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Possible manifestations of spinodal singularities in the course of surface evaporation of a liquid by intense 
electromagnetic radiation are investigated. It is shown that the increase of the specific heat and of the 
reciprocal thermal diffusivity near the spinodal lead to an essentially nonmonotonic character of the 
establishment of the steady-state evaporation. Experimental observation of such a behavior could serve as 
proof of the existence of the spinodal as a realistically observable line of singularities of the 
thermophysical parameters of a metastable liquid. 

PACS numbers: 64.60.My, 64 .70 .F~ 

1. The behavior of the thermophysical parameters of 
a liquid at the absolute-instability boundary (spinodal) 
has been investigated only near the critical point imme- 
diately adjacent to the thermodynamically stable region. 
The remaining spinodal points a r e  separated from the 
stable state by a metastability region. At shallow pene- 
trations into the metastable region, no singularities 
whatever have been observed in the superheated liquid.''] 
At the same time, extrapolation of the experimental re- 
sults on light scattering, from the stable to the meta- 
stable region, suggests that the thermal diffusivity x 
= ic /cp tends to zero near the ~ ~ i n o d a l . ' ~ ]  It follows 
from the Van der Waals equation that the specific heat 
c diverges on the spinodal, but i t  i s  known that this 
equation does not provide a correct description of the 
critical singularities because the fluctuations a r e  not 
adequately accounted for. 

Fluctuations assume a special role in the metastable 
phase, since the state of the system i s  not stable. As a 
result of the increase of the "transcritical" heterophase 
fluctuations, the time during which a superheated meta- 
stable liquid can exist as  a homogeneous system i s  limit- 
ed, and the liquid may decay even before the spinodal i s  
reached. This raises the fundamental question whether 
it i s  possible a t  all  to attain near the spinodal a region 
in which the possible singularities of the thermophysical 
parameters become actually ~bservable. '~**'  There is at  
present no answer to this question. 

It i s  obvious that the experimental methods used in the 
stable region will hardly work in studies of the behavior 
of a superheated metastable liquid, whose lifetime near 
the spinodal is very short. In such a situation one must 
use pulsed methods that yield information on the proper- 
ties of the liquid in a time on the order of t i10-' sec. 
We analyze in this paper the possible manifestations of 
spinodal singularities in the course of rapid heating and 
evaporation of an absorbing liquid acted upon by intense 
electromagnetic radiation. 

2. The temperature T of a superheated liquid exceeds 
the boiling point corresponding to the external pressure 
p acting on the liquid, i. e., p is less than the saturated 
vapor pressure p,(T). If the metastable liquid has a 
free surface, the value of p is determined by the kinetics 
of the surface evaporation and is approximately one-half 

the saturated-vapor pressure, if the back-flow of the 
evaporated particles is small  and the sticking coefficient 
is close to unity.c5' Thus, the behavior of the surface 
temperature To can be assessed from the time depen- 
deuce of the recoil pressure p=0.5p,(TO). The closest 
approach to the spinodal is reached in this case not on 
the very surface of the superheated liquid, but at a cer- 
tain distance from it, in the region where the tempera- 
ture distribution has a maximum. In the one-dimension- 
a1 case, which we shall consider, this region is a plane 
parallel to the interface. 

To determine the influence of the spinodal singularities 
on the behavior of the surface temperature T,(t) it is 
necessary to find the temperature profile in the meta- 
stable liquid with allowance for the volume absorption 
of the radiation and the boundary condition on the evap- 
oration surface, which moves relative to  the immobile 
surface a t  a velocity WIT,). In a coordinate frame with 
origin on the evaporation surface, the corresponding 
boundary-value problem for the heat-conduction equation 
takes the form 

% ~ T , / ~ ' X = E P , V ,  T ( x ,  0) =T(m, t)=T,, @I 
where a, W, E, and c denote the absorption and heat-con- 
duction coefficients, the heat of evaporation, and the 
specific heat a t  constant pressure. In the case of free 
evaporation in vacuum, the velocity u is given byc5' 

where po is the density of the liquid on the interface, m 
is the mass of the evaporated particles, and the ratio 
p'/pid takes into account the difference between the va- 
por density p' and the density p:, of an ideal gas a t  a 
temperature To and a pressure p,(To). The last term in 
the left-hand side of (1) takes into account the adiabatic 
changes of the temperature with changing pressure p. 

