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The influence of antiferromagnetic exchange interaction on magnetoelastic coupling, as manifested in 
nonlinear acoustic phenomena, is investigated in the example of antiferromagnets with anisotropy of the 
"easy plane" type (AFEP). It is shown that under the simplest experimental conditions, the effective third- 
order elastic moduli $ are proportional to the square of the intersublattice exchange field and in real 
AFEP (for example, a-Fe,O,) may exceed by two orders of magnitude the usual values for solids. The 
values of the components of the tensor e$ and the relations between them may vary over a wide range 
with change of the intensity and orientation of an external magnetic field, and also with change of 
constant mechanical stresses applied to the crystal. The possibility of observing various nonlinear acoustic 
effects is demonstrated with application to hematite. 

PACS numbers: 75.80.+q, 75.50.Ee, 75.30.Et 

The elastic part of the potential-energy density of a 
solid, to terms of the third order in the components of 
the strain tensor 6 ,  can be written in the form 

The second-order elastic moduli ( 8 ' ) -  lou erg/cm3) 
a re  responsible for linear acoustic effects, the third- 
order (e'3)- 1013 to 10" erg/cm3) for nonlinear. With 
practically attainable strains, the values of e t3)2 a re  so 
small in comparison with that observation of the 
nonlinear effects in solids is at present difficult. ''I 

In magnetic materials, the elastic subsystem inter- 
acts with the magnetic. Both the magnetic subsystems 
itself and the magnetoelastic (ME) coupling a r e  by their 
very nature nonlinear and capable of introducing into 
the elastic subsystem an additional anharmonicity. In 
antiferromagnets (AF), observation of many manifesta- 
tions of the ME coupling is appreciably facilitated by the 
fact that the antiferromagnetic exchange interaction 
weakens the coupling of the magnetic subsystem of the 
crystal with the external magnetic fieldc2]; this shows 
up especially clearly on comparison of AF with fer- 
rites. C31 In particular, the ME coupling leads to the ap- 
pearance of corrections ~ e ( ~ )  to the second-order elas- 
tic moduli. In A F  with anisotropy of the "easy plane" 
type (AFEP), such a s  a-Fe203 (T, < T < T,) and FeBO,, 
the experimental values of AC(~)/C(') amount to tens of 
percent. i4*51 

It is natural to expect that the exchange interaction in 
AFEP will also promote the appearance of anharmonic- 
ity ( ~ 8 ' ~ ) )  introduced by the magnetic subsystem into 
the elastic. C81 

In this paper, a calculation is made of the third-order 
effective elastic moduli of AFEP crystals, and an esti- 
mate is made of the possibility of observing a number 
of nonlinear accoustic effects. The ME coupling can 

be varied appreciably if the AFEP crystal is subjected 
both to an external magnetic field H and to compressive 
mechanical s t resses  P parallel to H. "*'l Near a cer- 
tain critical value P,(H), at which a spin reorientation 
(phase transition) occurs, the coupling is especially 
large: for certain acoustic waves, the coefficient of 
linear coupling with spin waves approaches i ts  limiting 
value, close to unity. "I Therefore the investigation of 
the nonlinear acoustic properties of AFEP is carried 
out with allowance for external static stresses. 

The effective elastic moduli e t i j  a r e  detefmined by 
solution of a coupled system of Landau-Lifshitz equa- 
tions and equations of elasticity, to terms of the second 
order in the amplitude of the alternating strains. In 
earlier work, c8*g1 thelinear ME coupling in AFEP was 
treated in the approximation of isotropy of the ME prop- 
ert ies of the crystal in the basal plane. As measure- 
ments show, in actual AFEP of rhombohedra1 structure 
(for example, a-FE2O3) the ME anisotropy is large.H0*41 
For this reason, some of the results presented here of 
the f i rs t  approximation, relating to linear ME effects, 
contain appropriate changes a s  compared with those 
obtained in Refs. 8 and 9. 

