, 
AND THE SPECTRAL LINE CORRESPONDING TO IT. 

We shall start from the following expression for the 
free energy of a cholesteric liquid crystal: 

where E,,, is the completely antisymmetric tensor. The 
terms containing derivatives a re  taken the same a s  in 
Refs. 1 and 2. The function f(S) in Landau's approxima- 
tion is approximated by apolynomial: f(S) = as2+ p ~ 3 +  X S ~  
(for a more complete form of it, see Ref. 5). The value of 
S in the case of a uniaxial field i s  determined by (1.1). 
In the more general biaxial case, we have S = 6 I (~s, ,)"~I,  
where =sign&, the sign of the characteristic value of 
the matrix S,, that is largest in absolute value. It is 
important that the usefulness of expression (2.1) is not 
limited to the immediate vicinity of the critical point. 

The field ~:,(r) that minimizes the f ree  energy (2.1) 
is found by means of the equation 

By calculating the variational derivative and carrying out 
the analysis of this equation, i t  is easy to show that its 
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solution has the form (1. I), where S is determined by 
the equation 

and 

11.. (1') = I ,  cos (zsr+@) -m, sin (zsr+v). (2.4) 

n =d/b, J ,  is a constant, and s, 1, and m a r e  unit vectors. 
All directions of s a r e  of course equally possible; we 
suppose that the direction of the axis of the spiral  is 
prescribed. The period of the spiral  thus obtained i s  
I =2.rrb/d. 

By substituting (2.4) in (1.1) it is easy to represent 
SO,, in the form of an expansion in terms of the basis 
(1.2): 

where 

Under the usual experimental conditions, the initial 
phase I I ,  of the spiral  is randomly and uniformly distrib- 
uted. Thus in the usual experiments on light scattering 
in a liquid crystal, there i s  no relation between the phase 
of the incident light and the phase of the spiral. There- 
fore they may be considered independent and completely 
random. It is not difficult to calculate the spectral 
density of the field (2.5) for random initial phase, 

(6(k) = 6(kl)6(k,)5(k3)). Naturally the delta function that 
enters here is in actuality only an idealization. Under 
real  conditions the delta function i s  smeared out (re- 
placed by a certain approximation) for two reasons. The 
first  reason is that the medium is spatially bounded. 
Thus if i t  fills a parallelopiped with dimensions LIX L, 
XL,, the delta function must be replaced by an approxi- 
mation 6, (k,)6,(k,)6,(k3), where E = l/L,, p = 1/~, ,  v 
=1/L3, and 6,(x) is an approximation of width E .  The 
second reason is the variability and diffusion of phase 
that in principle is always present. This leads to  
spreading of the delta function even if the medium is 
supposed infinite in several directions. 

We shall estimate the spreading of the delta function 
that results from diffusion of phase. Instead of carrying 
out a detailed multidimensional treatment, we shall r e -  
place the problem by a one-dimensional one. We shall 
f i rs t  consider diffusion of phase along the axis of the 
spiral. We shall suppose that II,  depends only on rs EY,,. 

Using (2. I), we then get 

where A, is the area  of the cross  section of the spiral  
wave. On substituting (2.8) in the expression const 
' exp[-F/k,T], we find the probability functional for 
$(Y,,) and hence obtain the longitudinal diffusion coeffi- 
cient 

Similarly we find the transverse diffusion coefficient 

As is well known in the theory of self-excited oscilla- 
tors, phase diffusion leads to  a Lorentz shape of a spec- 
tral line. Thus on the assumption of longitudinal un- 
boundedness of the medium, we get for k I I  x ,  instead of 
(2.71, 

~ u m e r i c a l  calculation shows that the spread of the spec- 
t ra l  line resulting from diffusion is much smaller than 
the spread resulting from spatial boundedness. When 
the dimensions of the region filled by the liquid crystal 
a r e  of the order of a few millimeters, the diffusive 
broadening is smaller by a factor -10' than the broaden- 
ing caused by spatial boundedness. Therefore we shall 
hereafter disregard phase diffusion. 

We shall consider deviations 6Sa6 =s,, -SO,, from the 
unperturbed field, assuming them to  be sufficiently 
small. Field changes caused by small  deviations of 
phase a r e  incorporated in S,,; large deviations of phase 
a re  impossible in consequence of the spatial boundedness 
discussed earlier. As in (2.5), we represent these de- 
viations in the form of an expansion 

~f we substitute S,@ =SO,, + 6Sa, in (2. I), the terms linear 
in 6Sa6 drop out because of (2.2). Taking into account 
the smallness of the deviations 6S,,, we retain in the 
expression obtained only the terms quadratic in 6S,, or  
CDj. 