3. Owing to the nonlinear dependence of the evapora- 
tion ra te  v(To) on the temperature, the problem (I), (2) 
is nonlinear even at constant values of the thermophysi- 
cal  parameters, and i t  has no known analytic solution in 
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the general case. The stationary distribution of the 
temperature at constant a, C, and x i s  given byCs1 

T=ITo-T,+elcl  ( I - y ) - ' [ e x p ( - a z )  - exp ( -UX/X)  ] 

+ ( T o - T , ) e x p ( - U X / X )  +T, ,  
(4) 

and the following relation 

i s  valid and determines, given the function v(To), the 
dependence of the surface temperature To on the ab- 
sorbed intensity I. 

The excess of the maximum of the temperature profile 
over the surface temperature i s  small: T, - To=&/cy, 
if the dimensionless parameter y = a h  > 1 and the dis- 
tance from the maximum to the interface, x,= a", CO- 

incides with the characteristic absorption length of the 
electromagnetic radiation. This situation is typical of 
liquid metals. 

In the opposite case of interest to us, y < 1. The quan- 
tities T, - To = E/C and x, = X/v do not depend on the ab- 
sorption coefficient. Since the ratio &/c is of the same 
order as the critical temperature T,, the stationary 
evaporation regime described by (4) and (5) i s  in fact 
never reached. The maximum of the temperature pro- 
file exceeds the limiting superheat temperature TL even 
before the stationary regime is established, and explo- 
sive decay of the metastable phase sets in. Thus, at  y 
< 1 the stationary regime can be reached only if the spe- 
cific heat c increases appreciably near the limiting 
superheat temperature TL. This evaporation regime, 
however, can no longer be described by formulas (4) and 
(5). 

If account is taken of the temperature dependences of 
c and x , the relation between T, and To can be obtained 
in the following manner: After integrating (1) with re- 
spect to the spatial coordinate from x = O  to x =xm we have 
in the stationary regime 

Since ax, = y << 1 and 

we can neglect the right-hand side of (6). The result i s  
the equation 

which determines the connection between To and T, in 
the stationary evaporation regime. The physical mean- 
ing of (8) is obvious: the energy consumed in surface 
evaporation corresponds to the enthalpy change on the 
section from the interface to the position of the maxi- 
mum of the temperature profile, since the role of the 
absorbed radiation as  a volume heat source is negligibly 
small over the length x,. 

To determine x, explicitly we need more detailed in- 
formation on the behavior of the temperature profile. 
A simple analytic expression for x, i s  obtained when 
the thermophysical parameters c = c,[(T, - T)/(T, 
- T,)]-~ =c0 Ask and K = n o  A--" have integrable power-law 
singularities 0 6 n < k < 1, and the maximum of the tem- 
perature profile coincides with the temperature of the 
limiting superheat: TL = T,. Expressing at x 6 x, the 
temperature profile in the form A = baq(xm - x ) ~ ,  we ob- 
tain from (1) in the considered approximation 

b = [ a X o ( q - l - q n ) / u ] - q ,  q= ( k - n )  -'. (9 

We obtain ultimately for x, and T, - To the expressions: 

which differ from the analogous quantities at constant 
values of the thermophysical parameter by the factors 
(1 - k)/(k - n) and 1 - k, respectively. Formula (1 1) 
agrees, of course, with Eq. (8) (the expressions for 
T, - To and x, inc7' a re  of the correct form only if n2 
<< 1 - k). Formula (10) no longer holds at k =n, but in 
this case the expression for the temperatlure profile is 
obtained directly from (I), which after an obvious sub- 
stitution for the function reduces to a linear first-order 
differential equation. 

4. We consider now the establishment of a stationary 
evaporation regime. To determine the dependence of 
the recoil pressure p[~,( t ) ]  on the time we must solve 
the boundary-value problem (I), (2). This can be done 
only by numerical means. Since our purpose i s  to in- 
vestigate the qualitative singularities of the nonstation- 
ary evaporation regime, we shall henceforth regard the 
absorption coefficient a a s  constant and neglect in the 
convective term the difference between the ratio p0/p 
and unity. 