1. BASIC EQUATIONS 

The energy density of an AFEP with two magnetic 
sublattices M1 and M, can be represented in the form of 
a sum of the kinetic energy, due to the alternating elas- 
tic displacement U, the potential energy F, and the en- 
ergy of interaction of the magnetic moments with the 
external magnetic field H: 

The energy F consists of the magnetic energy F,, the 
elastic F,, and the magnetoelastic F,,: F = F, + F,+ F,,. 
For crystals of rhombohedral structure (CY-F~~O,, 
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FeB03, MnCO,; space group D!d) ,  each term can be 
expressed in the formL"' 

Notation: p is the density of the crystal; m = (MI 
+ &)/%; In (MI - &)/2Mo; I MI I = I & I =Mop whence 
m2 + l2  = 1 and (ml) = 0; HE is the exchange field, HD the 
~z~alosh inskf i  field, cu the constant of nonuniform ex- 
change interaction; the z axis is directed along the 
"hard" axis of the crystal (C,), characterized by anisot- 
ropy field HA; the x axis is directed along one of the 
second-order axes (U,); f is the tensor of external 
mechanical stresses. For H<< 2HE, it is sufficient to 
take account in F,, only of the a~ttiferromagnetic ME 
interaction (3), with the tensor B of ME constants. In 
the expression (2), the purely elastic anharmonicity is 
neglected because, as  will be shown, it is small in com- 
parison with the anharmonicity introduced into the elas- 
tic subsystem by the magnetic. With the same accura- 
cy, it is possible to neglect the nonlinear dependence of 
2 on the derivatives of the displacement vector. 

Magnetoacoustic phenomena a re  described by a cou- 
pled system of Landau-Lifshitz equations and equations 
of 

M ' = - ~ [ M ~  X Hi]  , pur=atr ~ 3 . r ~ ~  (4) 

where y is the magnetomechanical ratio, HI= - 6W/6M j 
is the effective field acting on the j-th sublattice (W 
= IwdV), and ? is the stress tensor given by 

The relation (5) describes the effect of the magnetic 
subsystem on the elastic. The inverse effect i s  de- 
scribed by the ME component of the effective fields, 

As is well known, the spectrum of magnetic oscilla- 
tions of an AFEP for Hlz consists of two branches: a 
quasiferromagnetic (QF) wfi and a quasiantiferromag- 
netic (QAF) w,,. For H, HD, HA << HE, the frequencies 
of the branches (without allowance for ME interaction) 
a re  

(a,&) ' = H ( H + H , )  +2HEM0akZ,  

( ~ . ~ / T ~ ~ = ~ H , M , + H ~  ( H + H n )  +2HEJf0ak' .  

We shall hereafter be interested in oscillations with 
a not too high frequency w<c w,; we shall furthermore 
assume H,,<< HA. These conditions allow us to neglect 
departure of the antiferromagnetic vector from the 
basal plane of the crystal (1,- 0 )  and change of its mod- 
ulus (12= 1). Then from equation (4) follows the rela- 
tion 

The presence of the factor 2HE in the last term of this 
equation reflects the influence of exchange interaction 
on the manifestations of the ME coupling. 

By expressing the quantities 6 and 1 in the form of a 
sum of constant (equilibrium) and variable components, 
6 =$+2(r, t) and I=  b+ x(r, t), and linearizing the sys- 
tem of equations (4) with respect to Q(r, t) and ~ ( r ,  t ) ,  
one can easily obtain all the known results relating to 
the linear manifestations of the ME coupling. In the 
calculation of the magnetic corrections to the third-or- 
der elastic moduli, the nonlinear equation (6) is solved 
to terms of the second order in u(r, t). 

2. EQUILIBRIUM STATE 

The equilibrium state of an AFEP is described by the 
following system of equations: 

where the tensor 3' is determined by the relation 

The second term in (7) i s  responsible for the sponta- 
neous magnetostriction of the AFEP. L13-151 We shall 
hereafter assume that the tensor ?has a single compo- 
nent rt( = - P, where 6 = H/H. This choice of the exter- 
nal stresses corresponds, for P >  0, to compression of 
the crystal in the direction of a magnetic field oriented 
arbitrarily in the basal plane of the crystal (see Fig. 
1). Substitution of the solution of equation (7) in equa- 
tion (8) reduces the latter to the form 

where the effective field H, of the external pressure i s  

When H,< H, = H(H+ HD)/2HE, the antiferromagnetic 
vector is perpendicular to H: that is, (6.1) = 0. When 
H,> H,, spin reorientation occurs, C7e91 and the vector 
lo  is determined by the second solution of equation (9): 

H H D  
['"] ' = 2HEH,-HL = cos q, 

where cp i s  the angle between the directions of the field 

FIG. 1. Coordinate axes and equi- 
librium orientations of ferro- and 
antiferromagnetic moments (mo 
=m, ImoIpo; H= IHII). 