We write the resulting expression in matrix form: 

~ = ' / , c p + [ ~ ( ~ ) f f " g ~ ~ ] c p ,  (2.11) 

where rp denotes the column vector llqj(r)ll, J =  116(r1 
- r,) I I ,  and L(V) = llLj,(V) I I  is the matrix corresponding 
to the terms containing derivatives in (2. I), taken in the 
basis (1.2). It was shown in Ref. 2 that the matrix 
L(-ik) assumes diagonal form in the basis {S.',,}, where 
pi, a r e  constructed-like (1.2) but on the unit vectors 8, 
1, and a, where s' I I  k and BS 3 0. In this representation 
we havec2' 

The basis vectors c',, and a i6 a r e  interrelated by the 
unitary transformation 

where the u{ depend on the angle y between 8 and e (see 
(A. 4)). Therefore in the basis a',,, the matrix in ques- 
tion has the form 
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It is important that, in contrast to the cases consid- 
ered earlier,c'*2*51 the matrix inside the square brackets 
in (2.11) depends not only on the difference r, - r, but 
also on the sum r, +r,. This indicates a periodic in- 
homogeneity of the random field 6S,, or  q j  for fixed 
initial phase $. 

3. SPECTRAL DENSITY OF THE FLUCTUATIONS 
FOR RELATIVELY LARGE CORRELATION RADII 

The free energy (2.11) determines the density func- 
tional of the probability distribution of the random field 
q j(r). In consequence of the quadratic character -of the 
free energy, the field is Gaussian. In accordance with 
the theory of Gaussian flucttiations, the correlation ma- 
tr ix is obtained by inversion of the matrix that occurs 
in (2.11): 

In the case under consideration, the low-temperature 
phase, the situation is complicated by the fact that the 
fluctuation field is periodically inhomogeneous, s o  that 
the correlation matrix (3.1) not only depends on r, - r, 
but also is a periodic function of r, +r,. In the usual 
experiments, there is no coherence between the spiral  
and the incident light beam. Then the experimentally 
measurable quantities a r e  influenced only by the corre- 
lation function averaged over a period. We shall denote 
by a the value of the correlation function averaged over 
r, +r, or  over a random initial phase. We must of course 
not suppose that it is impossible to  perform special ex- 
periments in which the coherence between the incident 
beam and the spiral  is significant, but they a r e  a t  pres- 
ent unknown. For the analysis of such experiments, i t  
would not be permissible to carry out the averaging de- 
scribed. 

An averaging similar to the averaging over r, +r ,  has 
been carried out also by other  author^.^^*^] Thus in Lu- 
bensky7s first  paper,t31 formula (17) was obtained a s  the 
result of averaging over z +zt7 although this fact was not 
explicitly stated there. In the reviewc" of Stephen and 
Straley, it is stated on page 661: "Terms which vary 
like exp[* ito(z, +z2)] have been neglected because they 
average to zero." In Lubensky's second paper,c31 this 
averaging is not carried out, because the final formulas 
(3.26) and (6.25) a re  left in a form that is not simplified 
o r  definitive. 

We shall find the inverse matrix in (3.1) by represent- 
ing i t  by a matrix series in powers of the second matrix 
term: 

It is shown in the Appendix that this series in fact con- 
verges a s  a ser ies  in powers of the parameter l/r,. At 
a given point this parameter is by hypothesis small ( x r ,  
<<I), and therefore the ser ies  converges rapidly. 

In the Appendix i t  i s  also shown that one can without 

difficulty find also the correlation function a averaged 
over r, +r,  and the corresponding spectral density - 
G1(k). By use of (2.14), one obtains for this spectral 
density formula (A. 2). We write the f i rs t  few terms of 
'this series: 

c; ,~ (k) =kBT~l-'(k) [ I , - -  f"': 7,-I (k) 

+ 'ffo2v&'r-1 (k-xs) ~I,s.-~] a'a,;. (3.3) 

Here we have returned to tensor notation and have used 
(2.13). The quantities vc that occur here a re  deter- 
mined by formulas (A. 3) and (A. 4). To obtain the whole 
spectral density c,B,,(k), it is necessary to add (3.3) to 
(2.7). 