Using the dimensionless quantities 

we write down the boundary-value problem (I), (2) in the 
form 

The singular behavior of the specific heat and of the 
thermal conductivity will be described by the functions 
fl = cl p1/cp and fa = x ,/x : 

At u, -u>0.1, the functions fi and fi differ little from 
unity, and when the difference decreases to u, - u <O. 1 
these functions tend to zero in power-law fashion, with 
respective exponents 1.2 and 0.66. Since the limiting 
superheat temperature u, =O. 9 +O. 1 o depends on the 
pressure,c11 the specific heat and the thermal conductivi- 
ty turn out to be functions not only of the temperature 
but also of the pressure. 
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Far from u,, the term with the adiabatic derivative 
in Eq. (12) has little influence on the dynamics of the 
liquid heating, but as u approaches uL the derivative 
(au/ao), increases and reaches at u =uL the value 0.1 
which is obtained in the approximation under consider- 
ation from the relation (au/au): =duL/du. This relation 
expresses the fact that in the plane of the thermodynam- 
ic variables o and u the spinodal is the envelope for the 
adiabats and the i s o c h ~ r e s . ~ ' ~  In the present paper the 
adiabatic derivative was approximated by the expressions 
0.1(1 -f1)' and 0.1 exp[l0(u -uL)], which differ, in par- 
ticular, in the ra te  of fall-off a t  uL - u 20.1. 

The nonlinear boundary-value problem (12), (13) was 
solved numerically with the B ~ S M - ~  computer, using an 
implicit finite-difference scheme. Without dwelling on 
the details of the numerical algorithm, we note the fol- 
lowing features of the computation. Equation (12), which 
in our problem preserves its parabolicity together with 
its difference analog, was approximated by an assembly 
of four-point, implicit in time, nonlinear difference 
equations of the divergent type. In each time step the 
aggregate of nonlinear algebraic equations approximating 
the problem (12), (13) was solved by successive approxi- 
mations, with the iterations stopped when the condition 
l ujs) - I Q cl, and with given c1 > 0, was satisfied a t  
each node i in z. In view of the scale differences in the 
behavior of the temperature profile, we used in the cal- 
culations a non-uniform z-grid with intervals h, between 
lom4 and 8 x lo-' on the segment z Sz, z3.12. The sizes 
of the steps h,, h,, and cl were chosen such that when 
the stationary regime was reached the functional of the 
numerical solution was within 10% of i t s  theoretical val- 
ue (7). 

With a concrete physical situation in mind for the sake 
of argument-rapid heating of water by intense infrared 
radiation-we used in the numerical calculation the fol- 
lowing values of the absorption coefficient and of the 
thermophysical parameters of the liquid: 

The behavior of the recoil pressure U(T) a t  various 
values of D and (au/3o), =O.  l (1  - f,)4 is shown in Fig. 1 
(the coefficients for the conversion from T and D to 
the dimensional quantities t and I a re  respectively 
(dxl)-'  = 1.47 lo-* sec  and a x l  T, =4.4. lo3 w/cm2). 
The initial sections of the U(T) curves hardly differ from 
the case of the constant thermophysical parameters f l  
=fa = 1, when the pressure increases monotonically until 
the maximum temperature profile u, reaches the value 
u, ~ 0 . 9 ,  after which explosive decay of the superheated 
liquid should se t  in. The recoil pressure a t  the instant 
of the explosive decay is much smaller than the station-' 
ary value determined from Eq. (7) using the surface tem- 
perature. At D equal to 100, 250, and 500 the ratio a/ 
o,, is respectively 0.11, 0.074, and 0.052, and the in- 
stant when the limiting superheat temperature i s  reached 
turns out to be approximately inversely proportional to 

FIG. 1. Plots of the recoil pressure at various intensities 
D: 500 (I),  250 (2.2'), 100 (3) and durations r:  4. lo4 (41, 
5 - lo4 (5), 10'~ (6) of the action of the radiation. 

D: the corresponding values of T a r e  5.5 X 2 x lo", 
and 

The increase of the specific heat near the spinodal is 
the necessary condition for the establishment of a sta- 
tionary evaporation regime at y < 1. As seen from the 
figure, this regime is reached in an essentially non- 
monotonic manner. The U(T) curve has a sharp peak 
whose amplitude exceeds the stationary pressure level 
and depends little on the radiation intensity. The prin- 
cipal growth of the pressure on the leading front of this 
peak takes place within a time rf=4x10" ( t f=6~10 '8  
sec). This behavior of U(T) is due to the adiabatic varia- 
tions of the temperature when the external pressure is 
changed, and also to the fact that in our problem the 
heat source and sink a r e  separated in space, a situation 
aided by the decrease of the thermal diffusivity near the 
spinodal. 