S I' Uz 
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H and of the ferromagnetic moment n~,, (see Fig. 1). 
We shall hereafter define the direction of mo by the 
unit vector po (when H,<Hpc, po=  4) .  

3. ' DYNAMIC SECOND-ORDER ELASTIC MODULI 

We shall treat  dynamic effects principally with ap- 
plication to the crystal hematite (a-FezO,), an anti- 
ferromagnet (HE- 10' 0 e )  with anisotropy of the "easy 
plane" type at room temperature, for which the mag- 
netic, elastic, and magnetoelastic parameters a r e  
knOwn[4"Os'61 (see Appendix A). The velocity of spin 
waves in hematite is higher than the velocity of sound; 
therefore the interaction of normal volume sound waves 
z ,  with spin waves Gfk is greatest in the range of small 
wave vectors k, where under the usual experimental 
conditions Ga<<ijf,= Gn. This gives us a basis, in the 
analysis of the effect of the magnetic subsystem on the 
elastic, for restricting ourselves to the quasistatic ap- 
proximation (w<< Gfif,), which corresponds to neglect of 
the left side of equation (6). 

Dispersion of spin waves plays an important role 
only in the immediate neighborhood of critical pres- 
sures  (Hp= Hpc). Without allowance for this dispersion, 
the solution of equation (6) linearized with respect to 
the variables B(r, t) and ~ ( r ,  t) has the form 

where for H,< H, 

whereas for H,> H, 

The term 2HEHm is the magnetostrictive gap in the 
AFMR spectrum. C'3*141 The effective field Hm of the 
spontaneous magnetostriction is "*I4' 

The relations (loa), (lob), and (Qa) with B14 = C14 = 0 
agree with those obtained in Ref. 8. The tensor of ME 
st resses  in equations (5), to terms linear in the deflec- 
tion of the vector 1, is 

With use of the relation (10) and of the equality l o o g p o  
= l O O ~ o l O ,  we have 

where 

The relations (11) and (5) allow us to interpret the ef- 

fect of the linear ME coupling on the elastic slibsystem 
as a change of the second-order dynamic moduli of 
elasticity, whose effective values are1) 

Dispersion of spin waves, which is important when H, 
* H,, leads to a nonlocal coupling of the s t resses  with 
the strains; this is taken into account in the character- 
istic equation given in Appendix B, which determines 
the dispersion law we and the polarization e,, of nor- 
mal sound waves. [''] 

It was shown in Ref. 8 that in uniaxial AFEP (that is, 
ones elastically and magnetically isotropic in the basal 
plane), for Hllx and H,- H, the velocity of transverse 
sound waves with kllx and elly approaches zero as I kl - o . ~ )  By use of equations (Bl) and B2), one can easily 
show that in AFEP of rhombohedra1 structure, this 
property is possessed by a wave with ellx and with k 
oriented in the (2, y) plane of the crystal at angle 0 to 
the y axis, where 

For  the crystal ff-FeO,, i t  follows from (13) and the 
experimental data (see Appendix A) that 0~ 52". 

In closing this section,-we note that the symmetry 
properties of the tensor 2:;; differ from the symmetry 
properties of the tensor ct2). By means of the relations 
(B1) and (B2) one can show, in particular, that the ME 
interaction lifts the degeneracy of the frequencies of 
transverse sound waves with klle. The waves with po- 
larization elly have no linear interaction with the mag- 
netic subsystem and a r e  propagated with phase velocity 
[p"~,]'1~. The waves with ellx have phase velocity 
[p-'(cu - A C ~ ) ] ' ~ ~ ,  where AC2 is given in (B. 3). In an 
a-Fe20, crystal located in a field H= 1 kOe, with Hp= 0, 
the relative correction to the elastic modulus is 
AC2/C44= 25%. C4'51 