The f i rs t  term on the right side of (3.3) i s  of isotropic 
character. It insures the continuity of the changes of 
spectral density with change of temperature and with 
transition through a critical point. In fact, on approach 
to the critical point from below the expression (2.7) 
vanishes, since S - 0. The higher-order terms in (3.3) 
also vanish. There is only a weakly expressed jumpi- 
ness in this vanishing, because the phase transition is 
a weakly expressed transition of f i rs t  order. On ap- 
proach to the critical point from above, i. e., from the 
high-temperature-phase region, a s  was shown in Ref. 
2, the spectral density becomes equal to  an expression 
corresponding to the f i rs t  term in (3.3) with the values 
(2.12) of rj(k1. 

The following question is interesting: what sort  of ex- 
pression is obtained if one first  averages the matrix in 
(2.11) over r, + r, and then calculate the inverse matrix; 
how much will this result differ from the true one? It 
is easily seen that then in the expansion (A. 1) only those 
terms will occur for which a, =b,, i. e., v, =O. Then 
in the expression (3.3) those terms disappear that a r e  
quadratic in f "/rj and in which v#O. Consequently, 
not only the first  term on the right side of (3.3) but also 
the second term is taken into account in this simplified 
calculation procedure. But in terms of the next and 
higher orders of smallness, discrepancies arise. 

The spectral density (3.3) obtained has a band charac- 
ter; that is, it increases noticeably in definite frequency 
bands. By taking account of the form (2.12) of the func- 
tions rj(k), one easily sees that the f i rs t  term in (3.3) 
describes fluctuations in bands near the frequencies k,, 
=O, k, ,  = * 2 ~ ,  and k,, =*d/(b + c ) .  

The second term in (3.3) describes less intense fluc- 
tuations whose frequencies lie in bands near the fre- 
quencies 

(these bands come from the product r;' 7 2 )  and 

(these come from products 7;: 7;: and 7;: T;:), and also 
the bands indicated earlier for the first  term. Higher 
terms describe still less intense fluctuations whose fre- 
quencies lie in more distant side bands. On lowering of 
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the temperature from the critical and decrease of the 
correlation radius, the bands mentioned broaden, the 
intensity of the side bands increases, and for x r ,  - 1 the 
approximation (3.3) loses i ts  validity. 

Formulas (3.3) and (2.7) can be tested experimentally 
by observation of the scattering of light by fluctuation 
inhomogeneities in cholesteric liquid crystals. As is 
well known, the differential scattering cross section 
per unit solid angle and per unit scattering volume is 
given by the formula 

where q = k - kt; k and e a r e  the wave vector and the unit 
polarization vector of the incident wave, kt and e' of the 
scattered; N is the number of molecules in unit volume; 
and - c ~ .  

It is of interest to test  experimentally the above-de- 
scribed band structure of the fluctuation spectrum by 
measuring, say, the dependence of the cross section 
(3.4) on q = Ik - k' I .  True, experiments under the con- 
dition u r C  >> 1 present a well-known difficulty, because 
the temperature range near the critical point in which 
this condition is satisfied is, a s  was mentioned in the 
Introduction, usually very narrow. Under actual experi- 
mental conditions, especially near the critical point, 
there may be in the liquid crystal a violation of the con- 
dition of homogeneity with respect to the orientation of 
the helix, and specifically domains may appear with dif- 
ferent spontaneous orientations of the helix. In this case, 
in order to find the resultant spectral density it is nec- 
essary to carry out an averaging over the orientation of 
the spiral, assuming, say, that the distribution over 
orientations is uniform. In such an averaging, the iso- 
tropic first term in (3.3) does not change; but the other 
terms, and also (2.7), undergo a change. We shall write 
the result of the averaging of the largest of these terms, 
the expression (2.7): 

Finally, we note that in application of these formulas 
to a real  case of a spatially bounded medium, i t  i s  nec- 
essary to carry out a smoothing of the spectral density 
(that is, to  take a convolution integral) with the function 
6,(k,)6,(k2)6,(k,) discussed in Sec. 2. 