During the transient process, the energy accumulated 
a s  a result of the volume absorption of the radiation in 
the liquid exceeds the value needed to maintain the sta- 
tionary evaporation regime at  a given value of D. This 
excess energy i s  then "dumped" via an abrupt increase 
of the surface temperature and an increase in the loss 
to evaporation, and these take place at the instant when 
the moving evaporation boundary reaches the excessively 
heated region. The dynamics of the transient process 
depends little on the actual form of the term with the 
adiabatic derivative in (12). If we use the expression 
(au/au), =O. 1 exp[l0(u -uL)] for the adiabatic derivative, 
then the behavior of the pressure curve changes little 
in comparison with the case described above, and the 
general picture of the heating remains the same a s  be- 
fore. The nonmonotonic character of the transient pro- 
cess i s  conserved to a certain degree even if the term 
with (au/ao), is not taken into account in (12), but then 
the sharp peak disappears, as seen from the figure 
(curve 2'). 

The excessive superheating manifests itself, in par- 
ticular, in the behavior of U(T) after the radiation is 
turned off. For sufficiently short rectangular radiation 
pulses, the pressure begins to fall off immediately after 
the end of the pulse (curve 4), but if the excessive ener- 
gy accumulation has already started prior to the instant 
of termination of the pulse, then the growth of the sur- 
face temperature and of the recoil pressure continues 
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also after the radiation i s  turned off (curve 5). For 
pulses long enough for dumping of the excess superheat 
to take place, the recoil pressure decreases abruptly 
on the trailing edge of the radiation pulse (curve 6). 
We note that in all these cases the difference 6 =u, -urn 
begins to increase immediately after the end of the pulse, 
i. e., there i s  no relative approach of the limiting-super- 
heat temperature to the maximum ofthe temperature 
profile. In this situation the direct cause of the "induced' 
decay, which i s  observed on the trailing edge of the ra- 
diation pulse,cs1 may be the fact that the expansion of the 
superheated metastable liquid i s  not quasistatic when the 
pressure i s  rapidly decreased.'" 

A characteristic feature of the transient process of 
evaporation is also the nonmonotonic time dependence 
of 6. The minimal value 6, i s  reached not in the sta- 
tionary regime, but at the instant r, that corresponds 
approximately to the start of the rapid growth of the 
recoil pressure. The dependence of T,,, on the intensity 
is almost that of inverse proportionality, with 6,(~,) 
equal to 7.8 10" (1. 5 a 10 '~ )~  7.2 10" (5.7 . lo-') and 
7 -10" (2.8 .lo") respectively for D equal to 100, 250, 
and 500. At these values of 6, the ratio c/cl increases 
to c/cl = (106,)"'~ ~ 4 0 0 ,  which is approximately four 
times larger than c/cl in the stationary regime. The 
time interval within which such an increase of c/c, over 
the stationary value is realized i s  relative1 small com- 
pared with the duration A r of the entire transient pro- 
cess. For D=250, for example, the condition c/c, 
2200 i s  satisfied on the interval A r, =lo" at A r 
If the functions c/cl and H / X  = ( C / C , ) ~ ' ~ ~  a r e  bounded 
from above by the condition c/c, 200, then the behavior 
of the pressure curve u(r) remains practically unchanged. 
Of course, the value 6, = 5.1 X 10" is then decreased. 
The more stringent condition c/cl 100 causes the maxi- 
mum of the temperature to be no longer bounded from 
above by the limiting-superheat temperature, i. e., 6 
passes through zero and becomes negative for some 
time. A similar situation arises also in the case of the 
integrable singularity c/cl = f -" k < 1, but then the quan- 
tity - 6 continues to grow after passing through zero. 
This behavior of 6 is already outside the framework of 
the assumed physical model, in which the region of ab- 
solute instability i s  not considered and 6 can not be neg- 
ative. 

6. Our results show thus that the singular behavior of 
the thermophysical parameters near the spinodal leads 
to an essentially nonmonotonic character of the transient 
process in the evaporation of a liquid by electromagnetic 
radiation. An actual manifestation of singularities of the 
nonstationary behavior of the recoil motion is possible, 
however, only if the explosive decay of the superheated 
metastable liquid does not start  before the above-de- 
scribed pressure peak occurs. In other words, the nec- 
essary condition for attaining the stationary evaporation 
regime is a sufficient "strength" of the metastable phase 
relative to the excessive superheating that occurs during 
the transient process. The specific heat of the meta- 
stable phase should increase, in particular, not more 
slowly than the correlation length. If the limiting super- 
heating temperature i s  reached without being accom- 
panied by a sufficiently singular behavior of the thermo- 
physical parameter, then the explosive decay will be 
initiated on the gently sloping section of the recoil-pres- 
sure curve, which precedes the pressure peak. This 
result can be used for an experimental investigation of 
the question whether the spinodal actually exists as a.1 
observable line of singularities of the thermophysical 
parameters of a metastable liquid. 
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