4. THIRD-ORDER DYNAMIC MODULI OF 
ELASTICITY 

We shall f irst  consider relatively longwave oscilla- 
tions with wave vectors satisfying the condition 
2 ~ , ~ ~ ( u k ~  << (w,,-,/~)~. In this case the effect of disper- 
sion of the magnetic subsystem on the nonlinear acous- 
tic properties of the AFEP can be neglected. On rep- 
resenting the solution of equation (6), to terms of the 
second order of smallness with respect to B(r, t), in 
the form I =  l o +  x"' (r, t)+ kt2)(r, t), we get 

where for H,> H, 

H H , [  ( 2 H E H , - H 2 ) 2 - H H , 2 ] " z  
N ( H ,  H, )  = 3 

( o . , , / y ) ' ( 2 H E H , - H ' )  ' 
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whereas for H, < H, 

The value of x") is determined by the equality (10). 

The nonlinear part of the tensor of magnetoelas- 
tic stresses can be represented in the form 

With the aid of relations (14), (lo), and (15) and of 
the equality 

we find the third-order effective dynamic elastic mod- 
uli 

For hematite (B- 10' erg/cm3, HE- 10' Oe, Mo- lo3 
G) with H,: 0 and H- 1 We,  we have ( ~ n / y ) ~  - 30 We2, 
whence AC")- 1015 to 1016 erg/cmg; that is, muc? larg- 
e r  than the ordinary third-order elastic moduli (c")). [I1 

Because of the factor ( w ~ / $ ~  in the denominator of 
AC") and because of the fun%tion N(H, H,) the effective 
moduli et;: = e(3)= ~ 8 ' ~ )  rs: A C ( ~ )  a re  sensitive to the y 
intensity of the external magnetic field H and to the ex- 
ternal pressures and become especially large in the 
vicinity of the spin reorientation3) H, -Hpc. 

We note one more peculiarity of the acoustic npl in-  
earity of AFEP. The components of the tensor B a r e  
determined by the properties of the crystal and a r e  
related to the crystallographic axes. But the compo- 
nents of the vectors l o  and p, a r e  determined by the 
orientation of the magnetic field in the basal plane (and, 
in general, by the value of the external pressure). This 
makes it possible by change of the direction of H to 
change the relation between the components of the ten- 
sor  c:;:; that is, to control the interaction between 
sound waves. 

In the high-frequency (hypersonic) range, especially 
when H,=H,,, i t  is necessary to allow for dispersion 
of spin waves. H%re, as  in the linear case, the rela- 
tion of the tensor t:: to the strains becomes nonlocal; '; 

this, however, is unimportant in the problems consid- 
ered below. 

5. INTERACTION OF SOUND WAVES 

We shall treat the interaction of sound waves, caused 
by the effective elastic anharmonicity, by the method of 
slowly varying amplitudes. [181 We represent the elastic 
displacement vector in the form of an expansion in nor- 
mal quasiacoustic waves: 

where p is a smallness parameter, characterizing the 

slowness of variation of the amplitudes u, of the nor- 
mal waves. The frequencies w, and the polarizations 
e,, a r e  determined with allowance for the linear ME 
coupling (12); in particular, for Hllx and H, 5 H,, by 
the relations (Bl) and (B2). In the first  approximation 
with respect to the parameter p ,  one can obtain from 
equations (41, by use of the expressions (12) and (15), 
the following system of equations for the slowly varying 
amplitudes of the normal quasiacoustic waves: 

where the upper multiplier corresponds to processes of 
fusion of waves, with conservation-of-energy law o,.,. 
+ w,.. (,, , ,, = w,,, and the lower to processes of splitting, 
with conservation-of-energy law w,,,. = w,,,(,. ,,, + w,,; 
V, and 71, are,  respectively, the group velocities and 
the relaxation frequencies of the normal waves; @,,.,,, 
is the interaction amplitude, equal to 

1 - 
@,,.. .. (k, k ,  k'-k) = ----c::: n^arn^.~r*a^.r~(r-r.~, 

4po.r 

With the aid of equation (17) we shall estimate the pos- 
sibility of observing several nonlinear effects, with ap- 
plication to a hematite crystal. 