4. COMPARISON WITH RESULTS OF PREVIOUS 
PAPERS 

We shall compare the results obtained with the formu- 
las of the review by Stephen and ~ t r a l e ~ , ~ "  where the 
results a r e  presented in a more definitive form than 
that of ~ u b e n s ~ . ' ~ ~  We shall write formula (10.17) of 
Ref. 4 (see also Ref. 9), derived for the case in which 
c = 0 in (2.1). In consequence of equation (8.5) of Ref. 
4, this formula in our notation has the form 

Here 
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where 

4A = [ (el) '+ (em) '1 [ (e'l) (e'm) '1, 
4B=[ (el) (e's) +(es) (e'l) IZ+ [ (em) (e's) +(a) (e'l) IZ. 

The functions I, and I ,  a r e  determined by formulas 
(10.9) and (10.10) of Ref. 4; that is, 

(k, =2bse, q,, =qs). In the expression for I ,  we have ne- 
glected terms that a r e  small  because q e / x a  << 1 when q 
-.a1, by virtue of the inequality xr,>> 1. 

We note that the terms containing I ,  in (4.1) give the 
same expression as does formula (2.10) if, on the right 
side of the latter formula, we omit the small terms 4 0 i  
in the denominator. 

According to formula (4. I), the differential scattering 
cross section is influenced only by those fluctuations of 
the orientation tensor whose frequencies lie in the bands 
k - i  2 x ,  i x . It was shown in Sec. 3, however, that in 
the spectral density there a re  also present fluctuations 
with frequencies that lie in other bands. Failure to take 
into account the fluctuations in other frequency bands is 
a shortcoming of the methods of previous 

Besides this, discrepancies of the bands k2x  and i x  
also occur. In fact, if in (3.3) we retain only the first  
term and in i t  take account only of re and ?,I, we shall 
have 

where 2 and B a r e  a n a l o g y  to A and B but a r e  con- 
structed on the vectors I ,  1, and m. The last expres- 
sion is similar in form to (4. I), but there a re  also some 
obvious differences. Formula (4.3) must be regarded 
a s  a refinement of the result (4. I), which was derived 
by a less general and less  rigorous method. One can 
also write in (4.3) the additional corrective terms that 
occur in (3.3). 

In a comparison of (4.3) with (4. I), i t  is necessary to 
remember the following important fact. The point i s  that 
the characteristic values r,(k) and ~ , ~ ( k )  indicated in 
(2.12) a r e  not nonnegative functions. This means that 
the matrix L(v) in the expression (2.11) for the free en- 
ergy and, consequently, also the corresponding matrix 
in (2.1) a r e  not nonnegative definite. This is not per- 
missible, since it leads to  thermodynamic instability 
of the field (2.5) (as well as of the field SO,. = O  in the high- 
temperature phase) in a range adjacent to the critical 
point, and also to nonpositiveness of the expression for 
the spectral density of certain linear combinations of 
the compounds of S,,(r). In order to deal with a non- 
negative definite operator L(v), i t  is expedient to change 
the original expression (2.1). We replace, say, the 
term 2d&,p,S,88$pB in (2.1) by the expression 

Here the principal term is the last term. The other 
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terms a r e  less important; terms of this form were al- between (5 and 8. 

ready contained in-(2.1). . These terms a re  introduced Analysis shows that h" loses its dependence on * if 
for redetermination of the coefficients of gB and we set  c = O  and neglect the term dk = b ~ k ,  which is small  
E ~ P Y ~ . @ ~ Y ~ P B  that the period of the and the crit- 

in comparison with bk2 when k-  y;'. In general, h"(*) 
ical temperature may remain unchanged. has a constant component a and a cosinusoidal component 

After this substitution, the characteristic values (2.12) b cos 28. We represent h(*) by the expansion 
a r e  replaced by the nonnegative functions 

h ( Y )  = A,e-'*' 
~ , ~ ( k )  = b ( k l l * 2 ~ ) 2 ,  z*, ( k )  = t ) ( k l l * ~ ) z + ~ k z  (4.4) 

(5.6) 

(lo@) is unchanged), which indicate nonnegative definite- 
ness of the new matrix L(v). No other changes result 
in the theory expounded above. With the values (4.4), 
the expression (4.3) becomes still more like (4.1) and 
(4.2). An especially great similarity occurs for k ll a. 
It will be interesting to test  experimentally which of 
these two expressions, which differ most from each 
other when k is, is actually correct. 