Parametric generation of sound by sound. Assuming 
Hllx andH,S H,, we shall consider the interaction of 
transverse sound waves with wave vectors b, kl, and 
b parallel to the z axis. In Sec. 3 we mentioned that t 
without allowance for magnetoelastic interaction, the 
spectrum of these waves is degenerate. The ME inter- 
action lifts the degeneracy in such a way that the veloc- 
ity of a wave with polarization e I I  y continues to be de- 
scribed by the elastic modulus Cd4, whereas the velocity 
of a wave with ellx is determined by the effective mod- 
ulus CIif = C4((1 -x ), where 

(The effect of dispersion of the magnetic subsystem on 
the velocity of a wave with ellx in this case can be ne: 
glectedover thewhole H, range, all the way to H,- H,, 
because of the considerable difference of the direction 
of propagation from that prescribed by equation (13). ) 

If the pumping wave, with amplitude % and frequency 
wo, has polarization eolly and ~ I I Z ,  then there is a pos- 
sibility of a synchronous process of interaction of it 
with waves u1 and u2, whose frequencies wl and q sat- 
isfy the condition wl + wz = *, if the wave vectors kl 
and a r e  antiparallel (kill -$lib), kl +$ = b, and the 
polarizations el,211x (see Fig. 2). 

It is to be expected that for the pumping wave consid- 
ered, there will be no linear coupling with the magnetic 
subsystem; nevertheless i t  will participate effectively 
in the nonlinear ME interaction of the waves. 
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FIG. 2. Condition for parametric generation of waves with 
frequencies wi and w2 by a pumping wave with frequency wo. 
Straight line 0: k llz; e Il y; w(k) = ( c ~ ~ / ~ ) ~ ~ ~  ( k  I. Straight lines 
1 and 2: kllz; e Ilx; w(k) = [(I - z)c,,/plilz Ik I. 

On setting u,,,. = %(z)b(kt - k) in equation (17) and 
calculating the amplitudes of interaction (18), we get 
in the prescribed pumping-field approximation a system 
of equations for the statjonary amplitudes ul and uz: 

where 

R, = q,,/Vn ~,"k,/2 is the attenuation coefficient, Q, is 
the quality factor of the wave with wave vector k,, uo 
= %(z = 01, and n = l ,2 .  We shall solve equations (20) 
with the boundary conditions ul l +.o = ul(0), u, I ,,L = 0. If 
we neglect the attenuation of sound waves, the solution 
has the form (L is the length of the specimen along z) 

car T ( L - z )  sin r ( z - L )  
o , = u , ( O )  . U ~ = I I , .  (0)---- 

ros FI, YrZ1l,,' cos 1-L 
. (21) 

where 7 = I 1 el*, 1''' is the growth increment. The 
condition for parametric generation, 2 r L  = T, '''1 deter- 
mines the value of the critical deformation &,, in the 
pumping wave, 

1 
E =--I. 21B,,I I - r .  

cr -  Loluolcr=n--- 
2 C,. (l; ,L) x": ' 

With q , /2~-10 '  Hz, L -  1 cm, H- 1 kOe, and H,= 0, we 
get for a-Fez03 the estimate &,, - 20 lo-'. Such ultra- 
sonic deformations a re  experimentally quite attainable. 
In Appendix C it is shown that allowance for a finite 
quality factor Q k 10' of the sound waves does not change 
the order of magnitude of E,, as estimated by formula 
(22). 

Doubling of the sound frequency. Analysis of the in- 
teraction amplitudes (18), with use of the expression 
(16), shows that a synchronous process of frequency 
doubling is possible, for example, for a normal wave 
with polarization ellz and with projections of the wave 
vector determined by the,relations (see (B. 1)) 

The frequency of the wave under consideration'satisfies 
the equation 

A pumping wave with amplitude uo and frequency u,, can 
generate a second-harmonic wave (% = 2 y) whose am- 
plitude % is described, in the approximation of pre- 
scribed pumping field, by the equation 

where b is the coordinate measured in the direction of 
k (conditions a re  assumed to be uniform in directions 
perpendicular to k); Ro and R, a r e  the attenuation coef- 
ficients of the pumping and second-harmonic waves; 
q ,=u&=0)=0;  and, 

From the solution of equation (25) with the boundary 
condition 4 6  = 0) = 0, i t  follows it follows that the spa- 
tial distribution of the amplitude of the second harmonic 
has a form similar to that given in Ref. 1: 

The maximum value R,. is reached at a distance C0 
= (R, - 2 ~ ~ ) "  ln(R,/2&). If we suppose, following Ref. 
20, that the quality factor of the wave Q- w-l, then R, 
= 4R, and 5, = (2R0)" ln2. Then the maximum second- 
harmonic output is determined by the relation 

where co = ko I % 1 /2 is the deformation amplitude in the 
pumping wave at the input to the crystal (5 = 0); v = w/k 
is the phase velocity of the waves. On taking H- 1 kOe, 
*/2n- 10' Hz, and Qo- lo3 and using the data on the 
magnetoelastic parameters of hematite given in Appen- 
dix A, we get the following estimates: 

Thus at strain amplitudes EO- lo-', the second-harmon- 
ic  output in hematite may already amount to tens of per- 
cent, whereas a t  the same amplitudes the second-har- 
monic output in, for example, a magnesium-aluminum 
alloy amounts to fractions of a percent. ['I 

Acoustic detection. If there is incident on the crystal 
a sound wave with carr ier  frequency w, amplitude-mod- 
ulated at frequency 52, then on the basis of the acoustic 
nonlinearity of the crystal, detection may occur, with 
selection of a signal un at the modulation frequency 52. 
This phenomenon has been treated earliercz1] on the as- 
sumption that the signal at the modulation frequency oc- 
curs under conditions of volume resonance with the 
specimen. The large value of the effective elastic non- 
linearity in AFEP allows us to count on obtaining an 
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appreciable detection effect with traveling waves. 

A quantitative estimate of the efficiency of acoustic 
detection in hematite, for example for a wave with po- 
larization elle, propagated in the direction t, and hav- 
ing at the crystal boundary a displacement u(5 = 0) = %(l 
+ a cosQt) cos ot, with w/2n- 10' Hz, Q, - lo3, H- 1 
kOe, and L- 1 cm, is I -  20 16 coa. 

Thus in AFEP, all the nonlinear effects considered 
can be observed on traveling sound waves with actually 
attainable strains co- lo-'; this is difficult o r  impossi- 
ble in ordinary solids. 

APPENDIX A: 

MAGNETOELASTIC PARAMETERS OF HERMATITE 
(a-F, 0 3  1 

Elastic moduli C, 10" erg/cm3c1B1: 

Density p = 5.29 g/cms. "I 

Magnetoelastic interaction constants B, 10' 
erg/cm3c'01: 

B l l - B u = 8 i 2 ,  2B14=27*3, 

Magnetic parameters: 
Mo = 870 G'), HE = 9.2*106 Oe, 

HD= 2.2010' Oe. 

APPENDIX B: 

CHARACTERISTIC EQUATION FOR NORMAL 
QUASlACOUSTlC WAVES IN  A CRYSTAL OF 
RHOMBOHEDRAL STRUCTURE 

The characteristic equation for normal waves, when 
Hp H, and Hllx (or Hlly), has the form 

(B. 2) 
APPENDIX C: 

EFFECT OF ATTENUATION OF THE CONDITION 
FOR PARAMETRIC GENERATION OF SOUND 

If the attenuation coefficients R, of the waves a re  non- 
zero, one can derive from the system of equations (20) 
the following equation: 

aZui au - + (R,,+R,-R,)-+ [I'Ze-ZRaz+R, (Ro-.R,) ] u,=O. (c. 1) a Z~ az 

Its solution is represented in the form 

(C. 2) 
where H,,"*~) a r e  the Hankel functions of order v, v 
= IRo - Rl - R2 I /Ro, and q , ,  a re  constants of integra- 
tion. By use of equation (C. 2) we get the solution of 
the second of equations (20): when Ro 6 R1 + 4, 

(C. 3) 
when Ro a R1 + 4, 

The generation condition, given in the form % l 8,L = 0, 
ul I r=o = ul(0) - 0, gives the following equations for de- 
terminationof the critical value of the growth increment 
r(J, and N,, a r e  the Bessel and Neumann functions): 
when RocR1+&, 

when Ro2R1+%, 

here x =  r/Ro, p = e-RoL. If we use the facts that % 
= [ I -  (1 - ~ ) ~ / ~ ] o ~ / 2  and that for a-Fe203 at H- 1 kOe, 
x - 0.25, then % = 60 lo-' 9 << oo. Supposing that Q-' 
- w, i. e. , R -  02, we may consider that R, << Ro= R,, 
i. e. , v - 0 (we neglect the dependence of the attenuation 
on the polarization). 