5. SPECTRAL DENSITY FOR RELATIVELY SMALL 
CORRELATION RADl l 

We turn to consideration of the opposite case, in 
which UY, << 1. Because of the narrowness of the tem- 
perature interval in which rC2x;', as was discussed in 
the Introduction, this situation is more typical. We 
shall start  from formula (3. I), where 

The functions (5.1) change appreciably over a distance 
A Y  "u-', while the correlation function changes appre- 
ciably over a distance Y, . Since Y, << n", the function 
zj undergoes no substantial change over a distance Y,. 

Therefore in a calculation of the correlation function 
near a point that corresponds to  a certain value of 9, 
@ (and therefore also i j )  may be considered constant. 

The constancy of zj makes the inversion of the matrix 
(3.1) simple: 

where 

One can show the validity of this matrix inversion by 
direct multiplication by the original matrix, It is con- 
venient to use formulas (5.2) and (5.3) on the basis Gi,, 
because then the matrix L(- ik) has the diagonal form. 
With use of (2.14), we have in this basis 

(sum over even v), where 

A,= (az-b2)-'", A2=A-?= b - ' [ i -a  (a2-b2) -'"I. 

By substituting (5.6) in (5.4), one can easily carry out 
the averaging of the spectral density ~;,(k, Q) with re -  
spect to Q over a period, which corresponds to aver- 
aging of the correlation function with respect to r, +r2, 
as was discussed in Sec. 3. As a result we finally get 

The second term is now not small, in contrast to the 
way it  was in (3.3). When k -ri1, where Y, = (b/f ")'I2, 
i t  has the same order of magnitude as the first  term. 

The method used in this section may be called quasi- 
static, since in the calculation of the local correlation 
function the direction of the director was assumed to  be 
static (constant). If in the expressions for T,~ and T, 

we discard the terms containing dk,, , the medium there- 
by is replaced by a nematic. The difference from the 
usual case of a nematic medium will be only in the fact 
that in the calculation of the local correlation function, 
an additional averaging is carried out over the various 
possible directions of the director perpendicular to the 
axis of the spiral. When the product n r ,  is not too 
small, i t  is of course better not to neglect the terms in 
sj containing dk. 

Formula (5.7) is applicable also to the case of a spa- 
tially bounded medium, provided only that the spiral  of 
spontaneous anisotropy succeeds in executing a large 
number of revolutions. A condition for applicability of 
this formula is also invariability of the direction of the 
axis of the spiral  over the whole volume. In the case of 
large inconstancy of the direction of the axis, an addi- 
tional averaging should be carried out over these direc- 
tions, as was done at the end of Sec. 3. Allowance for 
spatial boundedness of the medium is made, a s  has al- 
ready been indicated, by a supplementary smoothing of 
the spectral density with weight 6, (k1)6, (k2)6,(k3). 

k ,  = [ -  " ; (5.4) We note that the results of Refs. 3 and 4 a r e  not valid 
when k-r;'Zn. In fact, in this case the spectral density 

h-'(k ,  Y) =i+f"x u , ~ ~ ~ " ~ T , - ' ( k )  =a+b cos 2 Y .  (5.5) is influenced by a large number of terms of the expan- 
, nL sion (A. 1). But in the expression (4.1) no allowance has 

been made for spectral components of the fluctuations, 
Here in other frequency bands, given by these terms; that is, 

the higher terms have not been taken into account. It 
IJ:~= X u & g , + , g b  (uaf)' was shown in Ref. 4 (p. 661) that the case k, >> n , when 

b 

the liquid crystal is nearly nematic, falls outside the 
(only the values for v=*2,O a re  nonzero); u: are  de- framework of the treatment. But we consider the re -  
termined by formulas (A. 4) and depend only on the angle sults of this paper inapplicable also when k -Y;' "n . 
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6. APPLICATION TO SCATTERING THEORY 

1. As has already been indicated, the expressions 
found for the spectral density of fluctuations can be ap- 
plied to the calculation of the differential cross  section 
for scattering of light by fluctuation inhomogeneities 
(see (3.4)). Here we shall consider only the special 
case in which the unit vectors e and e' a r e  perpendicu- 
lar to the scattering plane and the vector q = k - k' is 
parallel to the axis of the helix. In this case, y =0, and 
the matrix u: is the unit matrix; furthermore e =et=m. 
The function (5.5) in this case loses its dependence on * (that is, b =O). 