Then from (C. 5) o r  (C. 6). the generation condition 
takes the form 

where the function j3 varies over the range 1 f i  < 1.6 as 
its argument varies over the range 0 RoL <m. C221 It 
follows from the expression (C. 7) that the critical val- 
ue of the strain in the pumping wave is 

where &,( R - 0) is determined by the expression (22). 
For q,/2r- 10' Hz, L- 1 cm, H- 1 kOe, H, = 0, and 
Qo- ld, we get for a-F+03 c,=2c,(R - 0). 

CONCLUSION 

1. In antiferromagnets, in contrast to ferromagnets, 
the exchange interaction plays a part in the formation 
of a magnetoelastic coupling between the magnetic and 
elastic subsystems of the crystal. This leads to a sub- 
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stantial renormalization not only of the second-order, 
but also of the third-order elastic moduli. 

2. For values of the field and of the external mechani- 
cal stresses not too close to those that cause an orien- 
tational phase transition from the "Zemman" phase to 
the angular, the magnetic contribution to specific com- 
po?ents of the tensor of third-order elastic moduli 
A C ' ~ )  is proportional to the square of the exchange field 
(HE) and inversely proportional to the fourth power of 
the AFMR frequency (wfl); therefore for high-tempera- 
ture (with high TN and therefore large HE), weakly ani- 
sotropic (with small ofo) antiferromagnets of the type 
of CY-Fez03, the effective moduli (?::: = e C 3 ) +  ~ e ' ~ )  may 
attain unusually large values, exceeding by two orders 
of magnitude the value of the purely elastic anharmonic 
moduli c"). 

3. The renormalizable components 6${ depend 
strongly on the values of a magnetic (H) and mechanical 
stresses (P) oriented in a definite manner; they in- 
crease to limiting values at P- Pc(H) (PC is the critical 
uniaxial pressure corresponding to spin reorientation; 
P0(0) = 0). 

4. In AF of the type of G-Fez03, the large values of 
6;:: that a r e  realized under quite simple experimental 
conditions may appreciably facilitate the observation of 
such nonlinear ultrasonic and hypersonic dynamic ef- 
fects a s  parametric excitation of sound by sound, 
doubling of the sound frequency, acoustic detection, 
and a number of others. 

5. The significant magnetic renormalization of the 
third-order moduli and the possibility of resultant con- 
trol through i t  by means of external fields and external 
stresses make practical the theoretical and experimen- 
talinvestigationof the relaxational parameters of quasi- 
acoustic magnetoelastic waves in high-temperature, 
weakly anisotropic antiferromagnetic monocrystals. 
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''~n analysis of the expression for A C ( ~ )  and, see below, fo r  
AC'~)  should be carried out, obviously, by use of the expres- 
sions (10a) and (lob) for ( U ~ ~ / Y ) ~ .  In particular, the depen- 
dence of A C ( ~ ) / C ( ~ )  on HE i s  more complicated than a linear 
dependence, which occurs only for the "Zeeman" phase (when 
q III H) and when A C ( ~ ) / C ( ~ '  << 1. 

2 ) ~ e  emphasize that not all transverse waves with e Il y a r e  
strongly coupled with spin waves. Thus for waves with k II z 
and e Ily there i s  no linear ME coupling. 

3 ) ~ o r  H p < H p c ,  the condition Hp-Hpc is formally equivalent to 
the condition H -  0 when P = 0. Under these conditions, how- 
ever,  the possibility of an expansion of the vector l and of the 
strains û  a s  se r i e s  in small  departures from the equilibrium 
values becomes problematical. 

"In the two-sublattice model. 

'L. K. Zarembo and V. A. Krasil'nikov, Usp. Fiz. Nauk 102, 
549 (1970) [Sov. Phys. Usp. 13, 778 (1971)l. 