If MY, << 1, (5.7) may be used. Substitution of (5.7) in 
(3.4) in this case leads to  the result 

do ksT 
-= -~;(NAE)I rZ-l(q) [I-  (2r,)-=hbr~-'(q) 1 
dS2 128aJ 

2 2 
( 

+ -To-* (q) [I - -(2rc)-zhb~o-1 +rI;(q) [ I- (2rr)-'hb~Iil ] 
3 3 (6.1) 

where r, = (f " ~ ~ / b ) - " ~ .  This formula is applicable when 
q-ri1>> x and when the other conditions indicated in Sec. 
5, under which formula (5.7) is valid, a r e  satisfied. 

The second terms in the square brackets describe the 
effect of the spontaneous anisotropy. They a re  absent 
in the high-temperature phase. Formula (6.1) indicates 
that the dependence of the differential cross section on 
the dimensionless argument qr, in the low-temperature 
phase differs significantly from the corresponding de- 
pendence in the high-temperature phase. It would be 
interesting to verify this difference experimentally. 

The other important difference in the scattering in the 
low-temperature phase i s  that the differential cross 
section depends significantly on the angle y between q and 
the direction of the axis of the spiral. It would be inter- 
esting to investigate experimentally, say, the difference 
between the cross  section for q Il s and the cross section 
for q 1s at  fixed qr,. Analytically, i t  i s  easy to obtain 
the value of the cross  section for q l s  by use of (5.7) and 
to find i ts  difference from (6.1). 

2. In closing, we shall consider one effect of scatter- 
ing that i s  specific to cholesteric liquid crystals. It 
consists in the fact that a linearly polarized wave gives 
a scattered wave in which different rotations of the polar- 
ization a r e  differently represented. As before, we shall 
suppose that the incident beam i s  linearly polarized (e 
=m). We shall take the scattered beam to be elliptically 
polarized: 

- 
car=nl cos y.+r ( I  cos 0+5 sill fi)sin y.. (6.2) 

where 9 is the half-angle of scattering; x determines the 
degree of ellipticity. In order to calculate the corre- 
sponding differential cross  section, i t  is necessary to 
substitute (6.2) in (3.4) in the role of e: , and the com- 
plex-conjugate vector in the role of e : .  We shall denote 
this cross section by ( d a / d ~ ) ~ .  

We consider further st i l l  another cross  section (da/ 
dn),, for a scattered beam with the opposite polarization, 

ef=m cos X-i(l cos B+s sin B) sin x 

and take the difference of these two cross  sections. A 
nonvanishing value of this difference is also a specific 
cholesteric effect, due to the inversion-noninvariant 
term containing d in (2.1). In the same approximation 
as in (6. I), we obtain the formula 

(2) ,- (s) = 
kO4 ( N A ~ . )  '{T~-' (q) [I- (2rc)-zhb~2-1] 

2 

-T:: (g )  [ I -  (2r,)-'hb~T: ])cos6 sin 2 ~ .  

It is also possible to calculate how scattering of an 
elliptically polarized beam occurs. The general rule is: 
in a cholesteric liquid crystal, as distinguished from a 
nematic, the mean rotation of the polarization vector 
changes on scattering. 

APPENDIX 

Analysis of the expansion (3.2) 

By use of the well-known formula 

em'@ (V) =Q,(V- iz )eU' ,  

we shift all the exponential factors exp(kijxr) that occur 
in (3.2) in and to  the right. We then perform the 
averaging over r. After the averaging, only those terms 
remain for which the product of these exponential factors 
gives unity. This leads to  the expression 

(A. 1) 

where 

In the sum (A. I), only those terms occur for which v,, 
= 0. On going over to  a spectral representation, we re- 
place V by - ik  in (A. 1). On using (2.14) and substituting 

in (A. 11, we get 

C,,' (k) = k = ~ z  (-j")* (up) (k) 

(A. 2) 

where the notation is 

m the sum (A. 2), a s  before, only terms with v,=O oc- 
cur. The values of a;;, a s  well a s  of u: , depend only on 
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the angles between 6 and 6,. The calcuhtion gives for L-I(-ik) f"ggr-(xrC) -' 
u:(y) the following values: 

for k " ~ .  
1 3 '1. I I - 1  ( )  sin2 7.   in 7 cos 3cos2y-I, 

Each of these values i s  much less than unity. From 
these estimates it is evident that in the case of relative- 

-6'h sin y cos 7, (f )" sin2yll, ly large correlation radii, the terms of the series (A. 1) 

(A. 4) 
or (A. 2) decrease rapidly. 

Ilu,?(y)II-- (cos yrti)',2siny(cos y * l ) ,  I I  4 
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