2 
M. A. Savchenko, Fiz. Tverd. Tela (Leningrad) 6, 864 (1964) 
[Sov. Phys. Solid State 6, 666 (1964)l. 

3 ~ .  I. Ozhogin, IEEE Trans. Magn. MAG-12, 19 (1976). 
4 ~ .  H. Seavey, Solid State Commun. 10, 219 (1972). 
5 ~ .  I. Ozhogin and V. P. Maksimenkov, a) Digests of Intermag. 

Conf., Kyoto, 1972, 49-4; b) IEEE Trans. Magn. MAG-8, 
645 (1972). 

%. I. Ozhogin and V. L. ~reobrazhenskir ,  a) International 
Conf. Magn., Amsterdam, 1976, Abstract 3C-9; b) Physica 
86-88B, 979 (1977). 

'P. P. Maksimenkov and V. I. Ozhogin. Zh. Eksp. Teor. Fiz. 
65, 657 (1973) [Sov. Phys. J E T P  38, 324 (1974)l. 

'1. E. Dikshteih, V. V. Tarasenko, and V. G. Shavrov, Zh. 
Eksp. Teor. Fiz. 67, 816 (1974) [Sov. Phys. J E T P  40, 404 
(1974)l. 

9. E. Dikshtein, V. V. Tarasenko, and V. G. Shavrov, Fiz. 
Tverd. Tela (Leningrad) 16, 2192 (1974) [Sov. Phys. Solid 
State 16, 1432 (1975)l. 

'OR. Z. Levitin, A. S. Pachomov, and V. A. Shchurov, Phys. 
Lett. 27A, 603 (1968). 

"v. G. Bar'yakhtar, M. A. Savchenko, V. V. Gann, and P. 
V. Ryabko, Zh. Eksp, Teor. Fiz. 47, 1989 (1964) [Sov. 
Phys. JETP 20, 1335 (1965)). 

"A. I. Akhiezer, V. G. Bar'yakhtar, and S. V. ~eletminski:, 
Spinovye volny (Spin Waves), Nauka, 1967 (translation, 
North-Holland, 1968). 

1 3 ~ .  S. Borovik-Romanov and E. G. Rudashevski~, Zh. Eksp. 
Teor. Fiz. 47, 2095 (1964) [Sov. Phys. J E T P  20, 1407 
(1965)l. 

1 4 ~ .  A. Turov and V. G. Shavrov, Fiz. Tverd. TeLa (Lenin- 
grad) 7, 217 (1965) [Sov. Phys. Solid State 7,  166 (1965)l. 

"A. S. Pakhomov, Fiz. Met. Metalloved. 25, 769 (1968) 
[Phys. Met. Metallogr. 25, No. 5, 1 (1968)l. 

16w. Voigt, Ann. Phys.y(Leipz.) 22, 129 (1907). 
"v. L. PreobrazhensEi, Candidate's dissertation, Moscow 

Power Institute, 1975. 
"s. A. Akhmanov and R. V. Khokhlov, Problemy nelinerno: 

optiki (Problems of Nonlinear Optics), VINITI, 1964. 
(Transl., Gordon & Breach, 1972). 

"E. F. Quate, C. D. W. Wilkinson, and D. K. Winslow, 
Proc. IEEE 53, 1604 (1965). 

2 0 ~ .  C. LeCraw and R. L. Comstock, in Physical Acoustics 
(W. Mason, ed. ), Vol. 111, Part  B, p. 127; Academic Press ,  
1965. (Russ. transl. ,  Mir, 1968, p. 156). 

2 1 ~ .  K. Zarembo and 0. Yu. ~erdobol 'skaya, Vestn. MGU, 
seriya fiz, i as t r .  1, 62 (1970). 

"E. Jahnke, F. Emde, and F. ~ o i c h ,  Tables of Higher Func- 
tions, McGraw-Hill, 1960 (Russ. transl., Spetsial'nye 
funktsii, Nauka, 1964). 

Translated by W. F. Brown, Jr. 

529 SOV. Phys. JETP 46(3), Sept. 1977 V. I. Ozhogin and V. L. Preobrazhenskii 529 


